Displaying publications 1 - 20 of 509 in total

Abstract:
Sort:
  1. Karunarathne VK, Paul SC, Šavija B
    Materials (Basel), 2019 Aug 17;12(16).
    PMID: 31426501 DOI: 10.3390/ma12162622
    In this study, the use of nano-silica (nano-SiO2) and bentonite as mortar additives for combating reinforcement corrosion is reported. More specifically, these materials were used as additives in ordinary Portland cement (OPC)/fly ash blended mortars in different amounts. The effects of nano-silica and bentonite addition on compressive strength of mortars at different ages was tested. Accelerated corrosion testing was used to assess the corrosion resistance of reinforced mortar specimens containing different amounts of nano-silica and bentonite. It was found that the specimens containing nano-SiO2 not only had higher compressive strength, but also showed lower steel mass loss due to corrosion compared to reference specimens. However, this was accompanied by a small reduction in workability (for a constant water to binder ratio). Mortar mixtures with 4% of nano-silica were found to have optimal performance in terms of compressive strength and corrosion resistance. Control specimens (OPC/fly ash mortars without any additives) showed low early age strength and low corrosion resistance compared to specimens containing nano-SiO2 and bentonite. In addition, samples from selected mixtures were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Finally, the influence of Ca/Si ratio of the calcium silicate hydrate (C-S-H) in different specimens on the compressive strength is discussed. In general, the study showed that the addition of nano-silica (and to a lesser extent bentonite) can result in higher strength and corrosion resistance compared to control specimens. Furthermore, the addition of nano-SiO2 can be used to offset the negative effect of fly ash on early age strength development.
  2. Panda B, Noor Mohamed NA, Paul SC, Bhagath Singh G, Tan MJ, Šavija B
    Materials (Basel), 2019 Jul 04;12(13).
    PMID: 31277393 DOI: 10.3390/ma12132149
    The advent of digital concrete fabrication calls for advancing our understanding of the interaction of 3D printing with material rheology and print parameters, in addition to developing new measurement and control techniques. Thixotropy is the main challenge associated with printable material, which offers high yield strength and low viscosity. The higher the thixotropy, the better the shape stability and the higher buildability. However, exceeding a minimum value of thixotropy can cause high extrusion pressure and poor interface bond strength if the printing parameters are not optimized to the part design. This paper aims to investigate the effects of both material and process parameters on the buildability and inter-layer adhesion properties of 3D printed cementitious materials, produced with different thixotropy and print head standoff distances. Nano particles are used to increase the thixotropy and, in this context, a lower standoff distance is found to be useful for improving the bond strength. The low viscosity "control" sample is unaffected by the variation in standoff distances, which is attributed to its flowability and low yield stress characteristics that lead to strong interfacial bonding. This is supported by our microscopic observations.
  3. Miah MJ, Ali MK, Paul SC, John Babafemi A, Kong SY, Šavija B
    Materials (Basel), 2020 Mar 05;13(5).
    PMID: 32151088 DOI: 10.3390/ma13051168
    This study evaluates the mechanical, durability, and residual compressive strength (after being exposed to 20, 120, 250, 400 and 600 °C) of mortar that uses recycled iron powder (RIP) as a fine aggregate. Within this context, mechanical strength, shrinkage, durability, and residual strength tests were performed on mortar made with seven different percentages (0%, 5%, 10%, 15%, 20%, 30% and 50%) of replacement of natural sand (NS) by RIP. It was found that the mechanical strength of mortar increased when replaced with up to 30% NS by RIP. In addition, the increase was 30% for compressive, 18% for tensile, and 47% for flexural strength at 28 days, respectively, compared to the reference mortar (mortar made with 100% NS). Shrinkage was observed for the mortar made with 100% NS, while both shrinkage and expansion occurred in the mortar made with RIP, especially for RIP higher than 5%. Furthermore, significantly lower porosity and capillary water absorption were observed for mortar made with up to 30% RIP, compared to that made with 100% NS, which decreased by 36% for porosity and 48% for water absorption. As the temperature increased, the strength decreased for all mixes, and the drop was more pronounced for the temperatures above 250 °C and 50% RIP. This study demonstrates that up to 30% RIP can be utilized as a fine aggregate in mortar due to its better mechanical and durability performances.
  4. Khan MI, Huat HY, Dun MHBM, Sutanto MH, Jarghouyeh EN, Zoorob SE
    Materials (Basel), 2019 Dec 10;12(24).
    PMID: 31835533 DOI: 10.3390/ma12244133
    In this study the effect of irradiated and non-irradiated waste polyethylene terephthalate (PET) as replacement of cement and fly-ash in ordinary Portland cement (OPC) and geopolymeric cement (GPC) based cementitious grouts on flexural strength of semi-flexible pavement specimens were evaluated. The porous asphalt gradation was selected based on Malaysian specifications for semi-flexible pavements with a target of 30% air voids. The cement content in the OPC grouts and the fly-ash content in the GPC based grouts were partially replaced with 1.25% PET (using both irradiated and non-irradiated PET). Beam specimens were prepared and tested for flexural strength properties using center point loading configuration. The grouts modified with recycled waste plastic (PET) showed approximately the same results as obtained from the control specimens. Although the replacement amount was low (1.25% by weight of cement), nonetheless, significant impact on reducing CO2 emissions is expected when preparing grouts for mass construction of semi-flexible pavement surfaces. Similarly, effective recycling of waste plastics in road construction and replacing OPC with plastic and geopolymers will have a positive effect on the environment and will furthermore contribute to sustainable pavement construction.
  5. Chen Y, Gong Y, Shan L, Tan CY, Al-Furjan MS, Ramesh S, et al.
    Materials (Basel), 2023 Jul 28;16(15).
    PMID: 37570016 DOI: 10.3390/ma16155312
    Cartilage damage is difficult to heal and poses a serious problem to human health as it can lead to osteoarthritis. In this work, we explore the application of biological 3D printing to manufacture new cartilage scaffolds to promote cartilage regeneration. The hydrogel made by mixing sodium alginate (SA) and gelatin (GA) has high biocompatibility, but its mechanical properties are poor. The addition of hydroxyapatite (HA) can enhance its mechanical properties. In this paper, the preparation scheme of the SA-GA-HA composite hydrogel cartilage scaffold was explored, the scaffolds prepared with different concentrations were compared, and better formulations were obtained for printing and testing. Mathematical modeling of the printing process of the bracket, simulation analysis of the printing process based on the mathematical model, and adjustment of actual printing parameters based on the results of the simulation were performed. The cartilage scaffold, which was printed using Bioplotter 3D printer, exhibited useful mechanical properties suitable for practical needs. In addition, ATDC-5 cells were seeded on the cartilage scaffolds and the cell survival rate was found to be higher after one week. The findings demonstrated that the fabricated chondrocyte scaffolds had better mechanical properties and biocompatibility, providing a new scaffold strategy for cartilage tissue regeneration.
  6. Prakash C, Pramanik A, Basak AK, Dong Y, Debnath S, Shankar S, et al.
    Materials (Basel), 2021 Mar 30;14(7).
    PMID: 33808311 DOI: 10.3390/ma14071699
    In the present research work, an effort has been made to explore the potential of using the adhesive tapes while drilling CFRPs. The input parameters, such as drill bit diameter, point angle, Scotch tape layers, spindle speed, and feed rate have been studied in response to thrust force, torque, circularity, diameter error, surface roughness, and delamination occurring during drilling. It has been found that the increase in point angle increased the delamination, while increase in Scotch tape layers reduced delamination. The surface roughness decreased with the increase in drill diameter and point angle, while it increased with the speed, feed rate, and tape layer. The best low roughness was obtained at 6 mm diameter, 130° point angle, 0.11 mm/rev feed rate, and 2250 rpm speed at three layers of Scotch tape. The circularity error initially increased with drill bit diameter and point angle, but then decreased sharply with further increase in the drill bit diameter. Further, the circularity error has non-linear behavior with the speed, feed rate, and tape layer. Low circularity error has been obtained at 4 mm diameter, 118° point angle, 0.1 mm/rev feed rate, and 2500 RPM speed at three layers of Scotch tape. The low diameter error has been obtained at 6 mm diameter, 130° point angle, 0.12 mm/rev feed rate, and 2500 rpm speed at three layer Scotch tape. From the optical micro-graphs of drilled holes, it has been found that the point angle is one of the most effective process parameters that significantly affects the delamination mechanism, followed by Scotch tape layers as compared to other parameters such as drill bit diameter, spindle speed, and feed rate.
