Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Ngoi ST, Muhamad AN, Teh CSJ, Chong CW, Abdul Jabar K, Chai LC, et al.
    Pathogens, 2021 Dec 09;10(12).
    PMID: 34959557 DOI: 10.3390/pathogens10121602
    The rise of antimicrobial resistance (AMR) among clinically important bacteria, including respiratory pathogens, is a growing concern for public health worldwide. Common causative bacteria for upper respiratory tract infections (URTIs) include Streptococcus pneumoniae and Haemophilus influenzae, and sometimes Staphylococcus aureus. We assessed the β-lactam resistant trends and mechanisms of 150 URTI strains isolated in a tertiary care hospital in Kuala Lumpur Malaysia. High rates of non-susceptibility to penicillin G (38%), amoxicillin-clavulanate (48%), imipenem (60%), and meropenem (56%) were observed in S. pneumoniae. Frequent mutations at STMK and SRNVP motifs in PBP1a (41%), SSNT motif in PBP2b (32%), and STMK and LKSG motifs in PBP2x (41%) were observed in S. pneumoniae. H. influenzae remained highly susceptible to most β-lactams, except for ampicillin. Approximately half of the ampicillin non-susceptible H. influenzae harboured PBP3 mutations (56%) and only blaTEM was detected in the ampicillin-resistant strains (47%). Methicillin-susceptible S. aureus (MSSA) strains were mostly resistant to penicillin G (92%), with at least two-fold higher median minimum inhibitory concentrations (MIC) for all penicillin antibiotics (except ticarcillin) compared to S. pneumoniae and H. influenzae. Almost all URTI strains (88-100%) were susceptible to cefcapene and flomoxef. Overall, β-lactam antibiotics except penicillins remained largely effective against URTI pathogens in this region.
  2. Vignesh R, Balakrishnan P, Tan HY, Yong YK, Velu V, Larsson M, et al.
    Pathogens, 2023 Jan 29;12(2).
    PMID: 36839482 DOI: 10.3390/pathogens12020210
    The lethal combination involving TB and HIV, known as "syndemic" diseases, synergistically act upon one another to magnify the disease burden. Individuals on anti-retroviral therapy (ART) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS). The underlying inflammatory complication includes the rapid restoration of immune responses following ART, eventually leading to exaggerated inflammatory responses to MTB antigens. TB-IRIS continues to be a cause of morbidity and mortality among HIV/TB coinfected patients initiating ART, and although a significant quantum of knowledge has been acquired on the pathogenesis of IRIS, the underlying pathomechanisms and identification of a sensitive and specific diagnostic marker still remain a grey area of investigation. Here, we reviewed the latest research developments into IRIS immunopathogenesis, and outlined the modalities to prevent and manage strategies for better clinical and diagnostic outcomes for IRIS.
  3. Tan GW, Visser L, Tan LP, van den Berg A, Diepstra A
    Pathogens, 2018 04 13;7(2).
    PMID: 29652813 DOI: 10.3390/pathogens7020040
    The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
  4. Rawle DJ, Nguyen W, Dumenil T, Parry R, Warrilow D, Tang B, et al.
    Pathogens, 2020 Oct 16;9(10).
    PMID: 33081269 DOI: 10.3390/pathogens9100848
    Getah virus (GETV) is a mosquito-transmitted alphavirus primarily associated with disease in horses and pigs in Asia. GETV was also reported to have been isolated from mosquitoes in Australia in 1961; however, retrieval and sequencing of the original isolates (N544 and N554), illustrated that these viruses were virtually identical to the 1955 GETVMM2021 isolate from Malaysia. K-mer mining of the >40,000 terabases of sequence data in the Sequence Read Archive followed by BLASTn confirmation identified multiple GETV sequences in biosamples from Asia (often as contaminants), but not in biosamples from Australia. In contrast, sequence reads aligning to the Australian Ross River virus (RRV) were readily identified in Australian biosamples. To explore the serological relationship between GETV and other alphaviruses, an adult wild-type mouse model of GETV was established. High levels of cross-reactivity and cross-protection were evident for convalescent sera from mice infected with GETV or RRV, highlighting the difficulties associated with the interpretation of early serosurveys reporting GETV antibodies in Australian cattle and pigs. The evidence that GETV circulates in Australia is thus not compelling.
