Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Adebayo IA, Arsad H, Samian MR
    Pharmacogn Mag, 2018 04 10;14(54):191-194.
    PMID: 29720830 DOI: 10.4103/pm.pm_212_17
    Background: Academic reports have confirmed Moringa oleifera leaves to possess significant antioxidant capacities; however, such studies are unavailable for its ripe seeds even though they are more desirous for consumption due to their sweet taste.

    Objective: In this study, we investigated antioxidant capacities of four polar extracts (crude water, ethanol, butanol, and aqueous residue) from the plant's ripe seeds.

    Materials and Methods: Phytochemicals were extracted from the ripe seeds of M. oleifera using ethanol and water solvents at initial stage. Butanol and aqueous residue were then subsequently fractioned out from the ethanol extract. Phenolic and flavonoid contents of the polar extracts were determined. Then, their antioxidant capacities were quantified by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Finally, gas chromatography-mass spectrometry (GC-MS) analyses of the extracts were performed.

    Results: DPPH and ABTS tests showed that the polar extracts possess significant antioxidant capacities that ranged from 29 to 35.408 μM Trolox equivalence antioxidant capacity (TEAC)/mg sample and 7 to 29 μM TEAC/mg sample, respectively. The antioxidant capacities of the extracts corresponded to their phenolic and flavonoid contents that varied from 13.61 to 20.42 mg gallic acid equivalence/g sample and 0.58 to 9.81 mg quercetin equivalence/g sample, respectively. Finally, GC-MS analyses revealed antimicrobial phenolic compounds, 4-hydroxybenzaldehyde in crude water extract and 4-hydroxybenzene acetonitrile in the ethanol and butanol extracts, and aqueous residue.

    Conclusion: Our results established that M. oleifera ripe seeds have significant antioxidant activity which may be due to its phenolic and nonphenolic compounds content.

    SUMMARY: In this study, polar phytochemicals from ripe seeds of Moringa oleifera were extracted by water and ethanol solvents, and butanol extract and aqueous residue were subsequently fractioned out of the ethanol extract. The four polar extracts were shown to have significant antioxidant capacities which correspond to their phenolic contents. Further, antimicrobial compounds 4-hydroxybenzaldehyde and 4-hydroxybenzene acetonitrile were identified in the extracts by gas chromatography-mass spectrometry analyses. Abbreviations used: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH: 2,2-diphenyl-1-picrylhydrazyl; TEAC: Trolox equivalence antioxidant capacity; QE: Quercetin equivalence; GAE: Gallic acid equivalence; GC-MS: Gas chromatography-mass spectrometry.

  2. Afzal S, Batool M, Ch BA, Ahmad A, Uzair M, Afzal K
    Pharmacogn Mag, 2017 Jul;13(Suppl 2):S262-S265.
    PMID: 28808390 DOI: 10.4103/pm.pm_398_16
    AIMS: The study is conducted to evaluate the immunomodulatory, cytotoxicity, and antioxidant potential of Ziziphus mauritiana (Rhamnaceae). Phytochemical analysis of Z. mauritiana revealed the presence of alkaloids, anthraquinone glycoside, cardiac glycoside, saponin, tannin, and flavonoids.

    METHODOLOGY: The cytotoxicity of the plant Z. mauritiana was evaluated by brine shrimp lethality test. Antioxidant parameters such as superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) levels were calculated in the plasma of rats after chronic administration of 400 mg/kg of Z. mauritiana for 6 weeks.

    RESULTS: The dichloromethane extract of the plant exhibited significant immunomodulatory activity, with inhibitory concentration 50% of 55.43 ± 7.9. The dichloromethane extracts of the plant showed 70% mortality at concentration 1000 μg/ml. SOD and T-AOC levels were increased while MDA level in the plasma was reduced in the plasma of rats treated with dichloromethane Z. mauritiana.

    CONCLUSION: This can be deduced that the root of Z. mauritiana has immunomodulatory, cytotoxic, and antioxidant potential.

