Displaying publications 1 - 20 of 153 in total

Abstract:
Sort:
  1. Zhang X, Teng SY, Loy ACM, How BS, Leong WD, Tao X
    Nanomaterials (Basel), 2020 May 26;10(6).
    PMID: 32466377 DOI: 10.3390/nano10061012
    The material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, and energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorization and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
  2. Zamri MFMA, Shamsuddin AH, Ali S, Bahru R, Milano J, Tiong SK, et al.
    Nanomaterials (Basel), 2023 Jun 27;13(13).
    PMID: 37446463 DOI: 10.3390/nano13131947
    This review provides the recent advances in triglyceride catalytic pyrolysis using heterogeneous dolomite catalysts for upgrading biofuel quality. The production of high-quality renewable biofuels through catalytic cracking pyrolysis has gained significant attention due to their high hydrocarbon and volatile matter content. Unlike conventional applications that require high operational costs, long process times, hazardous material pollution, and enormous energy demand, catalytic cracking pyrolysis has overcome these challenges. The use of CaO, MgO, and activated dolomite catalysts has greatly improved the yield and quality of biofuel, reducing the acid value of bio-oil. Modifications of the activated dolomite surface through bifunctional acid-base properties also positively influenced bio-oil production and quality. Dolomite catalysts have been found to be effective in catalyzing the pyrolysis of triglycerides, which are a major component of vegetable oils and animal fats, to produce biofuels. Recent advances in the field include the use of modified dolomite catalysts to improve the activity and selectivity of the catalytic pyrolysis process. Moreover, there is also research enhancement of the synthesis and modification of dolomite catalysts in improving the performance of biofuel yield conversion. Interestingly, this synergy contribution has significantly improved the physicochemical properties of the catalysts such as the structure, surface area, porosity, stability, and bifunctional acid-base properties, which contribute to the catalytic reaction's performance.
  3. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2018 Oct 24;8(11).
    PMID: 30352971 DOI: 10.3390/nano8110874
    The synergistic effect of using κ-carrageenan bionanocomposites with the hybridization of cellulose nanocrystals (CNCs) and organically modified montmorillonite (OMMT) reinforcements was studied. The effects of different reinforcements and filler contents were evaluated through mechanical testing, and morphological and water uptake properties. The tensile strength and Young's modulus of both bionanocomposites increased with filler loading and optimized at 4%. OMMT incorporation into the κ-carrageenan/CNCs bionanocomposites resulted in further mechanical property improvement with an optimum ratio of 1:1 (CNCs:OMMT) while maintaining high film transparency. X-ray diffraction and morphological analyses revealed that intercalation occurred between the κ-carrageenan bionanocomposite matrix and OMMT. The water uptake of the κ-carrageenan bionanocomposites was significantly reduced by the addition of both CNCs and OMMT. The enhancements in the mechanical properties and performance of the hybrid bionanocomposite indicate compatibility among the reinforcement, biopolymer, and well-dispersed nanoparticles. This renders the hybrid CNC/OMMT/κ-carrageenan nanocomposites extremely promising for food packaging applications.
  4. Zakuwan SZ, Ahmad I
    Nanomaterials (Basel), 2019 Oct 31;9(11).
    PMID: 31683602 DOI: 10.3390/nano9111547
    Herein, hybrid k-carrageenan bio-nanocomposite films were fabricated by using two types of nanofillers, organically modified montmorillonite (OMMT), and cellulose nanocrystals (CNCs). Hybrid bio-nanocomposite films were made by casting techniques employing 4 wt% of CNCs, OMMT, and hybridized CNCs/OMMT in a 1:1 ratio. The rheological and morphological properties and thermal stability of all composites were investigated using rotational rheometry, thermogravimetry analysis, differential scanning calorimetry, field emission scanning electron microscopy, and transmission electron microscopy (TEM). The results showed that the hybrid CNC/OMMT bio-nanocomposite exhibited significantly improved properties as compared to those for the bio-nanocomposites with single fillers due to the nanosize and homogenous nanofiller dispersion in the matrix. Rheological analysis of the hybrid bio-nanocomposite showed higher dynamic shear storage modulus and complex viscosity values when compared to those for the bio-nanocomposite with individual fillers. The TEM analysis of the hybridized CNC/OMMT bio-nanocomposite revealed that more particles were packed together in the CNC network, which restricted the matrix mobility. The heat resistance and thermal stability bio-nanocomposite k-carrageenan film enhanced rapidly with the addition of hybridized CNCs/OMMT to 275 °C. The hybridized CNCs/OMMT exhibited synergistic effects due to the good affinity through interfacial interactions, resulting in the improvement of the material properties.