  5. Aupalee K, Saeung A, Srisuka W, Fukuda M, Streit A, Takaoka H
    Pathogens, 2020 Jun 25;9(6).
    PMID: 32630410 DOI: 10.3390/pathogens9060512
    The transmission of zoonotic filarial parasites by black flies has so far been reported in the Chiang Mai and Tak provinces, Thailand, and the bites of these infected black flies can cause a rare disease-human zoonotic onchocerciasis. However, species identification of the filarial parasites and their black fly vectors in the Chiang Mai province were previously only based on a morphotaxonomic analysis. In this study, a combined approach of morphotaxonomic and molecular analyses (mitochondrial cox1, 12S rRNA, and nuclear 18S rRNA (SSU HVR-I) genes) was used to clarify the natural filarial infections in female black flies collected by using human and swine baits from two study areas (Ban Lek and Ban Pang Dang) in the Chiang Mai province from March 2018 to January 2019. A total of 805 and 4597 adult females, belonging to seven and nine black fly taxa, were collected from Ban Lek and Ban Pang Dang, respectively. At Ban Lek, four of the 309 adult females of Simulium nigrogilvum were positive for Onchocerca species type I in the hot and rainy seasons. At Ban Pang Dang, five unknown filarial larvae (belonging to the same new species) were detected in Simulium sp. in the S. varicorne species-group and in three species in the S. asakoae species-group in all seasons, and three non-filarial larvae of three different taxa were also found in three females of the S. asakoae species-group. This study is the first to molecularly identify new filarial species and their vector black fly species in Thailand.
  6. Balakrishnan SN, Yamang H, Lorenz MC, Chew SY, Than LTL
    Pathogens, 2022 May 25;11(6).
    PMID: 35745472 DOI: 10.3390/pathogens11060618
    Vulvovaginal candidiasis (VVC) is a prevalent gynaecological disease characterised by vaginal wall inflammation that is caused by Candida species. VVC impacts almost three-quarters of all women throughout their reproductive years. As the vaginal mucosa is the first point of contact with microbes, vaginal epithelial cells are the first line of defence against opportunistic Candida infection by providing a physical barrier and mounting immunological responses. The mechanisms of defence against this infection are displayed through the rapid shedding of epithelial cells, the presence of pattern recognition receptors, and the release of inflammatory cytokines. The bacterial microbiota within the mucosal layer presents another form of defence mechanism within the vagina through acidic pH regulation, the release of antifungal peptides and physiological control against dysbiosis. The significant role of the microbiota in maintaining vaginal health promotes its application as one of the potential treatment modalities against VVC with the hope of alleviating the burden of VVC, especially the recurrent disease. This review discusses and summarises current progress in understanding the role of vaginal mucosa and host immunity upon infection, together with the function of vaginal microbiota in VVC.
  7. Tan LP, Hamdan RH, Hassan BNH, Reduan MFH, Okene IA, Loong SK, et al.
    Pathogens, 2021 Jun 30;10(7).
    PMID: 34208961 DOI: 10.3390/pathogens10070821
    Rhipicephalus species are distributed globally with a notifiable presence in Southeast Asia (SEA) within animal and human populations. The Rhipicephalus species are highly adaptive and have established successful coexistence within human dwellings and are known to be active all year round, predominantly in tropical and subtropical climates existing in SEA. In this review, the morphological characteristics, epidemiology, and epizootiology of Rhipicephalus tick species found in SEA are reviewed. There are six commonly reported Rhipicephalus ticks in the SEA region. Their interactions with their host species that range from cattle, sheep, and goats, through cats and dogs, to rodents and man are discussed in this article. Rhipicephalus-borne pathogens, including Anaplasma species, Ehrlichia species, Babesia species, and Theileria species, have been highlighted as are relevant to the region in review. Pathogens transmitted from Rhipicepahalus ticks to host animals are usually presented clinically with signs of anemia, jaundice, and other signs of hemolytic changes. Rhipicephalus ticks infestation also account for ectoparasitic nuisance in man and animals. These issues are discussed with specific interest to the SEA countries highlighting peculiarities of the region in the epidemiology of Rhipicephalus species and attendant pathogens therein. This paper also discusses the current general control strategies for ticks in SEA proffering measures required for increased documentation. The potential risks associated with rampant and improper acaricide use are highlighted. Furthermore, such practices lead to acaricide resistance among Rhipicephalus species are highlighted.