    SUMMARY: Roots of Z. mauritiana was exhibited immunomodulator, cytotoxic and antioxidant activitiesZ. mauritiana showed potential antioxidant activity in rats Abbreviations used: SOD: Superoxide dismutase; T-AOC: Total antioxidant capacity; MDA: Malondialdehyde; ZMRD: Z. mauritiana root extract of dichloromethane fraction; LD50: Z. mauritiana root extract of methanol fraction ZMRM, lethal dose 50.

  3. Ahmed F, Urooj A, Karim AA
    Pharmacogn Mag, 2013 Apr;9(34):130-4.
    PMID: 23772108 DOI: 10.4103/0973-1296.111265
    BACKGROUND: Ficus racemosa Linn. (Moraceae) bark is a rich source of phenolic compounds known to possess potential antioxidant activity offering numerous health benefits.

    MATERIALS AND METHODS: The present study evaluated the protective effects of sequential acetone extract of Ficus racemosa bark at two doses (FR250; 250 mg kg(-1) and FR500; 500 mg kg(-1) p.o.) against doxorubicin-induced renal and testicular toxicity in rats.

    RESULTS: Doxorubicin administration resulted in significant decrease (P ≤ 0.05) in total protein and glutathione concentrations, while increased (P ≤ 0.05) serum urea, creatinine and thiobarbituric acid reactive substances (TBARS). Extract pretreatment restored biochemical parameters toward normalization. FR250 and FR500 decreased serum creatinine levels by 22.5% and 44%, while serum urea levels were decreased by 30.4% and 58.8%, respectively. Extract pretreatment (500 mg kg(-1)) decreased TBARS and increased glutathione levels in the kidney and testis to control levels. These observations were substantiated by histopathological studies, wherein normal renal and testicular architecture was restored in FR500 group.

    CONCLUSION: Doxorubicin exposure results in pronounced oxidative stress, and administration of F. racemosa stem bark extract offers significant renal and testicular protection by inhibiting lipidperoxidation-mediated through scavenging free radicals.

  4. Christapher PV, Parasuraman S, Raj PV, Mohammed Saghir SA, Asmawi MZ, Vikneswaran M
    Pharmacogn Mag, 2016 Jul;12(Suppl 4):S424-S430.
    PMID: 27761069
    To investigate the antihyperlipidemic, antioxidant, and cytotoxic effect of aqueous and methanol extract of leaves of Polygonum minus.
  5. De B, Bhandari K, Singla RK, Katakam P, Samanta T, Kushwaha DK, et al.
    Pharmacogn Mag, 2015 Oct;11(Suppl 4):S522-32.
    PMID: 27013789 DOI: 10.4103/0973-1296.172956
    Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported.
  6. Emeka PM, Badger-Emeka LI, Eneh CM, Khan TM
    Pharmacogn Mag, 2014 Apr;10(Suppl 2):S357-62.
    PMID: 24991115 DOI: 10.4103/0973-1296.133282
    The aim of the study was to investigate the effects of dietary combination of Nigella sativa seed and oil extracts with chloroquine (CQ), and how these combinations enhance CQ efficacy in mice infected with Plasmodium berghei and their survival rates.
  7. Fard MT, Arulselvan P, Karthivashan G, Adam SK, Fakurazi S
    Pharmacogn Mag, 2015 Oct;11(Suppl 4):S556-63.
    PMID: 27013794 DOI: 10.4103/0973-1296.172961
    Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits.
  8. Fong HY, Abd Malek SN, Yee HS, Karsani SA
    Pharmacogn Mag, 2017 Oct-Dec;13(52):607-612.
    PMID: 29200721 DOI: 10.4103/pm.pm_53_17
    Background: Cervical cancer has become one of the most common cancers in women and currently available treatment options for cervical cancer are very limited. Naturally occurring chalcones and its derivatives have been studied extensively as a potential anticancer agent in different types of cancer and helichrysetin is naturally occurring chalcone that possess potent antiproliferative activity toward human cancer cells.

    Materials and Methods: Inhibitory activity of helichrysetin was evaluated at different concentrations. Ability of helichrysetin to induce apoptosis and its relation with c-Jun N-terminal kinase (JNK)-mediated mechanism of apoptosis was assessed using flow cytometry and Western blotting.