  7. You R, Wang J, Ning N, Wang M, Zhang J
    Materials (Basel), 2022 Nov 15;15(22).
    PMID: 36431559 DOI: 10.3390/ma15228074
    Prestressed concrete sleepers are an important track component that is widely used in railway ballast track. Prestressed concrete sleepers have high strength, strong stability, and good durability; thus, their operation and use in railways are beneficial. However, in different countries and regions, certain damage to sleepers typically appears. Existing research on concrete sleepers focuses primarily on the structural design method, the application of new materials, theoretical analysis, and bearing strength test research, while ignoring sleeper damage. There are a few sleeper damage studies, but they look at only one type of damage; thus, there is no comprehensive study of prestressed concrete sleeper damage. The damage forms of prestressed concrete sleeper damage are thus summarized in this study, and the theory of the causes of prestressed concrete sleepers is analyzed based on the limit state method for the first time. The findings indicate that sleeper structure design is the primary cause of its operation and use status, and that special measures should be considered based on sleeper use conditions. In addition to meeting design requirements, materials, curing systems, product inspection, and other factors must be considered during manufacturing to improve the sleepers' long-term performance. Keeping the track in good condition, including but not limited to the state of fasteners, ballast bed, and track geometry is also an important aspect of preventing sleeper damage. The outcomes of this study provide better insights into the influences of damage to railway prestressed concrete sleepers and can be used to improve track maintenance and inspection criteria.
  8. Nazarpour F, Abdullah DK, Abdullah N, Zamiri R
    Materials (Basel), 2013 May 15;6(5):2059-2073.
    PMID: 28809260 DOI: 10.3390/ma6052059
    e effects of biological pretreatment on the rubberwood (Hevea brasiliensis), was evaluated after cultivation of white rot fungi Ceriporiopsis subvermispora, Trametes versicolor, and a mixed culture of C. subvermispora and T. versicolor. The analysis of chemical compositions indicated that C. subvermispora had greater selectivity for lignin degradation with the highest lignin and hemicellulose loss at 45.06% and 42.08%, respectively, and lowest cellulose loss (9.50%) after 90 days among the tested samples. X-ray analysis showed that pretreated samples had a higher crystallinity than untreated samples. The sample pretreated by C. subvermispora presented the highest crystallinity of all the samples which might be caused by the selective degradation of amorphous components. Fourier transform infrared (FT-IR) spectroscopy demonstrated that the content of lignin and hemicellulose decreased during the biological pretreatment process. A study on hydrolysis of rubberwood treated with C. subvermispora, T. versicolor, and mixed culture for 90 days resulted in an increased sugar yield of about 27.67%, 16.23%, and 14.20%, respectively, as compared with untreated rubberwood (2.88%). The results obtained demonstrate that rubberwood is a potential raw material for industrial applications and white rot fungus C. subevermispora provides an effective method for improving the enzymatic hydrolysis of rubberwood.
  9. Mawardi M, Isa IM, Ulianas A, Sintiara E, Mawardi F, Zalmi Putra R
    Materials (Basel), 2021 Jun 29;14(13).