  8. Shafie NJ, Halim NSA, Awoniyi AM, Zalipah MN, Md-Nor S, Nazri MUIA, et al.
    Pathogens, 2022 Nov 05;11(11).
    PMID: 36365051 DOI: 10.3390/pathogens11111300
    Leptospirosis is an important zoonotic disease that is transmitted worldwide through infected small mammals such as rodents. In Malaysia, there is a paucity of information on the animal reservoirs that are responsible for leptospirosis transmission, with only a few studies focusing on leptospirosis risk in recreational areas. Therefore, in this study we characterized the species composition and the prevalence of pathogenic Leptospira spp. in non-volant small mammals of Hutan Lipur Sekayu, Terengganu. We performed ten trapping sessions totaling 3000 trappings between September 2019 and October 2020. Kidney samples from captured individuals were extracted for the PCR detection of pathogenic Leptospira spp. Overall, we captured 45 individuals from 8 species (1.56% successful trapping effort), with 9 individuals testing positive for pathogenic Leptospira, that is, a 20% (n = 9/45) prevalence rate. Rattus tiomanicus (n = 22) was the most dominant captured species and had the highest positive individual with pathogenic Leptospira (44.4%, n = 4/9). Despite the low successful trapping effort in this study, the results show the high diversity of non-volant small mammals in Hutan Lipur Sekayu, and that they could also maintain and transmit pathogenic Leptospira.
  9. Najib MA, Mustaffa KMF, Ong EBB, Selvam K, Khalid MF, Awang MS, et al.
    Pathogens, 2021 Sep 13;10(9).
    PMID: 34578216 DOI: 10.3390/pathogens10091184
    Typhoid fever, also known as typhoid, is a life-threatening bacterial infection that remains a global health concern. The infection is associated with a significant morbidity and mortality rate, resulting in an urgent need for specific and rapid detection tests to aid prevention and management of the disease. The present review aims to assess the specificity and sensitivity of the available literature on the immunodiagnostics of typhoid fever. A literature search was conducted using three databases (PubMed, ProQuest and Scopus) and manual searches through the references of identified full texts to retrieve relevant literature published between 1 January 2011 and 31 December 2020. Of the 577 studies identified in our search, 12 were included in further analysis. Lipopolysaccharides (LPS) and hemolysin E (HlyE) were the most frequently studied antigens. The specimens examined in these studies included serum and saliva. Using blood culture as the gold standard, anti-LPS IgA gave the highest sensitivity of 96% (95% CI: 93-99) and specificity of 96% (95% CI: 93-99) for distinguishing between typhoid cases and healthy controls, whereas the combination of anti-LPS and anti-flagellin total IgGAM gave the highest sensitivity of 93% (95% CI: 86-99) and specificity of 95% (95% CI: 89-100) for distinguishing typhoid cases and other febrile infections. A comparably high sensitivity of 92% (95% CI: 86-98) and specificity of 89% (95% CI: 78-100) were shown in testing based on detection of the combination of anti-LPS (IgA and IgM) and anti-HlyE IgG as well as a slightly lower sensitivity of 91% (95% CI: 74-100) in the case of anti-50kDa IgA. Anti-50kDa IgM had the lowest sensitivity of 36% (95% CI: 6-65) against both healthy and febrile controls. The development of a rapid diagnostic test targeting antibodies against lipopolysaccharides combined with flagellin appeared to be a suitable approach for the rapid detection test of typhoid fever. Saliva is added benefit for rapid typhoid diagnosis since it is less invasive. As a result, further studies could be done to develop additional approaches for adopting such samples.
  10. Awosolu OB, Yahaya ZS, Farah Haziqah MT, Olusi TA
    Pathogens, 2022 Nov 09;11(11).