    Results: Helichrysetin inhibited Ca Ski cells at half maximal inhibitory concentration 30.62 ± 0.38 μM. This compound has the ability to induce DNA damage, mitochondrial membrane disruption, and loss of cell membrane integrity. We have shown that apoptosis was induced through the activation of JNK-mediated apoptosis by DNA damage in the cells then triggering p53-downstream apoptotic pathway with increased expression of pro-apoptotic proteins, Bax and caspase 3, and suppression of Bcl-2 anti-apoptotic protein. DNA damage in the cells also caused phosphorylation of protein ataxia-telangiectasia mutated, an activator of DNA damage response.

    Conclusion: We conclude that helichrysetin can inhibit Ca Ski cells through DNA damage-induced JNK-mediated apoptotic pathway highlighting the potential of this compound as anticancer agent for cervical cancer.

    SUMMARY: Helichrysetin induced DNA damage in Ca Ski cellsDNA damage caused JNK-mediated phosphorylation of p53 resulting in p53-mediated apoptosisHelichrysetin is a potential DNA damage inducing agent through JNK activation to kill human cervical carcinoma cells. Abbreviations used: ATM: Ataxia-telangiectasia mutated, DAPI: 4',6-diamidino-2-phenylindole, DMSO: Dimethyl sulfoxide, FITC: Fluorescein isothiocyanate, IC50: Half maximal inhibitory concentration, JC1-5,5',6,6'-Tetrachloro: 1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide, JNK: c-Jun N-terminal kinase, MMP: Mitochondrial membrane potential, PBS: Phosphate-buffered saline, SRB: Sulforhodamine B, TUNEL: Terminal deoxynucleotidyl transferase dUTP nick labeling.
  9. Goh SH, Alitheen NB, Yusoff FM, Yap SK, Loh SP
    Pharmacogn Mag, 2014 Jan;10(37):1-8.
    PMID: 24696543 DOI: 10.4103/0973-1296.126650
    Marine brown diatom Chaetoceros calcitrans and green microalga Nannochloropsis oculata are beneficial materials for various applications in the food, nutraceutical, pharmaceutical and cosmeceutical industries.
  10. Gothai S, Muniandy K, Zarin MA, Sean TW, Kumar SS, Munusamy MA, et al.
    Pharmacogn Mag, 2017 Oct;13(Suppl 3):S462-S469.
    PMID: 29142400 DOI: 10.4103/pm.pm_368_16
    Background: Moringa oleifera (MO), commonly known as the drumstick tree, is used in folklore medicine for the treatment of skin disease.

    Objective: The objective of this study is to evaluate the ethyl acetate (EtOAc) fraction of MO leaves for in vitro antibacterial, antioxidant, and wound healing activities and conduct gas chromatography-mass spectrometry (GC-MS) analysis.

    Materials and Methods: Antibacterial activity was evaluated against six Gram-positive bacteria and 10 Gram-negative bacteria by disc diffusion method. Free radical scavenging activity was assessed by 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical hydrogen peroxide scavenging and total phenolic content (TPC). Wound healing efficiency was studied using cell viability, proliferation, and scratch assays in diabetic human dermal fibroblast (HDF-D) cells.

    Results: The EtOAc fraction showed moderate activity against all bacterial strains tested, and the maximum inhibition zone was observed against Streptococcus pyogenes (30 mm in diameter). The fraction showed higher sensitivity to Gram-positive strains than Gram-negative strains. In the quantitative analysis of antioxidant content, the EtOAc fraction was found to have a TPC of 65.81 ± 0.01. The DPPH scavenging activity and the hydrogen peroxide assay were correlated with the TPC value, with IC50 values of 18.21 ± 0.06 and 59.22 ± 0.04, respectively. The wound healing experiment revealed a significant enhancement of cell proliferation and migration of HDF-D cells. GC-MS analysis confirmed the presence of 17 bioactive constituents that may be the principal factors in the significant antibacterial, antioxidant, and wound healing activity.

