Displaying publications 1 - 20 of 128 in total

Abstract:
Sort:
  1. Aaiza G, Khan I, Shafie S
    Nanoscale Res Lett, 2015 Dec;10(1):490.
    PMID: 26698873 DOI: 10.1186/s11671-015-1144-4
    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.
  2. Abdul Bashid HA, Lim HN, Kamaruzaman S, Abdul Rashid S, Yunus R, Huang NM, et al.
    Nanoscale Res Lett, 2017 Dec;12(1):246.
    PMID: 28381070 DOI: 10.1186/s11671-017-2010-3
    A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g(- 1), 13.35 Wh kg(- 1) and of 322.85 W kg(- 1), respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g(- 1). The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles. Carbon bundle fibre modified with porous polypyrrole/reduced graphene oxide nanocomposite for flexible miniature solid-state supercapacitor.
  3. Abdullah N, Kamarudin SK, Shyuan LK
    Nanoscale Res Lett, 2018 Apr 03;13(1):90.
    PMID: 29616360 DOI: 10.1186/s11671-018-2498-1
    This study introduces a novel titanium dioxide carbon nanofiber (TiO2-CNF) support for anodic catalyst in direct methanol fuel cell. The catalytic synthesis process involves several methods, namely the sol-gel, electrospinning, and deposition methods. The synthesized electrocatalyst is compared with other three electrocatalysts with different types of support. All of these electrocatalysts differ based on a number of physical and electrochemical characteristics. Experimental results show that the TiO2-CNF support gave the highest current density at 345.64 mA mgcatalyst-1, which is equivalent to 5.54-fold that of carbon support while the power density is almost double that of the commercial electrocatalyst.
  4. Abdullah N, Kamarudin SK, Shyuan LK, Karim NA
    Nanoscale Res Lett, 2017 Dec 06;12(1):613.
    PMID: 29214597 DOI: 10.1186/s11671-017-2379-z
    Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr-1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg-1 and 226.75m2 g-1PtRu, respectively, compared with the other samples.
  5. Abedini A, Bakar AA, Larki F, Menon PS, Islam MS, Shaari S
    Nanoscale Res Lett, 2016 Dec;11(1):287.
    PMID: 27283051 DOI: 10.1186/s11671-016-1500-z
    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications.
  6. Abedini A, Daud AR, Abdul Hamid MA, Kamil Othman N, Saion E
    Nanoscale Res Lett, 2013;8(1):474.
    PMID: 24225302 DOI: 10.1186/1556-276X-8-474
    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose.
  7. Ahmad Makinudin AH, Fakir MS, Supangat A
    Nanoscale Res Lett, 2015;10:53.
    PMID: 25852350 DOI: 10.1186/s11671-015-0741-6
    The use of templating method to synthesize the vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) composite nanotubes is presented here. VOPcPhO is a p-type material and PC71BM is an n-type material which acts as an electron donor and electron acceptor, respectively. Both materials have been studied due to their potential applications as solar energy converter and organic electronics. High-resolution transmission electron microscope (HRTEM) and field emission scanning electron microscope (FESEM) images have shown the replication of the porous template diameter of approximately 200 nm with a superior incorporation of both VOPcPhO and PC71BM. VOPcPhO:PC71BM composite nanotubes showed the significant properties improvement if compared over their bulk heterojunction counterpart. UV-vis spectra of composite nanotubes show a shift to a longer wavelength at the absorption peaks. Significant quenching has been attained by the photoluminescence spectra of VOPcPhO:PC71BM composite nanotubes which supports the redshift of UV-vis absorption spectra. Presumably, the photo-induced charge transfer and charge carrier dissociation can be enhanced from the VOPcPhO:PC71BM composite nanotubes rather than the bulk heterojunction.
  8. Ahmad NF, Rusli NI, Mahmood MR, Yasui K, Hashim AM
    Nanoscale Res Lett, 2014;9(1):83.
    PMID: 24533793 DOI: 10.1186/1556-276X-9-83
    We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density vertically aligned ZnO nanorods comparable to other methods were obtained. A growth mechanism was proposed based on the obtained results. The ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics.
  9. Ahmad NF, Yasui K, Hashim AM
    Nanoscale Res Lett, 2015;10:10.
