Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Yeap JS, Tan CH, Yong KT, Lim KH, Lim SH, Low YY, et al.
    Phytochemistry, 2020 Aug;176:112391.
    PMID: 32387883 DOI: 10.1016/j.phytochem.2020.112391
    Fourteen previously undescribed alkaloids comprising two N-1-hydroxymethylmacroline alkaloids, one talpinine-type oxindole acetal, a pair of equilibrating talpinine-type oxindole hemiacetals, eight oxidized derivatives of sarpagine- and akuammiline-type indole alkaloids, in addition to alstochalotine a diastereomer of gelsochalotine recently isolated from Gelsemium elegans, were isolated from the leaf and stem-bark extracts of Alstonia penangiana. The structures and relative configurations of these alkaloids were established using NMR, MS, and in one instance, confirmed by X-ray diffraction analysis. An NMR-based method is described as a useful chemotaxonomic tool for differentiating between A. penangiana and A. macrophylla. Several of the alkaloids isolated showed appreciable growth inhibitory effects when tested against a number of human cancer cell lines.
  2. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
  3. Wiart C, Martin MT, Awang K, Hue N, Serani L, Laprévote O, et al.
    Phytochemistry, 2001 Oct;58(4):653-6.
    PMID: 11576617
    A new sesquiterpene, scodopin, and a mixture of three tryptamine-type alkaloids, scorodocarpines A-C, were isolated from the fruits of Scorodocarpus borneensis, together with a known hemisynthetic sesquiterpene, cadalene-beta-carboxylic acid, which was isolated from the bark. The structures of the new compounds were elucidated by interpretation of spectral data, especially tandem mass spectrometry for the alkaloid mixture.
  4. Wei W, Jiang N, Mei YN, Chu YL, Ge HM, Song YC, et al.
    Phytochemistry, 2014 Apr;100:103-9.
    PMID: 24529576 DOI: 10.1016/j.phytochem.2014.01.003
    In searching for symbionts derived from bioactive natural products, six sulfureous diketopiperazines designated as lasiodiplines A-F (1-6) were characterized from the culture of Lasiodiplodia pseudotheobromae F2, previously residing in the apparently normal flower of Illigera rhodantha (Hernandiaceae). Identification of structures was accomplished by a combination of spectroscopic and computational approaches, in conjunction with the low-temperature (100K) single-crystal X-ray diffraction with Cu Kα radiation. Lasiodipline E (5) was demonstrated to be antibacterial against the clinical strains Streptococcus sp., Bacteroides vulgates, Peptostreptococcus sp. and Veillonella parvula, respectively, with an minimum inhibitory concentration (MIC) range of 0.12-0.25 μg/mL. In addition, compounds 4 and 6 exemplify two unusual architectures of natural cyclodipeptides, signifying the unique biochemical characteristics of the producing fungus.
  5. Wee SL, Tan SB, Jürgens A
    Phytochemistry, 2018 Sep;153:120-128.
    PMID: 29906658 DOI: 10.1016/j.phytochem.2018.06.005
    The plants of the enigmatic genus Rafflesia are well known for their gigantic flowers and their floral features such as pungent floral scent and vivid dark color, which mimics the food/brood sites of carrion. However, information on the pollination biology of this plant group remains limited and mostly anecdotal. In the present paper, we studied the floral volatiles of R. cantleyi Solms-Laubach and their role in pollinator attraction. To achieve these aims, the floral scent was collected in situ in the field using a dynamic headspace method followed by chemical analysis via GC-MS. The olfactory preferences of pollinators to the identified chemical compounds, were tested singly and in blends, in flight tunnel bioassays and compared with responses to headspace floral extracts. In addition, flower-visiting calliphorid flies and the local carrion fly community were sampled and identified. Five species of calliphorid flies (subfamilies of Chrysomyinae and Calliphorinae), all females, were found on the flowers, whereas nine species were found in the traps that were baited with tainted meat in the surrounding habitat. However, only flower visitors of one blow fly species, Chrysomya chani Kurahashi, were observed to carry R. cantleyi pollen after visiting male flowers. The floral volatiles emitted by male flowers in full bloom were dominated by two sulphur-containing compounds, dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). These were accompanied by other minor compounds such as benzenoids (4), monoterpenoids (4), trace amounts of aliphatic compounds (1), and sesquiterpenes (1). In flight-tunnel bioassays, a female-specific positive response of C. chani flies to individual DMDS, DMTS, and a blend of DMDS and DMTS was evident. Our findings suggest that R. cantleyi biochemically mimics carrion and that relative ratio of oligosulfides in the floral scent play a key role in sex-biased pollinator specialization, attracting only female C. chani carrion flies to the flowers.
