Displaying publications 1 - 20 of 449 in total

Abstract:
Sort:
  1. Akanda MJ, Sarker MZ, Ferdosh S, Manap MY, Ab Rahman NN, Ab Kadir MO
    Molecules, 2012 Feb 10;17(2):1764-94.
    PMID: 22328076 DOI: 10.3390/molecules17021764
    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.
  2. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Molecules, 2012 Apr 12;17(4):4400-23.
    PMID: 22499188 DOI: 10.3390/molecules17044400
    The global prevalence of chronic diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer and Alzheimer's disease is on the rise. These diseases, which constitute the major causes of death globally, are associated with oxidative stress. Oxidative stress is defined as an "imbalance between oxidants and antioxidants in favor of the oxidants, potentially leading to damage". Individuals with chronic diseases are more susceptible to oxidative stress and damage because they have elevated levels of oxidants and/or reduced antioxidants. This, therefore, necessitates supplementation with antioxidants so as to delay, prevent or remove oxidative damage. Honey is a natural substance with many medicinal effects such as antibacterial, hepatoprotective, hypoglycemic, reproductive, antihypertensive and antioxidant effects. This review presents findings that indicate honey may ameliorate oxidative stress in the gastrointestinal tract (GIT), liver, pancreas, kidney, reproductive organs and plasma/serum. Besides, the review highlights data that demonstrate the synergistic antioxidant effect of honey and antidiabetic drugs in the pancreas, kidney and serum of diabetic rats. These data suggest that honey, administered alone or in combination with conventional therapy, might be a novel antioxidant in the management of chronic diseases commonly associated with oxidative stress. In view of the fact that the majority of these data emanate from animal studies, there is an urgent need to investigate this antioxidant effect of honey in human subjects with chronic or degenerative diseases.
  3. Adamu Ahmad K, Sabo Mohammed A, Abas F
    Molecules, 2016 Mar 14;21(3):256.
    PMID: 26985885 DOI: 10.3390/molecules21030256
    The use of chitosan as a delivery carrier has attracted much attention in recent years. In this study, chitosan nanoparticles (CS-NP) and chitosan-ΦKAZ14 bacteriophage-loaded nanoparticles (C-ΦKAZ14 NP) were prepared by a simple coercavation method and characterized. The objective was to achieve an effective protection of bacteriophage from gastric acids and enzymes in the chicken gastrointestinal tract. The average particle sizes for CS-NP and C-ΦKAZ14 NP were 188 ± 7.4 and 176 ± 3.2 nm, respectively. The zeta potentials for CS-NP and C-ΦKAZ14 NP were 50 and 60 mV, respectively. Differential scanning calorimetry (DSC) of C-ΦKAZ14 NP gave an onset temperature of -17.17 °C with a peak at 17.32 °C and final end set of 17.41 °C, while blank chitosan NP had an onset of -20.00 °C with a peak at -19.78 °C and final end set at -20.47. FT-IR spectroscopy data of both CS-NP and C-ΦKAZ14 NP were the same. Chitosan nanoparticles showed considerable protection of ΦKAZ14 bacteriophage against degradation by enzymes as evidenced in gel electrophoresis, whereby ΦKAZ14 bacteriophage encapsulated in chitosan nanoparticles were protected whereas the naked ΦKAZ14 bacteriophage were degraded. C-ΦKAZ14 NP was non-toxic as shown by a chorioallantoic membrane (CAM) toxicity assay. It was concluded that chitosan nanoparticles could be a potent carrier of ΦKAZ14 bacteriophage for oral therapy against colibacillosis in poultry.
  4. Khoo HE, Azlan A, Ismail A, Abas F
    Molecules, 2012;17(8):9754-73.
    PMID: 22893021 DOI: 10.3390/molecules17089754
    Solid phase extraction (SPE) using Sep-Pak® cartridges is one of the techniques used for fractionation of antioxidant compounds in waste of dabai oil extraction (defatted dabai parts). The aim of this study was to determine the phenolic compounds and antioxidant capacity in crude extracts and several SPE fractions from methanolic extract of defatted dabai pulp and peel. Based on SPE, Sep-Pak® cyanopropyl and C₁₈ cartridges were used to fractionate the antioxidant-rich crude extracts into water and methanolic fractions. Analyzed using LC-MS, flavonoids, anthocyanins, saponin derivatives and other unknown antioxidative compounds were detected in the defatted dabai crude extracts and their SPE fractions. Anthocyanins were the major phenolic compounds identified in the defatted dabai peel and detected in most of the SPE fractions. Methanolic fractions of defatted dabai parts embraced higher total phenolics and antioxidant capacity than water fractions. This finding also revealed the crude extracts of defatted dabai peel have the most significant antioxidant properties compared to the methanolic and water fractions studied. The crude extract of defatted dabai parts remain as the most potent antioxidant as it contains mixture of flavonoids, anthocyanins and other potential antioxidants.
  5. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
  6. Khoo LW, Foong Kow AS, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    Molecules, 2018 Aug 29;23(9).
    PMID: 30158427 DOI: 10.3390/molecules23092172
    The present study aims for the first time to provide the in vivo acute toxicological profile of the highest dose of Clinacanthus nutans (Burm. f.) Lindau water leaf extract according to the Organization for economic co-operation and development (OECD) 423 guidelines through conventional toxicity and advanced proton nuclear magnetic resonance (¹H-NMR) serum and urinary metabolomics evaluation methods. A single dose of 5000 mg/kg bw of C. nutans water extract was administered to Sprague Dawley rats, and they were observed for 14 days. Conventional toxicity evaluation methods (physical observation, body and organ weight, food and water consumption, hematology, biochemical testing and histopathological analysis) suggested no abnormal toxicity signs. Serum ¹H-NMR metabolome revealed no significant metabolic difference between untreated and treated groups. Urinary ¹H-NMR analysis, on the other hand, revealed alteration in carbohydrate metabolism, energy metabolism and amino acid metabolism in extract-treated rats after 2 h of extract administration, but the metabolic expression collected after 24 h and at Day 5, Day 10 and Day 15 indicated that the extract-treated rats did not accumulate any toxicity biomarkers. Importantly, the outcomes further suggest that single oral administration of up to 5000 mg/kg bw of C. nutans water leaf extract is safe for consumption.
  7. Md Razali NAA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Molecules, 2018 Aug 03;23(8).
    PMID: 30081514 DOI: 10.3390/molecules23081944
    This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.
  8. Gwaram NS, Ali HM, Abdulla MA, Buckle MJ, Sukumaran SD, Chung LY, et al.
    Molecules, 2012;17(3):2408-27.
    PMID: 22374313 DOI: 10.3390/molecules17032408
    Alzheimer's disease (AD) is the most common form of dementia among older people and the pathogenesis of this disease is associated with oxidative stress. Acetylcholinesterase inhibitors with antioxidant activities are considered potential treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases were synthesized and examined for their antioxidant activities and in vitro and in silico acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme's active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl binding pocket (ABP). The current work warrants further preclinical studies to assess the potential for these novel compounds for the treatment of AD.
  9. Chan CK, Chan G, Awang K, Abdul Kadir H
    Molecules, 2016;21(3).
    PMID: 27007366 DOI: 10.3390/molecules21030385
    Deoxyelephantopin (DET), one of the major sesquiterpene lactones derived from Elephantopus scaber was reported to possess numerous pharmacological functions. This study aimed to assess the apoptosis inducing effects and cell cycle arrest by DET followed by elucidation of the mechanisms underlying cell death in HCT116 cells. The anticancer activity of DET was evaluated by a MTT assay. Morphological and biochemical changes were detected by Hoescht 33342/PI and Annexin V/PI staining. The results revealed that DET and isodeoxyelephantopin (isoDET) could be isolated from the ethyl acetate fraction of E. scaber leaves via a bioassay-guided approach. DET induced significant dose- and time-dependent growth inhibition of HCT116 cells. Characteristics of apoptosis including nuclear morphological changes and externalization of phosphatidylserine were observed. DET also significantly resulted in the activation of caspase-3 and PARP cleavage. Additionally, DET induced cell cycle arrest at the S phase along with dose-dependent upregulation of p21 and phosphorylated p53 protein expression. DET dose-dependently downregulated cyclin D1, A2, B1, E2, CDK4 and CDK2 protein expression. In conclusion, our data showed that DET induced apoptosis and cell cycle arrest in HCT116 colorectal carcinoma, suggesting that DET has potential as an anticancer agent for colorectal carcinoma.
  10. Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303970 DOI: 10.3390/molecules23010110
    Pistachio (Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
  11. Andriani Y, Tengku-Muhammad TS, Mohamad H, Saidin J, Syamsumir DF, Chew GS, et al.
    Molecules, 2015;20(3):4410-29.
    PMID: 25759957 DOI: 10.3390/molecules20034410
    In vitro and in vivo studies of the activity of Phaleria macrocarpa Boerl (Thymelaeaceae) leaves against the therapeutic target for hypercholesterolemia were done using the HDL receptor (SR-BI) and hypercholesterolemia-induced Sprague Dawley rats. The in vitro study showed that the active fraction (CF6) obtained from the ethyl acetate extract (EMD) and its component 2',6',4-trihydroxy-4'-methoxybenzophenone increased the SR-BI expression by 95% and 60%, respectively. The in vivo study has proven the effect of EMD at 0.5 g/kgbw dosage in reducing the total cholesterol level by 224.9% and increasing the HDL cholesterol level by 157% compared to the cholesterol group. In the toxicity study, serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) activity were observed to be at normal levels. The liver histology also proved no toxicity and abnormalities in any of the treatment groups, so it can be categorized as non-toxic to the rat liver. The findings taken together show that P. macrocarpa leaves are safe and suitable as an alternative control and prevention treatment for hypercholesterolemia in Sprague Dawley rats.