    PMID: 25852308 DOI: 10.1186/s11671-014-0716-z
    A seed/catalyst-free growth of ZnO on graphene by thermal evaporation of Zn in the presence of O2 gas was further studied. The effects of substrate positions and graphene thicknesses on the morphological, structural, and optical properties were found to be very pronounced. By setting the substrate to be inclined at 90°, the growth of ZnO nanostructures, namely, nanoclusters and nanorods, on single-layer (SL) graphene was successfully realized at temperatures of 600°C and 800°C, respectively. For the growth on multilayer (ML) graphene at 600°C with an inclination angle of 90°, the grown structures show extremely thick and continuous cluster structures as compared to the growth with substrate's inclination angle of 45°. Moreover, the base of nanorod structures grown at 800°C with an inclination angle of 90° also become thicker as compared to 45°, even though their densities and aspect ratios were almost unchanged. Photoluminescence (PL) spectra of the grown ZnO structures were composed of the UV emission (378-386 nm) and the visible emission (517-550 nm), and the intensity ratio of the former emission (I UV) to the latter emission (I VIS) changed, depending on the temperature. The structures grown at a low temperature of 600°C show the highest value of I UV/I VIS of 16.2, which is almost two times higher than the structures grown on SL graphene, indicating fewer structural defects. The possible growth mechanism was proposed and described which considered both the nucleation and oxidation processes. From the results obtained, it can be concluded that temperature below 800°C, substrate position inclined at 90° towards the gas flow, and ML graphene seems to be preferable parameters for the growth of ZnO structures by thermal evaporation because these factors can be used to overcome the problem of graphene's oxidation that takes place during the growth.
  10. Akbari E, Buntat Z, Enzevaee A, Yazdi MK, Bahadoran M, Nikoukar A
    Nanoscale Res Lett, 2014;9(1):402.
    PMID: 25177219 DOI: 10.1186/1556-276X-9-402
    Carbonaceous materials have recently received attention in electronic applications and measurement systems. In this work, we demonstrate the electrical behavior of carbon films fabricated by methane arc discharge decomposition technique. The current-voltage (I-V) characteristics of carbon films are investigated in the presence and absence of gas. The experiment reveals that the current passing through the carbon films increases when the concentration of CO2 gas is increased from 200 to 800 ppm. This phenomenon which is a result of conductance changes can be employed in sensing applications such as gas sensors.
  11. Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale Ebrahim N
    Nanoscale Res Lett, 2019 May 16;14(1):164.
    PMID: 31098855 DOI: 10.1186/s11671-019-2994-y
    This bibliometric study investigated the public trends in the fields of nanoparticles which is limited to drug delivery and magnetic nanoparticles' literature published from 1980 to October 2017. The data were collected from the Web of Science Core Collections, and a network analysis of research outputs was carried out to analyse the research trends in the nanoparticles literature. Nanoparticles and its applications are progressing in recent years. The results show that documents in the field of nanoparticles in chemistry and material science have improved in citation rate, as the authors were researching in multidisciplinary zones. Top-cited documents are mainly focusing on drug delivery, magnetic nanoparticles and iron oxide nanoparticles which are also the top research keywords in all papers published. Top-cited papers are mostly published in Biomaterials journal which so far has published 12% of top-cited articles. Although research areas such as contrast agents, quantum dots, and nanocrystals are not considered as the top-ranked keywords in all documents, these keywords received noticeable citations. The trends of publications on drug delivery and magnetic nanoparticles give a general view on future research and identify potential opportunities and challenges.
  12. Algamili AS, Khir MHM, Dennis JO, Ahmed AY, Alabsi SS, Ba Hashwan SS, et al.
    Nanoscale Res Lett, 2021 Jan 26;16(1):16.
    PMID: 33496852 DOI: 10.1186/s11671-021-03481-7
    Over the last couple of decades, the advancement in Microelectromechanical System (MEMS) devices is highly demanded for integrating the economically miniaturized sensors with fabricating technology. A sensor is a system that detects and responds to multiple physical inputs and converting them into analogue or digital forms. The sensor transforms these variations into a form which can be utilized as a marker to monitor the device variable. MEMS exhibits excellent feasibility in miniaturization sensors due to its small dimension, low power consumption, superior performance, and, batch-fabrication. This article presents the recent developments in standard actuation and sensing mechanisms that can serve MEMS-based devices, which is expected to revolutionize almost many product categories in the current era. The featured principles of actuating, sensing mechanisms and real-life applications have also been discussed. Proper understanding of the actuating and sensing mechanisms for the MEMS-based devices can play a vital role in effective selection for novel and complex application design.
  13. Ali AA, Hashim AM
    Nanoscale Res Lett, 2015 Dec;10(1):452.
    PMID: 26608535 DOI: 10.1186/s11671-015-1163-1
    The evolution of zinc oxide nanostructures grown on graphene by alcohol-assisted ultrasonic spray pyrolysis was investigated. The evolution of structures is strongly depended on pyrolysis parameters, i.e., precursor molarity, precursor flow rate, precursor injection/deposition time, and substrate temperature. Field-effect scanning electron microscope analysis, energy dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscopy were used to investigate the properties of the synthesized nanostructures and to provide evidence for the structural changes according to the changes in the pyrolysis parameters. The optimum parameters to achieve maximum density and well-defined hexagonally shaped nanorods were a precursor molarity of 0.2 M, an injection flow rate of 6 ml/min, an injection time of 10 min, and a substrate temperature of 250-355 °C. Based on the experimental results, the response surface methodology (RSM) was used to model and optimize the independent pyrolysis parameters using the Box-Behnken design. Here, the responses, i.e., the nanostructure density, size, and shape factor, are evaluated. All of the computations were performed using the Design-Expert software package. Analysis of variance (ANOVA) was used to evaluate the results of the model and to determine the significant values for the independent pyrolysis parameters. The evolution of zinc oxide (ZnO) structures are well explained by the developed modelling which confirms that RSM is a reliable tool for the modelling and optimization of the pyrolysis parameters and prediction of nanostructure sizes and shapes.