    PMID: 34209933 DOI: 10.3390/ma14133638
    The objective of this study is to investigate Napa soil's potential as an alternative additive in producing Portland composite cement. The Napa soil of Tanah Datar district, West Sumatra, Indonesia is a natural material which contains SiO2 and Al2O3 as its major components. The parameters used were the fineness of the cement particles, the amount left on a 45 μm sieve, the setting time, normal consistency, loss on ignition, insoluble parts, compressive strength and chemical composition. The composition of Napa soils (% w/w) used as variables include 4, 8, 12 and 16%. Furthermore, 8% pozzolan was used as a control in this research. The results showed that the compressive strength of Napa soil cement which contained 4% Napa soil was much better compared to that of the control on the 7th and 20th day. Furthermore, all the analyzed Napa soil cements met the standard of cement as stipulated in Indonesian National Standard, SNI 7064, 2016.
  10. Chopra L, Thakur KK, Chohan JS, Sharma S, Ilyas RA, Asyraf MRM, et al.
    Materials (Basel), 2022 Mar 24;15(7).
    PMID: 35407737 DOI: 10.3390/ma15072404
    The hydrogels responding to pH synthesized by graft copolymerization only and then concurrent grafting and crosslinking of monomer N-isopropyl acrylamide (NIPAAM) and binary comonomers acrylamide, acrylic acid and acrylonitrile (AAm, AA and AN) onto chitosan support were explored for the percent upload and release study for anti-inflammatory diclofenac sodium drug (DS), w.r.t. time and pH. Diclofenac sodium DS was seized in polymeric matrices by the equilibration process. The crosslinked-graft copolymers showed the highest percent uptake than graft copolymers (without crosslinker) and chitosan itself. The sustainable release of the loaded drug was studied with respect to time at pH 2.2, 7.0, 7.4 and 9.4. Among graft copolymers (without crosslinking), Chit-g-polymer (NIPAAM-co-AA) and Chit-g-polymer (NIPAAM-co-AN) exhibited worthy results for sustainable drug deliverance, whereas Crosslink-Chit-g-polymer (NIPAAM-co-AA) and Crosslink-Chit-g-polymer (NIPAAM-co-AAm) presented the best results for controlled/sustained release of diclofenac sodium DS with 93.86 % and 96.30 % percent release, respectively, in 6 h contact time. Therefore, the grafted and the crosslinked graft copolymers of the chitosan showed excellent delivery devices for the DS with sustainable/prolonged release in response to pH. Drug release kinetics was studied using Fick’s law. The kinetic study revealed that polymeric matrices showed the value of n as n > 1.0, hence drug release took place by non-Fickian diffusion. Hence, the present novel findings showed the multidirectional drug release rate. The morphological changes due to interwoven network structure of the crosslinked are evident by the Scanning electron microscopy (SEM) analysis.
  11. Amir AL, Ishak MR, Yidris N, Zuhri MYM, Asyraf MRM, Zakaria SZS
    Materials (Basel), 2023 Jul 15;16(14).
    PMID: 37512295 DOI: 10.3390/ma16145021
    Owing to the high potential application need in the aerospace and structural industry for honeycomb sandwich composite, the study on the flexural behaviour of sandwich composite structure has attracted attention in recent decades. The excellent bending behaviour of sandwich composite structures is based on their facesheet (FS) and core materials. This research studied the effect of woven glass-fibre prepreg orientation on the honeycomb sandwich panel. A three-point bending flexural test was done as per ASTM C393 standard by applying a 5 kN load on different orientation angles of woven glass-fibre prepreg honeycomb sandwich panel: α = 0°, 45° and 90°. The results show that most of the sandwich panel has almost the same failure mode during the three-point bending test. Additionally, the α = 0° orientation angle shows a higher maximum load prior to the first failure occurrence compared to others due to higher flexibility but lower stiffness. In addition, the woven glass-fibre prepreg orientation angle, α = 0°, has the maximum stress and flexural modulus, which directly depend upon the maximum load value obtained during the flexural test. In addition, the experimental results and analytical prediction for honeycomb sandwich deflection show good agreement. According to the result obtained, it is revealed that woven glass-fibre honeycomb sandwich panels with an α = 0° orientation is a good alternative compared to 45° and 90°, especially when better bending application is the main purpose. The final result of this research can be applied to enhance the properties of glass-fibre-reinforced polymer composite (GFRPC) cross-arm and enhance the existing cross-arm used in high transmission towers.