  12. Ibrahim MD, Kntayya SB, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Molecules, 2018 Nov 27;23(12).
    PMID: 30486382 DOI: 10.3390/molecules23123092
    Glucoraphasatin (GRH), a glucosinolate present abundantly in the plants of the Brassicaceae family, is hydrolyzed by myrosinase to raphasatin, which is considered responsible for its cancer chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aims of this study are to determine the cytotoxicity of raphasatin, and to evaluate its potential to cause apoptosis and modulate cell cycle arrest in human breast adenocarcinoma MCF-7 cells. The cytotoxicity was determined following incubation of the cells with glucoraphasatin or raphasatin (0⁻100 µM), for 24, 48, and 72 h. GRH displayed no cytotoxicity as exemplified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. When myrosinase was added to the incubation system to convert GRH to raphasatin, cytotoxicity was evident. Exposure of the cells to raphasatin stimulated apoptosis, as was exemplified by cell shrinkage, membrane blebbing, chromatin condensation, and nuclear fragmentation. Moreover, using Annexin V-FITC assay, raphasatin induced apoptosis, as witnessed by changes in cellular distribution of cells, at different stages of apoptosis; in addition, raphasatin caused the arrest of the MCF-7 cells at the G₂ + M phase. In conclusion, raphasatin demonstrated cancer chemopreventive potential against human breast adenocarcinoma (MCF-7) cells, through induction of apoptosis and cell cycle arrest.
  13. Shakir RM, Ariffin A, Abdulla MA
    Molecules, 2014;19(3):3436-49.
    PMID: 24658568 DOI: 10.3390/molecules19033436
    Eleven new 2,6-di-tert-butyl-4-(5-aryl-1,3,4-oxadiazol-2-yl)phenols 5a-k were synthesized by reacting aryl hydrazides with 3,5-di-tert butyl 4-hydroxybenzoic acid in the presence of phosphorus oxychloride. The resulting compounds were characterized based on their IR, ¹H-NMR, ¹³C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the compounds. Compounds 5f and 5j exhibited significant free-radical scavenging ability in both assays.
  14. Masoumi HR, Kassim A, Basri M, Abdullah DK
    Molecules, 2011 Jun 03;16(6):4672-80.
    PMID: 21642941 DOI: 10.3390/molecules16064672
    A Taguchi robust design method with an L₉ orthogonal array was implemented to optimize experimental conditions for the biosynthesis of triethanolamine (TEA)-based esterquat cationic surfactants using an enzymatic reaction method. The esterification reaction conversion% was considered as the response. Enzyme amount, reaction time, reaction temperature and molar ratio of substrates, [oleic acid: triethanolamine (OA:TEA)] were chosen as main parameters. As a result of the Taguchi analysis in this study, the molar ratio of substrates was found to be the most influential parameter on the esterification reaction conversion%. The amount of enzyme in the reaction had also a significant effect on reaction conversion%.
  15. Zandi K, Lani R, Wong PF, Teoh BT, Sam SS, Johari J, et al.
    Molecules, 2012;17(3):2437-45.
    PMID: 22374315 DOI: 10.3390/molecules17032437
    This study investigates the effects of 2-phenyl-1-benzopyran-4-one (flavone) on DENV-2 infectivity in Vero cells. Virus adsorption and attachment and intracellular virus replication were investigated using a foci forming unit assay (FFUA) and quantitative RT-PCR, respectively. Addition of flavone (100 μg/mL) significantly increased the number of DENV-2 foci by 35.66% ± 1.52 and 49.66% ± 2.51 when added during and after virus adsorption to the Vero cells, respectively. The average foci size after 4 days of infection increased by 33% ± 2.11 and 89% ± 2.13. The DENV-2 specific RNA copy number in the flavone-treated infected cells increased by 6.41- and 23.1-fold when compared to the mock-treated infected cells. Flavone (100 μg/mL) did not promote or inhibit Vero cell proliferation. The CC₅₀ value of flavone against Vero cells was 446 µg/mL. These results suggest that flavone might enhance dengue virus replication by acting antagonistically towards flavonoids known to inhibit dengue virus replication.
  16. Ismail M, Bagalkotkar G, Iqbal S, Adamu HA
    Molecules, 2012;17(5):5745-56.