    PMID: 36365063 DOI: 10.3390/pathogens11111312
    Malaria remains a major public health challenge worldwide. In order to ensure a prompt and accurate malaria diagnosis, the World Health Organization recommended the confirmatory parasitological diagnosis of malaria by microscopy and malaria rapid diagnostic test (RDT) prior to antimalarial administration and treatment. This study was designed to evaluate the performance of nested polymerase chain reaction (nested PCR), light microscopy, and Plasmodium falciparum histidine-rich protein 2 rapid diagnostic test (PfHRP2 RDT) in the detection of falciparum malaria in Akure, Nigeria. A cross-sectional and hospital-based study involving 601 febrile volunteer participants was conducted in Akure, Nigeria. Approximately 2-3 mL venous blood samples were obtained from each study participant for parasitological confirmation by microscopy and PfHRP2-based malaria RDT. Thick and thin films were prepared and viewed under the light microscope for parasite detection, parasite density quantification, and species identification, respectively. Dry blood spot samples were prepared on 3MM Whatman filter paper for nested PCR. The overall prevalence of microscopy, PfHRP2 RDT, and nested PCR were 64.89% (390/601), 65.7% (395/601), and 67.39% (405/601), respectively. The estimates of sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and Youden's j index of microscopy and RDT were 96.30, 100.00, 100.00, 92.89, 97.50, 0.963, and 95.06, 94.90, 97.47, 90.29, 95.01, and 0.899, respectively. Malaria RDT recorded higher false negativity, compared microscopy (4.94% vs. 3.70%). A near perfect agreement was reported between microscopy and nested PCR, and between PfHRP2 RDT and nested PCR with Cohen's kappa (k) values of 0.94 and 0.88, respectively. This study revealed that PfHRP2 RDT and microscopy continues to remain sensitive and specific for falciparum malaria diagnosis in the study area.
  11. Boonhok R, Sangkanu S, Chuprom J, Srisuphanunt M, Norouzi R, Siyadatpanah A, et al.
    Pathogens, 2021 Jul 04;10(7).
    PMID: 34357992 DOI: 10.3390/pathogens10070842
    Peganum harmala, a well-known medicinal plant, has been used for several therapeutic purposes as it contains numerous pharmacological active compounds. Our study reported an anti-parasitic activity of P. harmala seed extract against Acanthamoeba triangularis. The stress induced by the extract on the surviving trophozoites for Acanthamoeba encystation and vacuolization was examined by microscopy, and transcriptional expression of Acanthamoeba autophagy-related genes was investigated by quantitative PCR. Our results showed that the surviving trophozoites were not transformed into cysts, and the number of trophozoites with enlarged vacuoles were not significantly different from that of untreated control. Molecular analysis data demonstrated that the mRNA expression of tested AcATG genes, i.e., ATG3, ATG8b, and ATG16, was at a basal level along the treatment. However, upregulation of AcATG16 at 24 h post treatment was observed, which may indicate an autophagic activity of this protein in response to the stress. Altogether, these data revealed the anti-Acanthamoeba activity of P. harmala extract and indicated the association of autophagy mRNA expression and cyst formation under the extract stress, representing a promising plant for future drug development. However, further identification of an active compound and a study of autophagy at the protein level are needed.
  12. Hamel R, Phanitchat T, Wichit S, Morales Vargas RE, Jaroenpool J, Diagne CT, et al.
    Pathogens, 2021 Aug 10;10(8).
    PMID: 34451474 DOI: 10.3390/pathogens10081010
    Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
  13. Nasiru Wana M, Mohd Moklas MA, Watanabe M, Zasmy Unyah N, Alhassan Abdullahi S, Ahmad Issa Alapid A, et al.
    Pathogens, 2020 Jul 16;9(7).
    PMID: 32708648 DOI: 10.3390/pathogens9070576
    The major route for Toxoplasma gondii (T. gondii) infection is through the ingestion of foods contaminated with oocyst from cat faeces. The microscopic detection of T. gondii oocysts in cat faeces is challenging, which contributes to the failure of detecting or differentiating it from other related coccidian parasites. This study aims to detect T. gondii oocysts in cat faeces using two multicopy-target PCR assays and to evaluate their genetic diversity. Cat faecal (200) samples were collected from pet cats (PCs; 100) and free-roaming cats (FRCs; 100) within Klang Valley, Malaysia, and screened for coccidian oocysts by microscopy using Sheather's sucrose floatation. PCR assays were performed on each faecal sample, targeting a B1 gene and a repetitive element (REP) gene to confirm T. gondii oocysts. Additionally, the PCR amplicons from the REP gene were sequenced to further confirm T. gondii-positive samples for phylogenetic analysis. Microscopy detected 7/200 (3.5%) T. gondii-like oocysts, while both the B1 gene and the REP gene detected 17/200 (8.5%) samples positive for T. gondii. All samples that were microscopically positive for T. gondii-like oocysts were also shown to be positive by both B1 and REP genes. The BLAST results sequenced for 16/200 (8.0%) PCR-positive T. gondii samples revealed homology and genetic heterogeneity with T. gondii strains in the GenBank, except for only one positive sample that did not show a result. There was almost perfect agreement (k = 0.145) between the two PCR assays targeting the B1 gene and the REP gene. This is the first report on microscopic, molecular detection and genetic diversity of T. gondii from cat faecal samples in Malaysia. In addition, the sensitivities of either the B1 gene or REP gene multicopy-target PCR assays are suitable for the accurate detection of T. gondii from cat faeces.
  14. Lau MY, Teng FE, Chua KH, Ponnampalavanar S, Chong CW, Abdul Jabar K, et al.
    Pathogens, 2021 Mar 02;10(3).
    PMID: 33801250 DOI: 10.3390/pathogens10030279
    The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great concern, as carbapenems are the last-line therapy for multidrug-resistant Gram-negative bacteria infections. This study aims to report the epidemiology of CRKP in a teaching hospital in Malaysia based on the molecular genotypic and clinical characteristics of the isolates. Sixty-three CRKP strains were isolated from a tertiary teaching hospital from January 2016 until August 2017. Carbapenemase genes were detected in 55 isolates, with blaOXA-48 (63.5%) as the predominant carbapenemase gene, followed by blaNDM (36.5%). At least one porin loss was detected in nine isolates. Overall, 63 isolates were divided into 30 clusters at similarity of 80% with PFGE analysis. Statistical analysis showed that in-hospital mortality was significantly associated with the usage of central venous catheter, infection or colonization by CRKP, particularly NDM-producers. In comparison, survival analysis using Cox proportional hazards regression identified a higher hazard ratio for patients with a stoma and patients treated with imipenem but a lower hazard ratio for patients with NDM-producing CRKP. OXA-48 carbapenemase gene was the predominant carbapenemase gene in this study. As CRKP infection could lead to a high rate of in-hospital mortality, early detection of the isolates was important to reduce their dissemination.
  15. Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-Drasekaran S, Palanisamy R, et al.
    Pathogens, 2021 Feb 01;10(2).
    PMID: 33535649 DOI: 10.3390/pathogens10020145
    Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
  16. Mohd Hussain RH, Abdul Ghani MK, Khan NA, Siddiqui R, Aazmi S, Halim H, et al.
    Pathogens, 2022 Dec 05;11(12).
    PMID: 36558808 DOI: 10.3390/pathogens11121474
    Amoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45-230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9-59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research.
  17. Mohd Abd Razak MR, Norahmad NA, Md Jelas NH, Afzan A, Mohmad Misnan N, Mat Ripen A, et al.
    Pathogens, 2021 Apr 21;10(5).
    PMID: 33919457 DOI: 10.3390/pathogens10050501
    The role of Carica papaya L. leaf juice in immune dysregulation caused by dengue virus infection remains unclear. This study aimed to investigate the immunomodulatory activities of the freeze-dried C. papaya leaf juice (FCPLJ) on AG129 mice infected with a clinical DENV-2 (DMOF015) isolate. The infected AG129 mice were orally treated with 500 and 1000 mg/kg/day of FCPLJ, for three days. Platelet, leukocyte, lymphocyte and neutrophil counts were microscopically determined. The level of plasma proinflammatory cytokines was measured by multiplex immunoassay. The levels of intracellular cytokines and viral RNA were determined by RT-qPCR technique. The results showed that the FCPLJ treatment increased the total white blood cell and neutrophil counts in the infected mice. The FCPLJ treatment decreased the level of GM-CSF, GRO-alpha, IL-1 beta, IL-6, MCP-1 and MIP-1 beta in the plasma of the infected mice. The intracellular IL-6 and viral RNA levels in the liver of infected mice were decreased by the FCPLJ treatment. In conclusion, this study supports the potential immunomodulatory role of the FCPLJ in a non-lethal, symptomatic dengue mouse model. Further studies on the action mechanism of the C. papaya leaf juice and its possible use as adjunctive dengue immunotherapy are warranted.