  12. Abd Rahman MS, Ab Kadir MZA, Abd Rahman MS, Osman M, Ungku Amirulddin UA, Mohd Nor SF, et al.
    Materials (Basel), 2021 Sep 28;14(19).
    PMID: 34640025 DOI: 10.3390/ma14195628
    The demand for composite materials in high-voltage electrical insulation is escalating over the last decades. In the power system, the composite glass-fiber-reinforced polymer has been used as an alternative to wood and steel crossarm structures due to its superior properties. As a composite, the material is susceptible to multi-aging factors, one of which is the electrical stress caused by continuous and temporary overvoltage. In order to achieve a better insulation performance and higher life expectancy, the distribution of the stresses should firstly be studied and understood. This paper focuses on the simulation work to better understand the stress distribution of the polyurethane foam-filled glass-fiber-reinforced polymer crossarm due to the lightning transient injection. A finite-element-based simulation was carried out to investigate the behavior of the electric field and voltage distribution across the sample using an Ansys Maxwell 3D. Electrical stresses at both outer and inner surfaces of the crossarm during the peak of lightning were analyzed. Analyses on the electric field and potential distribution were performed at different parts of the crossarm and correlated to the physical characteristics and common discharge location observed during the experiment. The results of the electric field on the crossarm indicate that both the outer and internal parts of the crossarm were prone to high field stress.
  13. Hamid SBA, Chowdhury ZZ, Zain SM
    Materials (Basel), 2014 Apr 09;7(4):2815-2832.
    PMID: 28788595 DOI: 10.3390/ma7042815
    This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH). The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II) cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R² values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II) cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m²/g, whereas before base activation, it was only 1.22 m²/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II) cations from waste water.
  14. Safiuddin M, Raman SN, Zain MFM
    Materials (Basel), 2015 Dec 10;8(12):8608-8623.
    PMID: 28793732 DOI: 10.3390/ma8125464
    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.
  15. Lim YY, Miskon A, Zaidi AMA
    Materials (Basel), 2022 Nov 01;15(21).
    PMID: 36363264 DOI: 10.3390/ma15217672
    This paper is to discuss the potential of using CuZn in an electrical biosensor drug carrier for drug delivery systems. CuZn is the main semiconductor ingredient that has great promise as an electrochemical detector to trigger releases of active pharmaceutical ingredients (API). This CuZn biosensor is produced with a green metal of frameworks, which is an anion node in conductive polymers linked by bioactive ligands using metal-polymerisation technology. The studies of Cu, Zn, and their oxides are highlighted by their electrochemical performance as electrical biosensors to electrically trigger API. The three main problems, which are glucose oxidisation, binding affinity, and toxicity, are highlighted, and their solutions are given. Moreover, their biocompatibilities, therapeutic efficacies, and drug delivery efficiencies are discussed with details given. Our three previous investigations of CuZn found results similar to those of other authors' in terms of multiphases, polymerisation, and structure. This affirms that our research is on the right track, especially that related to green synthesis using plant extract, CuZn as a nanochip electric biosensor, and bioactive ligands to bind API, which are limited to the innermost circle of the non-enzymatic glucose sensor category.
  16. Borhan A, Yusuf S
    Materials (Basel), 2020 Nov 04;13(21).
    PMID: 33158295 DOI: 10.3390/ma13214970
    Carbon dioxide (CO2) has been deemed a significant contributor to the climate crisis and has an impact on environmental systems. Adsorption is widely used among other technologies for carbon capture because of its many benefits. As a starting material for the production of activated carbon (AC) by chemical activation using malic acid due to its biodegradable and non-toxic properties, rubber seed shell (RSS) was used as agricultural waste from rubber farming. Sample A6, which was carbonized for 120 min at a temperature of 600 °C and impregnated at a ratio of 1:2, was identified to achieve the highest surface area of 938.61 m2/g with micropore diameter of 1.368 nm, respectively. Using the fixed volumetric approach measured at 25, 50, and 100 °C, the maximum CO2 adsorption capability reported is 59.73 cm3/g of adsorbent. Using the pseudo-first order of Lagergren, the pseudo-second order and the Elovich model, experimental data is modeled. It appears that, based on the correlation coefficient, the pseudo-first order model is aligned with the experimental findings. Furthermore, the activation energy of under 40 kJ/mol indicated a physical adsorption occurs, indicating that the RSS chemically activated with malic acid is a fascinating source of CO2 removal requirements.