  5. Zafar M, Sakidin H, Sheremet M, Dzulkarnain I, Nazar RM, Hussain A, et al.
    Nanomaterials (Basel), 2023 Mar 22;13(6).
    PMID: 36986025 DOI: 10.3390/nano13061131
    Nanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities. The different shapes of the cavities have several advantages in multiple applications, e.g., L-shaped cavities used in the cooling systems of nuclear and chemical reactors and electronic components. Open cavities such as ellipsoidal, triangular, trapezoidal, and hexagonal are applied in electronic equipment cooling, building heating and cooling, and automotive applications. Appropriate cavity design conserves energy and produces attractive heat-transfer rates. Circular microchannel heat exchangers perform best. Despite the high performance of circular cavities in micro heat exchangers, square cavities have more applications. The use of nanofluids has been found to improve thermal performance in all the cavities studied. According to the experimental data, nanofluid use has been proven to be a dependable solution for enhancing thermal efficiency. To improve performance, it is suggested that research focus on different shapes of nanoparticles less than 10 nm with the same design of the cavities in microchannel heat exchangers and solar collectors.
  6. Yusefi M, Chan HY, Teow SY, Kia P, Lee-Kiun Soon M, Sidik NABC, et al.
    Nanomaterials (Basel), 2021 Jun 28;11(7).
    PMID: 34203241 DOI: 10.3390/nano11071691
    Cellulose and chitosan with remarkable biocompatibility and sophisticated physiochemical characteristics can be a new dawn to the advanced drug nano-carriers in cancer treatment. This study aims to synthesize layer-by-layer bionanocomposites from chitosan and rice straw cellulose encapsulated 5-Fluorouracil (CS-CF/5FU BNCs) using the ionic gelation method and the sodium tripolyphosphate (TPP) cross-linker. Data from X-ray and Fourier-transform infrared spectroscopy showed successful preparation of CS-CF/5FU BNCs. Based on images of scanning electron microscopy, 48.73 ± 1.52 nm was estimated for an average size of the bionanocomposites as spherical chitosan nanoparticles mostly coated rod-shaped cellulose reinforcement. 5-Fluorouracil indicated an increase in thermal stability after its encapsulation in the bionanocomposites. The drug encapsulation efficiency was found to be 86 ± 2.75%. CS-CF/5FU BNCs triggered higher drug release in a media simulating the colorectal fluid with pH 7.4 (76.82 ± 1.29%) than the gastric fluid with pH 1.2 (42.37 ± 0.43%). In in vitro cytotoxicity assays, cellulose fibers, chitosan nanoparticles and the bionanocomposites indicated biocompatibility towards CCD112 normal cells. Most promisingly, CS-CF/5FU BNCs at 250 µg/mL concentration eliminated 56.42 ± 0.41% of HCT116 cancer cells and only 8.16 ± 2.11% of CCD112 normal cells. Therefore, this study demonstrates that CS-CF/5FU BNCs can be considered as an eco-friendly and innovative nanodrug candidate for potential colorectal cancer treatment.
  7. Yee MS, Hii LW, Looi CK, Lim WM, Wong SF, Kok YY, et al.
    Nanomaterials (Basel), 2021 Feb 16;11(2).
    PMID: 33669327 DOI: 10.3390/nano11020496
    Plastics have enormous impacts to every aspect of daily life including technology, medicine and treatments, and domestic appliances. Most of the used plastics are thrown away by consumers after a single use, which has become a huge environmental problem as they will end up in landfill, oceans and other waterways. These plastics are discarded in vast numbers each day, and the breaking down of the plastics from micro- to nano-sizes has led to worries about how toxic these plastics are to the environment and humans. While, there are several earlier studies reported the effects of micro- and nano-plastics have on the environment, there is scant research into their impact on the human body at subcellular or molecular levels. In particular, the potential of how nano-plastics move through the gut, lungs and skin epithelia in causing systemic exposure has not been examined thoroughly. This review explores thoroughly on how nanoplastics are created, how they behave/breakdown within the environment, levels of toxicity and pollution of these nanoplastics, and the possible health impacts on humans, as well as suggestions for additional research. This paper aims to inspire future studies into core elements of micro- and nano-plastics, the biological reactions caused by their specific and unusual qualities.
  8. Yaw CT, Koh SP, Sandhya M, Ramasamy D, Kadirgama K, Benedict F, et al.
    Nanomaterials (Basel), 2023 May 10;13(10).
    PMID: 37242013 DOI: 10.3390/nano13101596
    Response surface methodology (RSM) is used in this study to optimize the thermal characteristics of single graphene nanoplatelets and hybrid nanofluids utilizing the miscellaneous design model. The nanofluids comprise graphene nanoplatelets and graphene nanoplatelets/cellulose nanocrystal nanoparticles in the base fluid of ethylene glycol and water (60:40). Using response surface methodology (RSM) based on central composite design (CCD) and mini tab 20 standard statistical software, the impact of temperature, volume concentration, and type of nanofluid is used to construct an empirical mathematical formula. Analysis of variance (ANOVA) is applied to determine that the developed empirical mathematical analysis is relevant. For the purpose of developing the equations, 32 experiments are conducted for second-order polynomial to the specified outputs such as thermal conductivity and viscosity. Predicted estimates and the experimental data are found to be in reasonable arrangement. In additional words, the models could expect more than 85% of thermal conductivity and viscosity fluctuations of the nanofluid, indicating that the model is accurate. Optimal thermal conductivity and viscosity values are 0.4962 W/m-K and 2.6191 cP, respectively, from the results of the optimization plot. The critical parameters are 50 °C, 0.0254%, and the category factorial is GNP/CNC, and the relevant parameters are volume concentration, temperature, and kind of nanofluid. From the results plot, the composite is 0.8371. The validation results of the model during testing indicate the capability of predicting the optimal experimental conditions.
  9. Yaqoob AA, Noor NHBM, Serrà A, Ibrahim MNM
    Nanomaterials (Basel), 2020 May 12;10(5).
    PMID: 32408530 DOI: 10.3390/nano10050932
    The efficient remediation of organic dyes from wastewater is increasingly valuable in water treatment technology, largely owing to the tons of hazardous chemicals currently and constantly released into rivers and seas from various industries, including the paper, pharmaceutical, textile, and dye production industries. Using solar energy as an inexhaustible source, photocatalysis ranks among the most promising wastewater treatment techniques for eliminating persistent organic pollutants and new emerging contaminants. In that context, developing efficient photocatalysts using sunlight irradiation and effectively integrating them into reactors, however, pose major challenges in the technologically relevant application of photocatalysts. As a potential solution, graphene oxide (GO)-based zinc oxide (ZnO) nanocomposites may be used together with different components (i.e., ZnO and GO-based materials) to overcome the drawbacks of ZnO photocatalysts. Indeed, mounting evidence suggests that using GO-based ZnO nanocomposites can promote light absorption, charge separation, charge transportation, and photo-oxidation of dyes. Despite such advances, viable, low-cost GO-based ZnO nanocomposite photocatalysts with sufficient efficiency, stability, and photostability remain to be developed, especially ones that can be integrated into photocatalytic reactors. This article offers a concise overview of state-of-the-art GO-based ZnO nanocomposites and the principal challenges in developing them.
  10. Yahaya Pudza M, Zainal Abidin Z, Abdul Rashid S, Md Yasin F, Noor ASM, Issa MA
    Nanomaterials (Basel), 2020 Feb 12;10(2).
    PMID: 32059384 DOI: 10.3390/nano10020315
    The materials and substances required for sustainable water treatment by adsorption technique, are still being researched widely by distinguished classes of researchers. Thus, the need to synthesize substances that can effectively clean up pollutants from the environment cannot be overemphasized. So far, materials in bulk forms that are rich in carbon, such as biochar and varieties of activated carbon have been used for various adsorptive purposes. The use of bulk materials for such purposes are not efficient due to minimal surface areas available for adsorption. This study explores the adsorption task at nano dimension using carbon dots (CDs) from tapioca. The properties of carbon structure and its influence on the adsorptive efficacy of carbon nanoparticles were investigated by energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HrTEM), and atomic force microscopy (AFM). The results implied carbon present in CDs are good adsorbents for effective adsorption of heavy metal ions (lead) with removal efficiency of 80.6% in aqueous environment. The adsorption process as explored by both Langmuir and Freundlich isotherms have proven favorability of the adsorption process. Langmuir form two and three have correlation coefficients R2 at 0.9922 and 0.9912, respectively. The Freundlich isotherm confirms CDs as having defined surface heterogeneity and the exponential distribution of active sites. The adsorption of lead unto CDs obeyed the second order kinetic model with coefficient of determination, R2 of 0.9668 and 0.9996 at an initial lead concentration of 20 mg/L and 100 mg/L, respectively. The findings validated the efficiency of CDs derived from tapioca as an excellent material for further utilization in the environmental fields of wastewater pollution detection and clean up, bio-imaging, and chemical sensing applications.
  11. Wu ZH, Shih JY, Li YJ, Tsai YD, Hung TF, Karuppiah C, et al.
    Nanomaterials (Basel), 2022 Jan 26;12(3).
    PMID: 35159754 DOI: 10.3390/nano12030409
    To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
  12. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Mohd Hassan N
    Nanomaterials (Basel), 2020 Jun 03;10(6).
    PMID: 32503127 DOI: 10.3390/nano10061104
    It is believed of great interest to incorporate silver nanoparticles (Ag-NPs) into stable supported materials using biological methods to control the adverse properties of nanoscale particles. In this study, in-situ biofabrication of Ag-NPs using Entada spiralis (E. spiralis) aqueous extract in Ceiba pentandra (C. pentandra) fiber as supporting material was used in which, the E. spiralis extract acted as both reducing and stabilizing agents to incorporate Ag-NPs in the C. pentandra fiber. The properties of Ag-NPs incorporated in the C. pentandra fiber (C. pentandra/Ag-NPs) were characterized using UV-visible spectroscopy (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), Scanning Electron Microscope (Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET), Thermogravimetric (TGA) and Fourier Transform Infrared (FTIR) analyses. The average size of Ag-NPs measured using FETEM image was 4.74 nm spherical in shape. The C. pentandra/Ag-NPs was easily separated after application, and could control the release of Ag-NPs to the environment due to its strong attachment in C. pentandra fiber. The C. pentandra/Ag-NPs exposed good qualitative and quantitative antibacterial activities against Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922) and Proteus vulgaris (ATCC 33420). The dye catalytic properties of C. pentandra/Ag-NPs revealed the dye reduction time in which it was completed within 4 min for 20 mg/L rhodamine B and 20 min for 20 mg/L methylene blue dye, respectively. Based on the results, it is evident that C. pentandra/Ag-NPs are potentially promising to be applied in wound healing, textile, wastewater treatment, food packaging, labeling and biomedical fields.
  13. Wan Ishak WH, Ahmad I, Ramli S, Mohd Amin MCI
    Nanomaterials (Basel), 2018 Sep 21;8(10).
    PMID: 30241416 DOI: 10.3390/nano8100749
    Herein, we describe the use of gamma irradiation to prepare hydrogels comprising α-cellulose and cellulose nanocrystal (CNC)-reinforced gelatin in the absence of crosslinking agents. In this study, cellulose was extracted from rice husks by an alkali and bleaching treatment followed by acid hydrolysis to produce CNC. A semi-interpenetrating network (semi-IPN) of hydrogels was developed by the miscibility between gelatin and cellulosic materials. Compared to those prepared from α-cellulose, hydrogels prepared by dispersion of CNCs exhibited remarkably enhanced stiffness and swelling properties, which was ascribed to the uniform distribution of CNCs and their increased crystallinity. Improved pore structure, arrangement, and rigidity of CNC-reinforced gelatin hydrogels, which induced the swelling mechanism resulting in higher and faster water uptake was observed with a scanning electron microscope (SEM), compared to cellulose-reinforced gelatin hydrogels. Moreover, in vitro drug profiling demonstrated that CNC/gelatin hydrogels exhibit good drug loading/release behavior and are thus suitable for use in drug-delivery applications.
  14. Waini I, Khan U, Zaib A, Ishak A, Pop I, Akkurt N
    Nanomaterials (Basel), 2022 Nov 21;12(22).
    PMID: 36432385 DOI: 10.3390/nano12224102
    The use of hybrid nanoparticles to increase heat transfer is a favorable area of research, and therefore, numerous scientists, researchers, and scholars have expressed their appreciation for and interest in this field. Determining the dynamic role of nanofluids in the cooling of microscopic electronic gadgets, such as microchips and related devices, is also one of the fundamental tasks. With such interesting and useful applications of hybrid nanofluids in mind, the main objective is to deal with the analysis of the unsteady flow towards a shrinking sheet in a water-based hybrid ferrite nanoparticle in porous media, with heat sink/source effects. Moreover, the impact of these parameters on heat and mass transfers is also reported. Numerical results are obtained using MATLAB software. Non-unique solutions are determined for a certain shrinking strength, in addition to the unsteadiness parameter. The mass transfer and friction factor increase for the first solution due to the hybrid nanoparticles, but the heat transfer rate shows the opposite effect.
  15. Vinnik DA, Zhivulin VE, Trofimov EA, Gudkova SA, Punda AY, Valiulina AN, et al.
    Nanomaterials (Basel), 2021 Dec 23;12(1).
    PMID: 35009987 DOI: 10.3390/nano12010036
    Three high-entropy Sm(Eu,Gd)Cr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskite solid solutions were synthesized using the usual ceramic technology. The XRD investigation at room temperature established a single-phase perovskite product. The Rietveld refinement with the FullProf computer program in the frame of the orthorhombic Pnma (No 62) space group was realized. Along with a decrease in the V unit cell volume from ~224.33 Å3 for the Sm-based sample down to ~221.52 Å3 for the Gd-based sample, an opposite tendency was observed for the unit cell parameters as the ordinal number of the rare-earth cation increased. The average grain size was in the range of 5-8 μm. Field magnetization was measured up to 30 kOe at 50 K and 300 K. The law of approach to saturation was used to determine the Ms spontaneous magnetization that nonlinearly increased from ~1.89 emu/g (Sm) up to ~17.49 emu/g (Gd) and from ~0.59 emu/g (Sm) up to ~3.16 emu/g (Gd) at 50 K and 300 K, respectively. The Mr residual magnetization and Hc coercive force were also determined, while the SQR loop squareness, k magnetic crystallographic anisotropy coefficient, and Ha anisotropy field were calculated. Temperature magnetization was measured in a field of 30 kOe. ZFC and FC magnetization curves were fixed in a field of 100 Oe. It was discovered that the Tmo magnetic ordering temperature downward-curve decreased from ~137.98 K (Sm) down to ~133.99 K (Gd). The spin glass state with ferromagnetic nanoinclusions for all the samples was observed. The average and Dmax maximum diameter of ferromagnetic nanoinclusions were calculated and they were in the range of 40-50 nm and 160-180 nm, respectively. The mechanism of magnetic state formation is discussed in terms of the effects of the A-site cation size and B-site poly-substitution on the indirect superexchange interactions.
  16. Umar MF, Ahmad F, Saeed H, Usmani SA, Owais M, Rafatullah M
    Nanomaterials (Basel), 2020 Jun 01;10(6).
    PMID: 32492878 DOI: 10.3390/nano10061096
    A novel method of preparing reduced graphene oxide (RGOX) from graphene oxide (GOX) was developed employing vegetable extract, Chenopodium album, as a reducing and stabilizing agent. Chenopodium album is a green leafy vegetable with a low shelf life, fresh leaves of this vegetable are encouraged to be used due to high water content. The previously modified 'Hummers method' has been in practice for the preparation of GOX by using precursor graphite powder. In this study, green synthesis of RGOX was functionally verified by employing FTIR and UV-visible spectroscopy, along with SEM and TEM. Our results demonstrated typical morphology of RGOX stacked in layers that appeared as silky, transparent, and rippled. The antibacterial activity was shown by analyzing minimal inhibitory concentration values, agar diffusion assay, fluorescence techniques. It showed enhanced antibacterial activity against Gram-positive and Gram-negative bacteria in comparison to GOX. It has also been shown that the synthesized compound exhibited enhanced antibiofilm activity as compared to its parent compound. The efficacy of RGOX and GOX has been demonstrated on a human breast cancer cell line, which suggested RGOX as a potential anticancer agent.
  17. Trang TD, Lin JY, Chang HC, Huy NN, Ghotekar S, Lin KA, et al.
    Nanomaterials (Basel), 2023 Sep 15;13(18).
    PMID: 37764595 DOI: 10.3390/nano13182565
    Even though transition metals can activate Oxone to degrade toxic contaminants, bimetallic materials possess higher catalytic activities because of synergistic effects, making them more attractive for Oxone activation. Herein, nanoscale CuCo-bearing N-doped carbon (CuCoNC) can be designed to afford a hollow structure as well as CuCo species by adopting cobaltic metal organic frameworks as a template. In contrast to Co-bearing N-doped carbon (CoNC), which lacks the Cu dopant, CuCo alloy nanoparticles (NPs) are contained by the Cu dopant within the carbonaceous matrix, giving CuCoNC more prominent electrochemical properties and larger porous structures and highly nitrogen moieties. CuCoNC, as a result, has a significantly higher capability compared to CoNC and Co3O4 NPs, for Oxone activation to degrade a toxic contaminant, Rhodamine B (RDMB). Furthermore, CuCoNC+Oxone has a smaller activation energy for RDMB elimination and maintains its superior effectiveness for removing RDMB in various water conditions. The computational chemistry insights have revealed the RDMB degradation mechanism. This study reveals that CuCoNC is a useful activator for Oxone to eliminate RDMB.
  18. Tran TV, Nguyen DTC, Le HTN, Bach LG, Vo DN, Hong SS, et al.
    Nanomaterials (Basel), 2019 Feb 10;9(2).
    PMID: 30744163 DOI: 10.3390/nano9020237
    Chloramphenicol (CAP) is commonly employed in veterinary clinics, but illegal and uncontrollable consumption can result in its potential contamination in environmental soil, and aquatic matrix, and thereby, regenerating microbial resistance, and antibiotic-resistant genes. Adsorption by efficient, and recyclable adsorbents such as mesoporous carbons (MPCs) is commonly regarded as a "green and sustainable" approach. Herein, the MPCs were facilely synthesized via the pyrolysis of the metal⁻organic framework Fe₃O(BDC)₃ with calcination temperatures (x °C) between 600 and 900 °C under nitrogen atmosphere. The characterization results pointed out mesoporous carbon matrix (MPC700) coating zero-valent iron particles with high surface area (~225 m²/g). Also, significant investigations including fabrication condition, CAP concentration, effect of pH, dosage, and ionic strength on the absorptive removal of CAP were systematically studied. The optimal conditions consisted of pH = 6, concentration 10 mg/L and dose 0.5 g/L for the highest chloramphenicol removal efficiency at nearly 100% after 4 h. Furthermore, the nonlinear kinetic and isotherm adsorption studies revealed the monolayer adsorption behavior of CAP onto MPC700 and Fe₃O(BDC)₃ materials via chemisorption, while the thermodynamic studies implied that the adsorption of CAP was a spontaneous process. Finally, adsorption mechanism including H-bonding, electrostatic attraction, π⁻π interaction, and metal⁻bridging interaction was proposed to elucidate how chloramphenicol molecules were adsorbed on the surface of materials. With excellent maximum adsorption capacity (96.3 mg/g), high stability, and good recyclability (4 cycles), the MPC700 nanocomposite could be utilized as a promising alternative for decontamination of chloramphenicol antibiotic from wastewater.
  19. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
  20. Tan JM, Saifullah B, Kura AU, Fakurazi S, Hussein MZ
    Nanomaterials (Basel), 2018 May 31;8(6).
    PMID: 29857532 DOI: 10.3390/nano8060389
    Four drug delivery systems were formulated by non-covalent functionalization of carboxylated single walled carbon nanotubes using biocompatible polymers as coating agent (i.e., Tween 20, Tween 80, chitosan or polyethylene glycol) for the delivery of levodopa, a drug used in Parkinson's disease. The chemical interaction between the coating agent and carbon nanotubes-levodopa conjugate was confirmed by Fourier transform infrared (FTIR) and Raman studies. The drug release profiles were revealed to be dependent upon the type of applied coating material and this could be further adjusted to a desired rate to meet different biomedical conditions. In vitro drug release experiments measured using UV-Vis spectrometry demonstrated that the coated conjugates yielded a more prolonged and sustained release pattern compared to the uncoated conjugate. Cytotoxicity of the formulated conjugates was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using normal mouse embryonic fibroblast 3T3 cell line. Compared to the non-coated conjugate, the MTT data indicated that the coating procedure improved the biocompatibility of all systems by 34⁻41% when the concentration used exceeded 100 μg/mL. In conclusion, the comprehensive results of this study suggest that carbon nanotubes-based drug carrier coated with a suitable biomaterial may possibly be a potential nanoparticle system that could facilitate drug delivery to the brain with tunable physicochemical properties.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links