  6. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
  7. Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M
    Phytochemistry, 2008 Oct;69(13):2490-4.
    PMID: 18718619 DOI: 10.1016/j.phytochem.2008.06.015
    During our studies on Malaysian Laurencia species, brominated metabolites, tiomanene, acetylmajapolene B, and acetylmajapolene A were isolated from an unrecorded species collected at Pulau Tioman, Pahang along with known majapolene B and majapolene A. Acetylmajapolene A was a mixture of diastereomers as in the case of majapolene A. Tiomanene may be a plausible precursor for acetylmajapolenes B and A. In addition, three known halogenated sesquiterpenes and two known halogenated C(15) acetogenins were found from other two unrecorded species collected at Pulau Karah, Terengganu and Pulau Nyireh, Terengganu, respectively. Some of these halogenated metabolites showed moderate antibacterial activity against some marine bacteria.
  8. Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M
    Phytochemistry, 2001 Sep;58(2):291-7.
    PMID: 11551553
    Two halogenated C15 acetogenins, named lembyne-A and lembyne-B, have been isolated from an unrecorded Laurencia species collected off the Malaysian waters. Their structures were deduced on the basis of spectroscopic evidence. Previously known elatol and iso-obtusol showed potent antibacterial activity against some marine bacteria.
  9. Tang SY, Tan CH, Sim KS, Yong KT, Lim KH, Low YY, et al.
    Phytochemistry, 2023 Apr;208:113587.
    PMID: 36646163 DOI: 10.1016/j.phytochem.2023.113587
    Eight undescribed iboga alkaloids, polyneurines A-H, were isolated from the bark of Tabernaemontana polyneura. The structures of these alkaloids were established by interpretation of the MS and NMR data, while the configurations were determined using GIAO NMR calculations and DP4+ probability analysis, TDDFT-ECD method, or X-ray diffraction analysis. Polyneurine A possesses a γ-lactone unit embedded within the iboga skeleton, while polyneurines D and E incorporate a formylmethyl moiety at C-3 of the iboga skeleton. Biosynthetic pathways towards the formation of polyneurines A, C, D, and E were proposed.
  10. Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD
    Phytochemistry, 2018 Oct;154:94-105.
    PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002
    Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
  11. Tan SJ, Lim KH, Subramaniam G, Kam TS
    Phytochemistry, 2013 Jan;85:194-202.
    PMID: 22995929 DOI: 10.1016/j.phytochem.2012.08.016
    Nine bisindole alkaloids, comprising four belonging to the macroline-sarpagine group, and five belonging to the macroline-pleiocarpamine group, were isolated from the stem-bark extracts of Alstonia angustifolia (Apocynacea). Their structures were established using NMR and MS analyses.
  12. Taher M, Idris MS, Ahmad F, Arbain D
    Phytochemistry, 2005 Mar;66(6):723-6.
    PMID: 15771897
    A polyisoprenylated ketone named enervosanone has been isolated from the stem bark of Calophyllum enervosum together with three known compounds, cambogin, osajaxanthone and epicatechin. Their structures were determined by spectroscopic analysis. The antimicrobial evaluations of the isolated compounds were also reported.
  13. Soh CP, Ali ZM, Lazan H
    Phytochemistry, 2006 Feb;67(3):242-54.
    PMID: 16325871
    alpha-Galactosidase (EC 3.2.1.22) from ripe papaya (Carica papaya L.) fruit was fractionated by a combination of ion exchange and gel filtration chromatography into three forms, viz., alpha-galactosidase 1, 2 and 3. The predominant isoform, alpha-gal 2, was probably a tetramer with a native molecular mass of about 170 kDa and 52 kDa-sized subunits and an estimated pI of 7.3. The subunit's N-terminal amino acid sequence shared high identity (97%) with the deduced sequence of a papaya cDNA clone encoding a putative alpha-galactosidase PAG2 as well as with an Ajuga reptans L. GGT1 clone encoding a galactan: galactan galactosyltransferase (66%). During ripening, alpha-galactosidase activity increased concomitantly with firmness loss and this increase was largely ascribed to alpha-gal 2. The protein level of alpha-gal 2 as estimated by immunoblot was low in developing fruits and generally increased with ripening. alpha-Galactosidase 2 also had the ability to markedly catalyse increased pectin solubility and depolymerisation while the polymers were still structurally attached to the cell walls mimicking, in part, the changes that occur during ripening. The close correlation between texture changes, alpha-gal 2 activity and protein levels as well as capability to modify intact cell walls suggest that the enzyme might contribute to papaya fruit softening during ripening. The purported mechanism of alpha-gal 2 action as a softening enzyme was discussed in terms of its functional capacity as a glycanase or perhaps, as a transglycosylase.
  14. Sivasothy Y, Loo KY, Leong KH, Litaudon M, Awang K
    Phytochemistry, 2016 Feb;122:265-269.
    PMID: 26712615 DOI: 10.1016/j.phytochem.2015.12.007
    A dimeric acylphenol and a potent α-glucosidase inhibitor, giganteone D (IC50 5.05μM), was isolated and characterized from the bark of Myristica cinnamomea King. The bark also yielded an acylphenol with an unprecedented skeleton for which the name cinnamomeone A (IC50 358.80μM) was proposed. Their structures were established by means of NMR and MS spectrometric analyses. The Lineweaver-Burk plot of giganteone D indicated that it was a mixed-type inhibitor. This is the first report on the α-glucosidase inhibiting potential of acylphenols.
  15. Shadid KA, Shaari K, Abas F, Israf DA, Hamzah AS, Syakroni N, et al.
    Phytochemistry, 2007 Oct;68(20):2537-44.
    PMID: 17602714
    Phytochemical studies on the leaves and trunk bark of Garcinia cantleyana yielded five caged-xanthonoids including one tetra- and four tri-prenylated xanthones, cantleyanone A (1), 7-hydroxyforbesione (2) and cantleyanones B-D (4-6), as well as a simple xanthone, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (3). Eight other known compounds, deoxygaudichaudione A, gaudichaudione H, friedelin, garbogiol, macranthol, glutin-5-en-3beta-ol, and a mixture of sitosterol and stigmasterol were also isolated. Their structures were elucidated by means of spectroscopic data and comparison of their NMR data with literature values. Significant cytotoxicity against MDA-MB-231, CaOV-3, MCF-7 and HeLa cancer cell-lines was demonstrated by cantleyanones B-D, 7-hydroxyforbesione, deoxygaudichaudione A and macranthol, with IC(50) values ranging from 0.22 to 17.17 microg/ml.
  16. Salam S, Harneti D, Maharani R, Nurlelasari, Safari A, Hidayat AT, et al.
    Phytochemistry, 2021 Jul;187:112759.
    PMID: 33839518 DOI: 10.1016/j.phytochem.2021.112759
    Eleven undescribed triterpenoids (pentandrucines A to K) were isolated from the n-hexane extract of the stem bark of Chisocheton pentandrus (Blanco) Merr. These comprised ten undescribed dammarane-type triterpenoids and one undescribed apotirucallane-type triterpenoid. