Displaying publications 1 - 20 of 155 in total

Abstract:
Sort:
  1. Mohamed Muzni NH, Mhd Noor EE, Abdullah MMAB
    Nanomaterials (Basel), 2023 Oct 23;13(20).
    PMID: 37887960 DOI: 10.3390/nano13202811
    This study investigated the influence of reinforcing 0.50 wt.% of titanium oxide (TiO2) and aluminium oxide (Al2O3) nanoparticles on the wettability performance of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy. The thermal properties of the SAC305 nanocomposite solder are comparable with thos of an SAC305 solder with a peak temperature window within a range of 240 to 250 °C. The wetting behaviour of the non-reinforced and reinforced SAC305 nanocomposite solder was determined and measured using the contact angle and spreading area and the relationships between them were studied. There is an increment in the spreading area (5.6 to 7.32 mm) by 30.71% and a reduction in the contact angle (26.3 to 18.6°) by 14.29% with an increasing reflow time up to 60 s when reinforcing SAC305 solder with 0.50 wt.% of TiO2 and Al2O3 nanoparticles. The SAC305 nanocomposite solder has a better wetting performance compared with the SAC305 solder. As the reflow time increased, the spreading area increased and the contact angle decreased, which restricted intermetallic compound growth and thus improved wettability performance.
  2. Lee JJ, Fite MC, Imae T, Lee PF
    Nanomaterials (Basel), 2023 Oct 22;13(20).
    PMID: 37887956 DOI: 10.3390/nano13202806
    The motion of magnetic particles under magnetic fields is an object to be solved in association with basic and practical phenomena. Movement phenomena of magnetite-encapsulated graphene particles at air-water interfaces were evaluated by manufacturing a feedback control system of the magnetic field to cause the motion of particles due to magnetic torque. A homogeneous magnetic field was generated using two pairs of electromagnets located perpendicular to each other, which were connected to an electronic switch. The system influenced the translational movement and the self-rotational speed of magnetic particles located at a center on the surface of fluid media in a continuous duty cycle. Operating the particle at a remote control in the same duty cycle at the air-water surface, the short and elongated magnetic particles successfully rotated. In addition, the rotational speed of the curved particle was slower than that of the elongated particle. The results indicate that the translational and self-rotational movements of magnetite-encapsulated graphene particles at the air-water interface under the external magnetic field are size- and shape-dependent for the speed and the direction. A short magnetic particle was used as a target particle to rotate on cancer cell lines, aiming to study the advantage of this method to induce the growth of HeLa cells. It was monitored for up to 4 days with and without magnetic particles by checking the viability and morphology of cells before and after the electromagnetic treatment. As an outcome, the movement of magnetic particles reduced the number of biological cells, at least on HeLa cells, but it was inactive on the viability of HeLa cells.
  3. Trang TD, Lin JY, Chang HC, Huy NN, Ghotekar S, Lin KA, et al.
    Nanomaterials (Basel), 2023 Sep 15;13(18).
    PMID: 37764595 DOI: 10.3390/nano13182565
    Even though transition metals can activate Oxone to degrade toxic contaminants, bimetallic materials possess higher catalytic activities because of synergistic effects, making them more attractive for Oxone activation. Herein, nanoscale CuCo-bearing N-doped carbon (CuCoNC) can be designed to afford a hollow structure as well as CuCo species by adopting cobaltic metal organic frameworks as a template. In contrast to Co-bearing N-doped carbon (CoNC), which lacks the Cu dopant, CuCo alloy nanoparticles (NPs) are contained by the Cu dopant within the carbonaceous matrix, giving CuCoNC more prominent electrochemical properties and larger porous structures and highly nitrogen moieties. CuCoNC, as a result, has a significantly higher capability compared to CoNC and Co3O4 NPs, for Oxone activation to degrade a toxic contaminant, Rhodamine B (RDMB). Furthermore, CuCoNC+Oxone has a smaller activation energy for RDMB elimination and maintains its superior effectiveness for removing RDMB in various water conditions. The computational chemistry insights have revealed the RDMB degradation mechanism. This study reveals that CuCoNC is a useful activator for Oxone to eliminate RDMB.
  4. Amer AAG, Othman N, Sapuan SZ, Alphones A, Hassan MF, Al-Gburi AJA, et al.
    Nanomaterials (Basel), 2023 Jul 06;13(13).
    PMID: 37446531 DOI: 10.3390/nano13132015
    A dual-band metasurface (MS) with a wide reception angle operating at Wi-Fi bands (2.4 GHz and 5.4 GHz) is presented for electromagnetic (EM) energy harvesting applications. The MS unit cell comprises a subwavelength circular split ring resonator printed on the low-loss substrate. An air layer is sandwiched between two low-loss substrates to enhance the harvesting efficiency at operating frequencies. One of the main advantages of the proposed MS is that it uses only one harvesting port (via) to channel the captured power to the optimized load (50 Ω), which simplifies the design of a combined power network. According to the results of full-wave EM simulations, the proposed MS has a near-unity efficiency of 97% and 94% at 2.4 GHz and 5.4 GHz, respectively, for capturing the power of incident EM waves with normal incidence. Furthermore, the proposed MS harvester achieves good performance at up to 60° oblique incidence. To validate simulations, the MS harvester with 5 × 5-unit cells is fabricated and tested, and its EM properties are measured, showing good agreement with the simulation results. Because of its high efficiency, the proposed MS harvester is suitable for use in various microwave applications, such as energy harvesting and wireless power transfer.
  5. Zamri MFMA, Shamsuddin AH, Ali S, Bahru R, Milano J, Tiong SK, et al.
    Nanomaterials (Basel), 2023 Jun 27;13(13).
    PMID: 37446463 DOI: 10.3390/nano13131947
    This review provides the recent advances in triglyceride catalytic pyrolysis using heterogeneous dolomite catalysts for upgrading biofuel quality. The production of high-quality renewable biofuels through catalytic cracking pyrolysis has gained significant attention due to their high hydrocarbon and volatile matter content. Unlike conventional applications that require high operational costs, long process times, hazardous material pollution, and enormous energy demand, catalytic cracking pyrolysis has overcome these challenges. The use of CaO, MgO, and activated dolomite catalysts has greatly improved the yield and quality of biofuel, reducing the acid value of bio-oil. Modifications of the activated dolomite surface through bifunctional acid-base properties also positively influenced bio-oil production and quality. Dolomite catalysts have been found to be effective in catalyzing the pyrolysis of triglycerides, which are a major component of vegetable oils and animal fats, to produce biofuels. Recent advances in the field include the use of modified dolomite catalysts to improve the activity and selectivity of the catalytic pyrolysis process. Moreover, there is also research enhancement of the synthesis and modification of dolomite catalysts in improving the performance of biofuel yield conversion. Interestingly, this synergy contribution has significantly improved the physicochemical properties of the catalysts such as the structure, surface area, porosity, stability, and bifunctional acid-base properties, which contribute to the catalytic reaction's performance.
  6. Ismail AF, Goh PS, Yusof N
    Nanomaterials (Basel), 2023 May 20;13(10).
    PMID: 37242102 DOI: 10.3390/nano13101686
    The field of membrane technology has experienced significant growth in recent years, especially in the areas of wastewater treatment and desalination [...].
  7. Yaw CT, Koh SP, Sandhya M, Ramasamy D, Kadirgama K, Benedict F, et al.
    Nanomaterials (Basel), 2023 May 10;13(10).
    PMID: 37242013 DOI: 10.3390/nano13101596
    Response surface methodology (RSM) is used in this study to optimize the thermal characteristics of single graphene nanoplatelets and hybrid nanofluids utilizing the miscellaneous design model. The nanofluids comprise graphene nanoplatelets and graphene nanoplatelets/cellulose nanocrystal nanoparticles in the base fluid of ethylene glycol and water (60:40). Using response surface methodology (RSM) based on central composite design (CCD) and mini tab 20 standard statistical software, the impact of temperature, volume concentration, and type of nanofluid is used to construct an empirical mathematical formula. Analysis of variance (ANOVA) is applied to determine that the developed empirical mathematical analysis is relevant. For the purpose of developing the equations, 32 experiments are conducted for second-order polynomial to the specified outputs such as thermal conductivity and viscosity. Predicted estimates and the experimental data are found to be in reasonable arrangement. In additional words, the models could expect more than 85% of thermal conductivity and viscosity fluctuations of the nanofluid, indicating that the model is accurate. Optimal thermal conductivity and viscosity values are 0.4962 W/m-K and 2.6191 cP, respectively, from the results of the optimization plot. The critical parameters are 50 °C, 0.0254%, and the category factorial is GNP/CNC, and the relevant parameters are volume concentration, temperature, and kind of nanofluid. From the results plot, the composite is 0.8371. The validation results of the model during testing indicate the capability of predicting the optimal experimental conditions.
  8. Ali Umar MI, Ahdaliza AZ, El-Bahy SM, Aliza N, Sadikin SN, Ridwan J, et al.
    Nanomaterials (Basel), 2023 Apr 05;13(7).
    PMID: 37049374 DOI: 10.3390/nano13071281
    The crystallinity properties of perovskite influence their optoelectrical performance in solar cell applications. We optimized the grain shape and crystallinity of perovskite film by annealing treatment from 130 to 170 °C under high humidity (relative humidity of 70%). We found that the grain size, grain interface, and grain morphology of the perovskite are optimized when the sample was annealed at 150 °C for 1 h in the air. At this condition, the perovskite film is composed of 250 nm crystalline shape grain and compact inter-grain structure with an invincible grain interface. Perovskite solar cells device analysis indicated that the device fabricated using the samples annealed at 150 °C produced the highest power conversion efficiency, namely 17.77%. The open circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of the device are as high as 1.05 V, 22.27 mA/cm2, and 0.76, respectively. Optoelectrical dynamic analysis using transient photoluminescence and electrochemical impedance spectroscopies reveals that (i) carrier lifetime in the champion device can be up to 25 ns, which is almost double the carrier lifetime of the sample annealed at 130 °C. (ii) The interfacial charge transfer resistance is low in the champion device, i.e., ~20 Ω, which has a crystalline grain morphology, enabling active photocurrent extraction. Perovskite's behavior under annealing treatment in high humidity conditions can be a guide for the industrialization of perovskite solar cells.
  9. Bahari N, Hashim N, Abdan K, Md Akim A, Maringgal B, Al-Shdifat L
    Nanomaterials (Basel), 2023 Mar 31;13(7).
    PMID: 37049336 DOI: 10.3390/nano13071244
    The use of natural reducing and capping agents has gained importance as a way to synthesize nanoparticles (NPs) in an environmentally sustainable manner. Increasing numbers of studies have been published on the green synthesis of NPs using natural sources such as bacteria, fungi, and plants. In recent years, the use of honey in the synthesis of metal and metal oxide NPs has become a new and promising area of research. Honey acts as both a stabilizing and reducing agent in the NP synthesis process and serves as a precursor. This review focuses on the use of honey in the synthesis of silver NPs (Ag-NPs) and zinc oxide NPs (ZnO-NPs), emphasizing its role as a reducing and capping agent. Additionally, a comprehensive examination of the bio-based reducing and capping/stabilizing agents used in the honey-mediated biosynthesis mechanism is provided. Finally, the review looks forward to environmentally friendly methods for NP synthesis.
  10. Zafar M, Sakidin H, Sheremet M, Dzulkarnain I, Nazar RM, Hussain A, et al.
    Nanomaterials (Basel), 2023 Mar 22;13(6).
    PMID: 36986025 DOI: 10.3390/nano13061131
    Nanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities. The different shapes of the cavities have several advantages in multiple applications, e.g., L-shaped cavities used in the cooling systems of nuclear and chemical reactors and electronic components. Open cavities such as ellipsoidal, triangular, trapezoidal, and hexagonal are applied in electronic equipment cooling, building heating and cooling, and automotive applications. Appropriate cavity design conserves energy and produces attractive heat-transfer rates. Circular microchannel heat exchangers perform best. Despite the high performance of circular cavities in micro heat exchangers, square cavities have more applications. The use of nanofluids has been found to improve thermal performance in all the cavities studied. According to the experimental data, nanofluid use has been proven to be a dependable solution for enhancing thermal efficiency. To improve performance, it is suggested that research focus on different shapes of nanoparticles less than 10 nm with the same design of the cavities in microchannel heat exchangers and solar collectors.
  11. Bakhori NM, Ismail Z, Hassan MZ, Dolah R
    Nanomaterials (Basel), 2023 Mar 15;13(6).
    PMID: 36985957 DOI: 10.3390/nano13061063
    At present, aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic, organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nanofillers. Herein, this review critically discusses the basic preparation of aerogel from the sol-gel reaction with derivation and modification of a standard method to produce various aerogels for diverse functionalities. In addition, the biocompatibility of various types of aerogels were elaborated. Then, biomedical applications of aerogel were focused on this review as a drug delivery carrier, wound healing agent, antioxidant, anti-toxicity, bone regenerative, cartilage tissue activities and in dental fields. The clinical status of aerogel in the biomedical sector is shown to be similarly far from adequate. Moreover, due to their remarkable properties, aerogels are found to be preferably used as tissue scaffolds and drug delivery systems. The advanced studies in areas including self-healing, additive manufacturing (AM) technology, toxicity, and fluorescent-based aerogel are crucially important and are further addressed.
  12. Abubakar S, Tan ST, Liew JYC, Talib ZA, Sivasubramanian R, Vaithilingam CA, et al.
    Nanomaterials (Basel), 2023 Mar 13;13(6).
    PMID: 36985919 DOI: 10.3390/nano13061025
    Zinc oxide (ZnO) nanorods have attracted considerable attention in recent years owing to their piezoelectric properties and potential applications in energy harvesting, sensing, and nanogenerators. Piezoelectric energy harvesting-based nanogenerators have emerged as promising new devices capable of converting mechanical energy into electric energy via nanoscale characterizations such as piezoresponse force microscopy (PFM). This technique was used to study the piezoresponse generated when an electric field was applied to the nanorods using a PFM probe. However, this work focuses on intensive studies that have been reported on the synthesis of ZnO nanostructures with controlled morphologies and their subsequent influence on piezoelectric nanogenerators. It is important to note that the diatomic nature of zinc oxide as a potential solid semiconductor and its electromechanical influence are the two main phenomena that drive the mechanism of any piezoelectric device. The results of our findings confirm that the performance of piezoelectric devices can be significantly improved by controlling the morphology and initial growth conditions of ZnO nanorods, particularly in terms of the magnitude of the piezoelectric coefficient factor (d33). Moreover, from this review, a proposed facile synthesis of ZnO nanorods, suitably produced to improve coupling and switchable polarization in piezoelectric devices, has been reported.
  13. Gayatri R, Fizal ANS, Yuliwati E, Hossain MS, Jaafar J, Zulkifli M, et al.
    Nanomaterials (Basel), 2023 Mar 12;13(6).
    PMID: 36985917 DOI: 10.3390/nano13061023
    Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and create mixed-matrix membrane (MMMs) with improved properties and hydrophilicity by adding titanium dioxide (TiO2) and pore-forming agents to hydrophobic polyvinylidene fluoride (PVDF). The PVDF mixed-matrix ultrafiltration membranes in this study were made using the non-solvent phase inversion approach which is a simple and effective method for increasing the hydrophilic nature of membranes. Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as pore-forming chemicals were created. Pure water flux, BSA flux, and BSA rejection were calculated to evaluate the mixed-matrix membrane's efficiency. Bovine serum albumin (BSA) solution was employed in this study to examine the protein rejection ability. Increases in hydrophilicity, viscosity, and flux in pure water and BSA solution were achieved using PVP and PEG additives. The PVDF membrane's hydrophilicity was raised with the addition of TiO2, showing an increased contact angle to 71°. The results show that the PVDF-PVP-TiO2 membrane achieved its optimum water flux of 97 L/(m2h) while the PVDF-PEG-TiO2 membrane rejected BSA at a rate greater than 97%. The findings demonstrate that use of a support or additive improved filtration performance compared to a pristine polymeric membrane by increasing its hydrophilicity.
  14. Elmakki T, Zavahir S, Hafsa U, Al-Sulaiti L, Ahmad Z, Chen Y, et al.
    Nanomaterials (Basel), 2023 Feb 27;13(5).
    PMID: 36903773 DOI: 10.3390/nano13050895
    In this study, α-LiAlO2 was investigated for the first time as a Li-capturing positive electrode material to recover Li from aqueous Li resources. The material was synthesized using hydrothermal synthesis and air annealing, which is a low-cost and low-energy fabrication process. The physical characterization showed that the material formed an α-LiAlO2 phase, and electrochemical activation revealed the presence of AlO2* as a Li deficient form that can intercalate Li+. The AlO2*/activated carbon electrode pair showed selective capture of Li+ ions when the concentrations were between 100 mM and 25 mM. In mono salt solution comprising 25 mM LiCl, the adsorption capacity was 8.25 mg g-1, and the energy consumption was 27.98 Wh mol Li-1. The system can also handle complex solutions such as first-pass seawater reverse osmosis brine, which has a slightly higher concentration of Li than seawater at 0.34 ppm.
  15. Sagadevan S, Rahman MZ, Léonard E, Losic D, Hessel V
    Nanomaterials (Basel), 2023 Feb 24;13(5).
    PMID: 36903724 DOI: 10.3390/nano13050846
    Graphene is a two-dimensional (2D) material with a single atomic crystal structure of carbon that has the potential to create next-generation devices for photonic, optoelectronic, thermoelectric, sensing, wearable electronics, etc., owing to its excellent electron mobility, large surface-to-volume ratio, adjustable optics, and high mechanical strength. In contrast, owing to their light-induced conformations, fast response, photochemical stability, and surface-relief structures, azobenzene (AZO) polymers have been used as temperature sensors and photo-switchable molecules and are recognized as excellent candidates for a new generation of light-controllable molecular electronics. They can withstand trans-cis isomerization by conducting light irradiation or heating but have poor photon lifetime and energy density and are prone to agglomeration even at mild doping levels, reducing their optical sensitivity. Graphene derivatives, including graphene oxide (GO) and reduced graphene oxide (RGO), are an excellent platform that, combined with AZO-based polymers, could generate a new type of hybrid structure with interesting properties of ordered molecules. AZO derivatives may modify the energy density, optical responsiveness, and photon storage capacity, potentially preventing aggregation and strengthening the AZO complexes. They are potential candidates for sensors, photocatalysts, photodetectors, photocurrent switching, and other optical applications. This review aimed to provide an overview of the recent progress in graphene-related 2D materials (Gr2MS) and AZO polymer AZO-GO/RGO hybrid structures and their synthesis and applications. The review concludes with remarks based on the findings of this study.
  16. Ismail SNA, Nayan NA, Mohammad Haniff MAS, Jaafar R, May Z
    Nanomaterials (Basel), 2023 Feb 24;13(5).
    PMID: 36903730 DOI: 10.3390/nano13050852
    Flexible sensors have been extensively employed in wearable technologies for physiological monitoring given the technological advancement in recent years. Conventional sensors made of silicon or glass substrates may be limited by their rigid structures, bulkiness, and incapability for continuous monitoring of vital signs, such as blood pressure (BP). Two-dimensional (2D) nanomaterials have received considerable attention in the fabrication of flexible sensors due to their large surface-area-to-volume ratio, high electrical conductivity, cost effectiveness, flexibility, and light weight. This review discusses the transduction mechanisms, namely, piezoelectric, capacitive, piezoresistive, and triboelectric, of flexible sensors. Several 2D nanomaterials used as sensing elements for flexible BP sensors are reviewed in terms of their mechanisms, materials, and sensing performance. Previous works on wearable BP sensors are presented, including epidermal patches, electronic tattoos, and commercialized BP patches. Finally, the challenges and future outlook of this emerging technology are addressed for non-invasive and continuous BP monitoring.
  17. Mahamad Yusoff NF, Idris NH, Md Din MF, Majid SR, Harun NA, Noerochim L
    Nanomaterials (Basel), 2023 Feb 15;13(4).
    PMID: 36839100 DOI: 10.3390/nano13040732
    Currently, efforts to address the energy needs of large-scale power applications have expedited the development of sodium-ion (Na-ion) batteries. Transition-metal oxides, including Mn2O3, are promising for low-cost, eco-friendly energy storage/conversion. Due to its high theoretical capacity, Mn2O3 is worth exploring as an anode material for Na-ion batteries; however, its actual application is constrained by low electrical conductivity and capacity fading. Herein, we attempt to overcome the problems related to Mn2O3 with heteroatom-doped reduced graphene oxide (rGO) aerogels synthesised via the hydrothermal method with a subsequent freeze-drying process. The cubic Mn2O3 particles with an average size of 0.5-1.5 µm are distributed to both sides of heteroatom-doped rGO aerogels layers. Results indicate that heteroatom-doped rGO aerogels may serve as an efficient ion transport channel for electrolyte ion transport in Mn2O3. After 100 cycles, the electrodes retained their capacities of 242, 325, and 277 mAh g-1, for Mn2O3/rGO, Mn2O3/nitrogen-rGO, and Mn2O3/nitrogen, sulphur-rGO aerogels, respectively. Doping Mn2O3 with heteroatom-doped rGO aerogels increased its electrical conductivity and buffered volume change during charge/discharge, resulting in high capacity and stable cycling performance. The synergistic effects of heteroatom doping and the three-dimensional porous structure network of rGO aerogels are responsible for their excellent electrochemical performances.
  18. Rahman MO, Nor NBM, Sawaran Singh NS, Sikiru S, Dennis JO, Shukur MFBA, et al.
    Nanomaterials (Basel), 2023 Feb 08;13(4).
    PMID: 36839033 DOI: 10.3390/nano13040666
    Graphene and its derivatives have emerged as peerless electrode materials for energy storage applications due to their exclusive electroactive properties such as high chemical stability, wettability, high electrical conductivity, and high specific surface area. However, electrodes from graphene-based composites are still facing some substantial challenges to meet current energy demands. Here, we applied one-pot facile solvothermal synthesis to produce nitrogen-doped reduced graphene oxide (N-rGO) nanoparticles using an organic solvent, ethylene glycol (EG), and introduced its application in supercapacitors. Electrochemical analysis was conducted to assess the performance using a multi-channel electrochemical workstation. The N-rGO-based electrode demonstrates the highest specific capacitance of 420 F g-1 at 1 A g-1 current density in 3 M KOH electrolyte with the value of energy (28.60 Whkg-1) and power (460 Wkg-1) densities. Furthermore, a high capacitance retention of 98.5% after 3000 charge/discharge cycles was recorded at 10 A g-1. This one-pot facile solvothermal synthetic process is expected to be an efficient technique to design electrodes rationally for next-generation supercapacitors.
  19. Ibrahim SK, Singh MJ, Al-Bawri SS, Ibrahim HH, Islam MT, Islam MS, et al.
    Nanomaterials (Basel), 2023 Jan 28;13(3).
    PMID: 36770483 DOI: 10.3390/nano13030520
    Massive multiple-input multiple-output (mMIMO) is a wireless access technique that has been studied and investigated in response to the worldwide bandwidth demand in the wireless communication sector (MIMO). Massive MIMO, which brings together antennas at the transmitter and receiver to deliver excellent spectral and energy efficiency with comparatively simple processing, is one of the main enabling technologies for the upcoming generation of networks. To actualize diverse applications of the intelligent sensing system, it is essential for the successful deployment of 5G-and beyond-networks to gain a better understanding of the massive MIMO system and address its underlying problems. The recent huge MIMO systems are highlighted in this paper's thorough analysis of the essential enabling technologies needed for sub-6 GHz 5G networks. This article covers most of the critical issues with mMIMO antenna systems including pilot realized gain, isolation, ECC, efficiency, and bandwidth. In this study, two types of massive 5G MIMO antennas are presented. These types are used depending on the applications at sub-6 GHz bands. The first type of massive MIMO antennas is designed for base station applications, whereas the most recent structures of 5G base station antennas that support massive MIMO are introduced. The second type is constructed for smartphone applications, where several compact antennas designed in literature that can support massive MIMO technology are studied and summarized. As a result, mMIMO antennas are considered as good candidates for 5G systems.
  20. Benettayeb A, Seihoub FZ, Pal P, Ghosh S, Usman M, Chia CH, et al.
    Nanomaterials (Basel), 2023 Jan 21;13(3).
    PMID: 36770407 DOI: 10.3390/nano13030447
    Adsorption is the most widely used technique for advanced wastewater treatment. The preparation and application of natural renewable and environmentally friendly materials makes this process easier and more profitable. Chitosan is often used as an effective biomaterial in the adsorption world because of its numerous functional applications. Chitosan is one of the most suitable and functionally flexible adsorbents because it contains hydroxyl (-OH) and amine (-NH2) groups. The adsorption capacity and selectivity of chitosan can be further improved by introducing additional functions into its basic structure. Owing to its unique surface properties and adsorption ability of chitosan, the development and application of chitosan nanomaterials has gained significant attention. Here, recent research on chitosan nanoparticles is critically reviewed by comparing various methods for their synthesis with particular emphasis on the role of experimental conditions, limitations, and applications in water and wastewater treatment. The recovery of pollutants using magnetic nanoparticles is an important treatment process that has contributed to additional development and sustainable growth. The application of such nanoparticles in the recovery metals, which demonstrates a "close loop technology" in the current scenarios, is also presented in this review.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links