  18. Chen A, Sun J, Viljoen A, Mostert D, Xie Y, Mangila L, et al.
    Pathogens, 2023 Jun 09;12(6).
    PMID: 37375510 DOI: 10.3390/pathogens12060820
    Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.
  19. Loganathan AL, Palaniappan P, Subbiah VK
    Pathogens, 2021 Oct 29;10(11).
    PMID: 34832560 DOI: 10.3390/pathogens10111404
    Fibropapillomatosis (FP) of sea turtles is characterised by cutaneous tumours and is associated with Chelonid herpesvirus 5 (ChHV5), an alphaherpesvirus from the family Herpesviridae. Here, we provide the first evidence of ChHV5-associated FP in endangered Green turtles (Chelonia mydas) from Sabah, which is located at the northern region of Malaysian Borneo. The aims of our study were firstly, to determine the presence of ChHV5 in both tumour exhibiting and tumour-free turtles using molecular techniques and secondly, to determine the phylogeography of ChHV5 in Sabah. We also aim to provide evidence of ChHV5 infection through histopathological examinations. A total of 115 Green turtles were sampled from Mabul Island, Sabah. We observed three Green turtles that exhibited FP tumours and were positive for ChHV5. In addition, six clinically healthy turtles (with no presence of tumours) were also positive for the virus based on Polymerase Chain Reaction of three viral genes (Capsid protein gene UL18, Glycoprotein H gene UL22, and Glycoprotein B gene UL27). The prevalence of the ChHV5 was 5.22% in asymptomatic Green turtles. Epidermal intranuclear inclusions were identified in tumour lesions upon histopathological examination. In addition, phylogenetic analyses of the UL18, UL22, UL27, and UL30 gene sequences showed a worldwide distribution of the ChHV5 strain with no clear distinction based on geographical location suggesting an interoceanic connection and movement of the sea turtles. Thus, the emergence of ChHV5 in Green turtles in the waters of Sabah could indicate a possible threat to sea turtle populations in the future and requires further monitoring of the populations along the Bornean coast.
  20. Anwar A, Chi Fung L, Anwar A, Jagadish P, Numan A, Khalid M, et al.
    Pathogens, 2019 Nov 22;8(4).
    PMID: 31766722 DOI: 10.3390/pathogens8040260
    T4 genotype Acanthamoeba are opportunistic pathogens that cause two types of infections, including vision-threatening Acanthamoeba keratitis (AK) and a fatal brain infection known as granulomatous amoebic encephalitis (GAE). Due to the existence of ineffective treatments against Acanthamoeba, it has become a potential threat to all contact lens users and immunocompromised patients. Metal nanoparticles have been proven to have various antimicrobial properties against bacteria, fungi, and parasites. Previously, different types of cobalt nanoparticles showed some promise as anti-acanthamoebic agents. In this study, the objectives were to synthesize and characterize the size, morphology, and crystalline structure of cobalt phosphate nanoparticles, as well as to determine the effects of different sizes of cobalt metal-based nanoparticles against A. castellanii. Cobalt phosphate octahydrate (CHP), Co3(PO4)2•8H2O, was synthesized by ultrasonication using a horn sonicator, then three different sizes of cobalt phosphates Co3(PO4)2 were produced through calcination of Co3(PO4)2•8H2O at 200 °C, 400 °C and 600 °C (CP2, CP4, CP6). These three types of cobalt phosphate nanoparticles were characterized using a field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. Next, the synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. The overall results showed that 1.30 ± 0.70 µm of CHP microflakes demonstrated the best anti-acanthemoebic effects at 100 µg/mL, followed by 612.50 ± 165.94 nm large CP6 nanograins. However, amongst the three tested cobalt phosphates, Co3(PO4)2, the smaller nanoparticles had stronger antiamoebic effects against A. castellanii. During cell cytotoxicity analysis, CHP exhibited only 15% cytotoxicity against HeLa cells, whereas CP6 caused 46% (the highest) cell cytotoxicity at the highest concentration, respectively. Moreover, the composition and morphology of nanoparticles is suggested to be important in determining their anti-acathamoebic effects. However, the molecular mechanisms of cobalt phosphate nanoparticles are still unidentified. Nevertheless, the results suggested that cobalt phosphate nanoparticles hold potential for development of nanodrugs against Acanthamoeba.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links