  17. Ahmad A, Lajis MA, Yusuf NK
    Materials (Basel), 2017 Sep 19;10(9).
    PMID: 28925963 DOI: 10.3390/ma10091098
    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.
  18. Ahmad A, Lajis MA, Shamsudin S, Yusuf NK
    Materials (Basel), 2018 Jun 06;11(6).
    PMID: 29882752 DOI: 10.3390/ma11060958
    Melting aluminium waste to produce a secondary bulk material is such an energy-intensive recycling technique that it also indirectly threatens the environment. Hot press forging is introduced as an alternative. Mixing the waste with another substance is a proven practice that enhances the material integrity. To cope with the technology revolution, a finite element is utilised to predict the behaviour without a practical trial. Utilising commercial software, DEFORM 3D, the conjectures were demonstrated scientifically. The flow stress of the material was modified to suit the material used in the actual experiment. It is acknowledged that the stress⁻strain had gradually increased in each step. Due to the confined forming space, the temperature decreased by ~0.5% because the heat could not simply vacate the area. A reduction of ~10% of the flesh observed in the simulation is roughly the same as in the actual experiment. Above all, the simulation abides by the standards and follows what has been done previously. Through the finite element utilisation, this study forecasted the performance of the recycled composite. The results presented may facilitate improvement of the recycling issue and conserve the environment for a better future.
  19. Balogun AI, Padmanabhan E, Abdulkareem FA, Gebretsadik HT, Wilfred CD, Soleimani H, et al.
    Materials (Basel), 2022 Nov 22;15(23).
    PMID: 36499791 DOI: 10.3390/ma15238293
    A novel technique was employed to optimize the CO2 sorption performance of spent shale at elevated pressure-temperature (PT) conditions. Four samples of spent shale prepared from the pyrolysis of oil shale under an anoxic condition were further modified with diethylenetriamine (DETA) and ethylenediamine (EDA) through the impregnation technique to investigate the variations in their physicochemical characteristics and sorption performance. The textural and structural properties of the DETA- and EDA- modified samples revealed a decrease in the surface area from tens of m2/g to a unit of m2/g due to the amine group dispersing into the available pores, but the pore sizes drastically increased to macropores and led to the creation of micropores. The N-H and C-N bonds of amine noticed on the modified samples exhibit remarkable affinity for CO2 sequestration and are confirmed to be thermally stable at higher temperatures by thermogravimetric (TG) analysis. Furthermore, the maximum sorption capacity of the spent shale increased by about 100% with the DETA modification, and the equilibrium isotherm analyses confirmed the sorption performance to support heterogenous sorption in conjunction with both monolayer and multilayer coverage since they agreed with the Sips, Toth, Langmuir, and Freundlich models. The sorption kinetics confirm that the sorption process is not limited to diffusion, and both physisorption and chemisorption have also occurred. Furthermore, the heat of enthalpy reveals an endothermic reaction observed between the CO2 and amine-modified samples as a result of the chemical bond, which will require more energy to break down. This investigation reveals that optimization of spent shale with amine functional groups can enhance its sorption behavior and the amine-modified spent shale can be a promising sorbent for CO2 sequestration from impure steams of the natural gas.
  20. Kanadasan J, Fauzi AFA, Razak HA, Selliah P, Subramaniam V, Yusoff S
    Materials (Basel), 2015 Sep 22;8(9):6508-6530.
    PMID: 28793579 DOI: 10.3390/ma8095319
    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links