  14. Ali AA, Hashim AM
    Nanoscale Res Lett, 2016 Dec;11(1):246.
    PMID: 27173675 DOI: 10.1186/s11671-016-1466-x
    We demonstrate a systematic computational analysis of the measured optical and charge transport properties of the spray pyrolysis-grown ZnO nanostructures, i.e. nanosphere clusters (NSCs), nanorods (NRs) and nanowires (NWs) for the first time. The calculated absorbance spectra based on the time-dependent density functional theory (TD-DFT) shows very close similarity with the measured behaviours under UV light. The atomic models and energy level diagrams for the grown nanostructures were developed and discussed to explain the structural defects and band gap. The induced stresses in the lattices of ZnO NSCs that formed during the pyrolysis process seem to cause the narrowing of the gap between the energy levels. ZnO NWs and NRs show homogeneous distribution of the LUMO and HOMO orbitals all over the entire heterostructure. Such distribution contributes to the reduction of the band gap down to 2.8 eV, which has been confirmed to be in a good agreement with the experimental results. ZnO NWs and NRs exhibited better emission behaviours under the UV excitation as compared to ZnO NSCs and thin film as their visible range emissions are strongly quenched. Based on the electrochemical impedance measurement, the electrical models and electrostatic potential maps were developed to calculate the electron lifetime and to explain the mobility or diffusion behaviours in the grown nanostructure, respectively.
  15. Ali AA, Hashim AM
    Nanoscale Res Lett, 2015 Dec;10(1):1008.
    PMID: 26198282 DOI: 10.1186/s11671-015-1008-y
    The dissociation of zinc ions (Zn(2+)) from vapor-phase zinc acetylacetonate, Zn(C5H7O2)2, or Zn(acac)2 and its adsorption onto graphene oxide via atomic layer deposition (ALD) were studied using a quantum mechanics approach. Density functional theory (DFT) was used to obtain an approximate solution to the Schrödinger equation. The graphene oxide cluster model was used to represent the surface of the graphene film after pre-oxidation. In this study, the geometries of reactants, transition states, and products were optimized using the B3LYB/6-31G** level of theory or higher. Furthermore, the relative energies of the various intermediates and products in the gas-phase radical mechanism were calculated at the B3LYP/6-311++G** and MP2/6-311 + G(2df,2p) levels of theory. Additionally, a molecular orbital (MO) analysis was performed for the products of the decomposition of the Zn(acac)2 complex to investigate the dissociation of Zn(2+) and the subsequent adsorption of H atoms on the C5H7O2 cluster to form acetylacetonate enol. The reaction energies were calculated, and the reaction mechanism was accordingly proposed. A simulation of infrared (IR) properties was performed using the same approach to support the proposed mechanism via a complete explanation of bond forming and breaking during each reaction step.
  16. Ali K, Khan SA, Jafri MZ
    Nanoscale Res Lett, 2014;9(1):175.
    PMID: 24721986 DOI: 10.1186/1556-276X-9-175
    Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively.
  17. Ali Umar A, Abd Rahman MY, Taslim R, Mat Salleh M, Oyama M
    Nanoscale Res Lett, 2011 Oct 25;6:564.
    PMID: 22027275 DOI: 10.1186/1556-276X-6-564
    A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications.PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.
  18. Alosfur FK, Jumali MH, Radiman S, Ridha NJ, Yarmo MA, Umar AA
    Nanoscale Res Lett, 2013;8(1):346.
    PMID: 23919496 DOI: 10.1186/1556-276X-8-346
    Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light.
  19. Amjad MW, Amin MC, Katas H, Butt AM
    Nanoscale Res Lett, 2012;7(1):687.
    PMID: 23270381 DOI: 10.1186/1556-276X-7-687
    Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N'-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.
  20. Amran TS, Hashim MR, Al-Obaidi NK, Yazid H, Adnan R
    Nanoscale Res Lett, 2013 Jan 18;8(1):35.
    PMID: 23331761 DOI: 10.1186/1556-276X-8-35
    We present an investigation on a coupled system consists of gold nanoparticles and silicon nanocrystals. Gold nanoparticles (AuNPs) embedded into porous silicon (PSi) were prepared using the electrochemical deposition method. Scanning electron microscope images and energy-dispersive X-ray results indicated that the growth of AuNPs on PSi varies with current density. X-ray diffraction analysis showed the presence of cubic gold phases with crystallite sizes around 40 to 58 nm. Size dependence on the plasmon absorption was studied from nanoparticles with various sizes. Comparison with the reference sample, PSi without AuNP deposition, showed a significant blueshift with decreasing AuNP size which was explained in terms of optical coupling between PSi and AuNPs within the pores featuring localized plasmon resonances.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links