    PMID: 22628046 DOI: 10.3390/molecules17055745
    Different parts of four edible medicinal plants (Casearia capitellata, Baccaurea motleyana, Phyllanthus pulcher and Strobilanthus crispus), indigenous to Malaysia, were extracted in different solvents, sequentially. The obtained 28 extracts were evaluated for their in vitro anticancer properties, using the MTS assay, on four human cancer cell lines: colon (HT-29), breast (MCF-7), prostate (DU-145) and lung (H460) cancers. The best anticancer activity was observed for the ethyl acetate (EA) extract of Casearia capitellata leaves on MCF-7 cell lines with IC₅₀ 2.0 μg/mL and its methanolic (MeOH) extract showed an outstanding activity against lung cancer cell lines. Dichloromethane (DCM) extract of Phyllanthus pulcher aerial parts showed the highest anticancer activity against DU-145 cell lines, while significant activity was exhibited by DCM extract of Phyllanthus pulcher roots on colon cancer cell lines with IC50 value of 8.1 μg/mL. Total phenolic content (TPC) ranged over 1-40 mg gallic acid equivalents (GAE)/g. For all the samples, highest yields of phenolics were obtained for MeOH extracts. Among all the extracts analyzed, the MeOH extracts of Strobilanthus crispus leaves exhibited the highest TPC than other samples (p < 0.05). This study shows that the nature of phenol determines its anticaner activity and not the number of phenols present.
  17. Hamzah R, Bakar MA, Khairuddean M, Mohammed IA, Adnan R
    Molecules, 2012;17(9):10974-93.
    PMID: 22971583 DOI: 10.3390/molecules170910974
    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.
  18. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
  19. Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al.
    Molecules, 2018 Jan 19;23(1).
    PMID: 29351216 DOI: 10.3390/molecules23010073
    Phospholipase A2 (Pla2) is an enzyme that induces inflammation, making Pla2 activity an effective approach to reduce inflammation. Therefore, investigating natural compounds for this Pla2 inhibitory activity has important therapeutic potential. The objective of this study was to investigate the potential in bromelain-phytochemical complex inhibitors via a combination of in silico and in vitro methods. Bromelain-amenthoflavone displays antagonistic effects on Pla2. Bromelian-asiaticoside and bromelain-diosgenin displayed synergistic effects at high concentrations of the combined compounds, with inhibition percentages of more than 70% and 90%, respectively, and antagonistic effects at low concentrations. The synergistic effect of the bromelain-asiaticoside and bromelain-diosgenin combinations represents a new application in treating inflammation. These findings not only provide significant quantitative data, but also provide an insight on valuable implications for the combined use of bromelain with asiaticoside and diosgenin in treating inflammation, and may help researchers develop more natural bioactive compounds in daily foods as anti-inflammatory agent.
  20. Abdullah NH, Salim F, Ahmad R
    Molecules, 2016 Apr 27;21(5).
    PMID: 27128898 DOI: 10.3390/molecules21050525
    Continuing our interest in the Uncaria genus, the phytochemistry and the in-vitro α-glucosidase inhibitory activities of Malaysian Uncaria cordata var. ferruginea were investigated. The phytochemical study of this plant, which employed various chromatographic techniques including recycling preparative HPLC, led to the isolation of ten compounds with diverse structures comprising three phenolic acids, two coumarins, three flavonoids, a terpene and an iridoid glycoside. These constituents were identified as 2-hydroxybenzoic acid or salicylic acid (1), 2,4-dihydroxybenzoic acid (2), 3,4-dihydroxybenzoic acid (3), scopoletin or 7-hydroxy-6-methoxy-coumarin (4), 3,4-dihydroxy-7-methoxycoumarin (5), quercetin (6), kaempferol (7), taxifolin (8), loganin (9) and β-sitosterol (10). Structure elucidation of the compounds was accomplished with the aid of 1D and 2D Nuclear Magnetic Resonance (NMR) spectral data and Ultraviolet-Visible (UV-Vis), Fourier Transform Infrared (FTIR) spectroscopy and mass spectrometry (MS). In the α-glucosidase inhibitory assay, the crude methanolic extract of the stems of the plant and its acetone fraction exhibited strong α-glucosidase inhibition activity of 87.7% and 89.2%, respectively, while its DCM fraction exhibited only moderate inhibition (75.3%) at a concentration of 1 mg/mL. The IC50 values of both fractions were found to be significantly lower than the standard acarbose suggesting the presence of potential α-glucosidase inhibitors. Selected compounds isolated from the active fractions were then subjected to α-glucosidase assay in which 2,4-dihydroxybenzoic acid and quercetin showed strong inhibitory effects against the enzyme with IC50 values of 549 and 556 μg/mL compared to acarbose (IC50 580 μg/mL) while loganin and scopoletin only showed weak α-glucosidase inhibition of 44.9% and 34.5%, respectively. This is the first report of the isolation of 2-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and loganin from the genus and the first report of the α-glucosidase inhibitory potential of 2,4-dihydroxybenzoic acid.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links