    Conclusion: The EtOAc fraction of MO leaves possesses remarkable wound healing properties, which can be attributed to the antibacterial and antioxidant activities of the fraction.

    SUMMARY: Moringa oleifera (MO) leaf ethyl acetate (EtOAc) fraction possesses antibacterial activities toward Gram-positive bacteria such as Streptococcus pyogenes, Streptococcus faecalis, Bacillus subtilis, Bacillus cereus and Staphylococcus aureus, and Gram-negative bacteria such as Proteus mirabilis and Salmonella typhimuriumMO leaf EtOAc fraction contained the phenolic content of 65.81 ± 0.01 and flavonoid content of 37.1 ± 0.03, respectively. In addition, the fraction contained 17 bioactive constituents associated with the antibacterial, antioxidant, and wound healing properties that were identified using gas chromatography-mass spectrometry analysisMO leaf EtOAc fraction supports wound closure rate about 80% for treatments when compared with control group. Abbreviations used: MO: Moringa oleifera; EtOAc: Ethyl acetate; GC-MS: Gas Chromatography-Mass Spectrometry; HDF-D: Diabetic Human Dermal Fibroblast cells.

  11. Gundamaraju R, Vemuri RC, Singla RK, Manikam R, Rao AR, Sekaran SD
    Pharmacogn Mag, 2014 Aug;10(Suppl 3):S557-62.
    PMID: 25298674 DOI: 10.4103/0973-1296.139782
    The myocardium is generally injured in the case of reperfusion injury and arterial damage is caused by hypertension. In reference to these statements, the present study was focused. Cardiac glycosides were said to have protective effects against myocardial infarction and hypertension. Strophanthus hispidus was thus incorporated in the study.
  12. Hu Z, Chang X, Pan Q, Gu K, Okechukwu PN
    Pharmacogn Mag, 2017 Oct-Dec;13(52):559-565.
    PMID: 29200713 DOI: 10.4103/pm.pm_135_17
    Background: Camel milk has been reportedly used to treat dropsy, jaundice, tuberculosis, and diabetes while camel urine is used to treat diarrhea and cancer. However, there is no scientific evidence on the antiulcer activity of camel milk and urine. Thus, the present is designed to investigate the gastroprotective and ulcer healing effect of camel milk and urine on experimentally induced gastric ulcer models in rats.

    Materials and Methods: The gastroprotective effect was investigated in HCl/EtOH, water-restraint stress (WRS) and non-steroidal anti-inflammatory drugs (indomethacin)-induced ulcer models while ulcer healing activity was investigated in indomethacin-induced ulcer model. Cimetidine (100 mg/kg) was used as a standard antiulcer drug.

    Results: Acute toxicity study done up to a dosage of 10 ml/kg of camel milk and urine showed no signs of toxicity and mortality among the rats, indicating the present dosage of 5 ml/kg is safe to be administered to the rats. In the HCl/EtOH model, oral administration of cimetidine (100 mg/kg), camel urine (5 ml/kg), and camel milk (5 ml/kg) significantly (P < 0.05) inhibited gastric lesions by 83.7, 60.5 and 100%, respectively. In the WRS-induced model, cimetidine, and camel urine showed an ulcer inhibition of 100% while camel milk showed an inhibition of 50%. Similarly, in the indomethacin-induced ulcer model, cimetidine, camel milk, and urine showed an ulcer inhibition of 100, 33.3, and 66.7%, respectively. In addition, camel milk and urine also showed a significant (P < 0.05) ulcer healing effect of 100% in indomethacin-induced ulcer model, with no ulcers observed as compared to that of cimetidine, which offers a healing effect of 60.5%.

    Conclusion: The antiulcer activity of camel milk and urine may be attributed to its cytoprotective mechanism and antioxidant properties.

    SUMMARY: Acute toxicity findings revealed the dosage of 10 ml/kg of camel milk and urine seems no toxic and indicating the dosage of 5 ml/kg is safe to be administered to the ratsOral administration of cimetidine (100 mg/kg), camel urine (5 ml/kg), and camel milk (5 ml/kg) significantly inhibited gastric lesions by 83.7, 60.5 and 100% in the HCl/EtOH experimental modelThe results of this investigation have proven that camel milk and urine showed strong ulcer healing effect in indomethacin-induced gastric damage. Abbreviations used: NSAIDs: Non-steroidal anti-inflammatory drugs, UI: Ulcer index, ANOVA: One-way analysis of variance, WRS: Water-restraint stress, ROS: Reactive oxygen species.
  13. Husni Z, Ismail S, Zulkiffli MH, Afandi A, Haron M
    Pharmacogn Mag, 2017 Jul;13(Suppl 2):S236-S243.
    PMID: 28808386 DOI: 10.4103/pm.pm_299_16
    BACKGROUND: Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated.

    OBJECTIVE: In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity.

    MATERIALS AND METHODS: Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations.

    RESULTS: All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively.

    CONCLUSION: In the present study, we have proved the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes.

    SUMMARY: This study documented the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5'-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity.

  14. Khoo ZY, Teh CC, Rao NK, Chin JH
    Pharmacogn Mag, 2010 Apr;6(22):120-4.
    PMID: 20668578 DOI: 10.4103/0973-1296.62899
    The objective of the present study was to evaluate the toxic effect of Averrhoa carambola (star fruit) juice at different storage conditions in Sprague Dawley (SD) rats. Twenty female rats weighing 180 +/- 20 g were randomly assigned into four groups with five rats per group (n = 5). First group served as the control group, fed with distilled water (vehicle). Second, third and fourth groups were orally treated with juice of A. carambola stored for 0, 1 and 3 h respectively for 14 days. Cage-side observations were done daily after each treatment. Body weight, food consumption and water intake were recorded on day-0, day-3, day-7 and day-14. All rats were fasted overnight prior to blood collection through cardiac puncture on day-15. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea and creatinine in blood serum were measured. Data were analyzed using Dunnett's test. From the results obtained, there was no lethality found and LD(50) could not be determined. Increment of ALT levels (P<0.05) was reported in those rats treated with A. carambola juice stored for 3 h. On the basis of these results, we can conclude that A. carambola juice stored for 0 hand 1 h are safe to be consumed. However, juice stored for 3 h exerts toxic effect on rat liver at hepatocellular level.
  15. Kingsley B, Kayarohanam S, Brindha P, Subramoniam A
    Pharmacogn Mag, 2014 Apr;10(Suppl 2):S283-7.
    PMID: 24991104 DOI: 10.4103/0973-1296.133277
    Acacia farnesiana is a medicinal plant that grows throughout tropical parts of Indian subcontinent, particularly in sandy soils of river beds in Northern India. The objective of the present study was to evaluate the anti-hyperglycemic activity of the extracts using glucose tolerance test. Isolation of an active fraction (AF) from the active extract (water extract) using alcohol precipitation and to get insight to the mechanism of action of the AF of A. farnesiana.
  16. Lai HY, Lim YY, Kim KH
    Pharmacogn Mag, 2017 2 22;13(49):31-37.
    PMID: 28216880 DOI: 10.4103/0973-1296.197659
    BACKGROUND: Blechnum orientale Linn. (Blechnaceae), a fern, is traditionally used in the treatment of various ailments, such as skin diseases, stomach pain, urinary bladder complaints, and also as a female contraceptive. Previously, we reported a strong radical scavenging activity, antibacterial activity and cytotoxicity against HT29 colon cancer cells by aqueous extract of B. orientale.

    OBJECTIVE: In this study, we attempted to isolate and identify the active compound from the aqueous extract of B. orientale.

    MATERIALS AND METHODS: Aqueous extract of B. orientale was subjected to repeated MCI gel chromatography, Sephadex-LH-20, Chromatorex C18 and semi-preparative high performance liquid chromatography and was characterized using nuclear magnetic resonance and electrospray ionization mass-spectrometry spectroscopic methods. Antioxidant activity was determined using 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay. Antibacterial assays were conducted using disc diffusion whereas the minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined using the broth microdilution assay. Cytotoxicity was assessed using thiazolylblue tetrazoliumbromide.

    RESULTS: A polymeric proanthocyanidin consisting of 2-12 epicatechin extension units and epigallocathecin terminal units linked at C4-C8 was elucidated. Bioactivity studies showed strong radical scavenging activity (IC50 = 5.6 ± 0.1 µg/mL), antibacterial activity (MIC = 31.3-62.5 µg/mL) against five gram-positive bacteria and selective cytotoxicity against HT29 colon cancer cells (IC50 = 7.0 ± 0.3 µg/mL).

    CONCLUSION: According to our results, the proanthocyanidin of B. orientale demonstrated its potential as a natural source of antioxidant with antibacterial and anti-cancer properties.

    SUMMARY: A bioactive proanthocyanidin was isolated from the aqueous extract of medicinal fern Blechnum orientale Linn and the structure was elucidated using NMR and ESI-MS spectral studies.The proanthocyanidin compound possessed strong radical scavenging activity (IC50 5.6 ± 0.1 µg/mL)The proanthocyaniding compound showed bactericidal activity against five gram-positive bacteria inclusive of MRSA (minimum inhibitory concentration, MIC and minimum bactericidal concentration, MBC 31.3-62.5 µg/mL).The proanthocyanidin compound is strongly cytotoxic towards cancer cells HT29 (IC50 7.0 ± 0.3 µg/mL), HepG2 (IC50 16 µg/mL) and HCT116 (IC50 20 µg/mL) while weakly cytotoxic towards the non-malignant Chang cells (IC50 48 µg/mL). Abbreviation used: CC: Column chromatography, DP: degree of polymerization, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ESI-MS: electronsprayionisation mass-spectrometry, MBC: Minimum bactericidal concentration, MIC: Minimum inhibitory concentration, MTT: Thiazolyl Blue Tetrazolium Bromide, MRSA: methicillin-resistant Staphylococcus aureus, NMR: nuclear magnetic resonance, TLC: thin layer chromatography, PD: prodelphinidin.

  17. Manaharan T, Thirugnanasampandan R, Jayakumar R, Kanthimathi MS, Ramya G, Ramnath MG
    Pharmacogn Mag, 2016 May;12(Suppl 3):S327-31.
    PMID: 27563220 DOI: 10.4103/0973-1296.185738
    Essential oil of Ocimum sanctum Linn. exhibited various pharmacological activities including antifungal and antimicrobial activities. In this study, we analyzed the anticancer and apoptosis mechanisms of Ocimum sanctum essential oil (OSEO).
  18. Nakasha JJ, Sinniah UR, Kemat N, Mallappa KS
    Pharmacogn Mag, 2016 Jul;12(Suppl 4):S460-S464.
    PMID: 27761075
    BACKGROUND: Chlorophytum borivilianum is an industrially valued medicinal crop. Propagation through seeds is not feasible because of low germination percentage and long dormancy period. Therefore, callus culture and plant regeneration can be an alternative to improve this crop production. Also, callus can serve as an alternative source of bioactive compounds.

    OBJECTIVE: To evaluate the effect of different phytohormones on callus induction, subculture cycle, and regeneration studies of callus in C. borivilianum.

    MATERIALS AND METHODS: Young shoot buds of C. borivilianum were inoculated on Murashige and Skoog medium fortified with 3% sucrose and different concentrations (0, 1, 5, 10, and 15 mg/L) of either naphthalene acetic acid or 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid and callus induction was evaluated up to four subcultures cycles. Shoot regeneration from callus was studied on Murashige and Skoog media fortified with 6-benzylaminopurine andkinetin or thidiazuron at varied levels (0, 0.5, 1, 2, and 3 mg/L). Microshoots were rooted on Murashige and Skoog media supplemented with 1.0 mg/L indole-3-butyric acid and plantlets were acclimatized before transferred to the natural conditions.

    RESULTS: Callus induction was better evidenced on Murashige and Skoog media containing 5 mg/L 2,4-dichlorophenoxyacetic acid up to fourth subculture. Callus differentiated into shoots on Murashige and Skoog media fortified with 6-benzylaminopurine or kinetin, whereas thidiazuron completely failed to regenerate shoots. Furthermore, microshoots rooted on 1.0 mg/L indole-3-butyric acid containing Murashige and Skoog media. The rooted plantlets were successfully acclimatized and established in soil with 88.3% survivability.

    CONCLUSION: The type of auxins played an important role in inducing callus tissue from shoot bud explants of Safed musli. In future, this in vitro protocol could benefit in crop improvement programs and serve as a new source of bioactive compounds from Safed musli callus tissue for various therapeutic applications.

    SUMMARY: Explants de-differentiated to form callus on Murashige and Skoog media containing 5 mg/L 2,4-D up to fourth subculture.Callus re-differentiated into shoots on Murashige and Skoog media fortified with 0.5 mg/L BAP.In vitro rooting of shoots was achieved on 1.0 mg/L IBA containing Murashige and Skoog media.The rooted plantlets were successfully acclimatized and established in soil with 88.3% survivability. Abbreviations used: MS: Murashige and Skoog, NAA: naphthalene acetic acid, 2,4-D: 2,4-dichlorophenoxyacetic acid, IAA: indole-3-acetic acid, BAP: 6-benzylaminopurine, Kn: Kinetin, TDZ: thidiazuron, IBA: indole-3-butyric acid, RCBD: Randomized Complete Block Design, DMRT: Duncan's Multiple Range Test.

  19. Narayanaswamy R, Isha A, Wai LK, Ismail IS
    Pharmacogn Mag, 2016 Jan;12(Suppl 1):S21-6.
    PMID: 27041853 DOI: 10.4103/0973-1296.176111
    Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity.
  20. Narayanaswamy R, Wai LK, Esa NM
    Pharmacogn Mag, 2017 Oct;13(Suppl 3):S512-S518.
    PMID: 29142407 DOI: 10.4103/pm.pm_195_16
    Background: The phytoconstituents phytic acid and 4-hydroxyisoleucine have been reported to posses various biological properties.

    Objective: This prompted us to carry out the docking study on these two ligands (phytic acid & 4-hydroxyisoleucine) against eleven targeted enzymes.

    Materials and Methods: Phytic acid & 4-hydroxyisoleucine were evaluated on the docking behaviour of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), tyrosinase, human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), xanthine oxidase (XO), squalene synthase (SQS), nitric oxide synthase (NOS), human aldose reductase (HAR) and lipoxygenase (LOX) using Discovery Studio Version 3.1 (except for LOX, where Autodock 4.2 tool was used).

    Results: Docking and binding free energy analysis revealed that phytic acid exhibited the maximum binding energy for four target enzymes such as COX-2, mPGES-2, tyrosinase and HNE. Interestingly, we found that 4-hydroxyisoleucine has the potential to dock and bind with all of the eleven targeted enzymes.

    Conclusion: This present study has paved a new insight in understanding 4-hydroxyisoleucine as potential inhibitor against COX-2, mPGES-2, tyrosinase, HNE, MMP 2, MMP 9, XO, SQS, NOS, HAR and LOX.

    SUMMARY: 4-hydroxyisoleucine has the potential to dock and bind with all 11targeted enzymes such as (cyclooxygenase-2 [COX-2], microsomal prostaglandin E synthase-2 [mPGES-2], tyrosinase, human neutrophil elastase [HNE], matrix metalloproteinase [MMP-2 and -9], xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase)Moreover, docking studies and binding free energy calculations revealed that phytic acid exhibited the maximum binding energy for four target enzymes such as COX-2, mPGES-2, tyrosinase, and HNE; however, for other six target enzymes, it fails to dock. Abbreviations used: COX-2: Cyclooxygenase-2, mPGES-2: Microsomal prostaglandin E synthase-2, HNE: Human neutrophil elastase, MMP-2 and -9: Matrix metalloproteinase-2 and -9, XO: Xanthine oxidase, SQS: Squalene synthase, NOS: Nitric oxide synthase, HAR: Human aldose reductase, LOX: Lipoxygenase, ADME: Absorption, distribution, metabolism, and excretion, TOPKAT: Toxicity Prediction by Computer-assisted Technology.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links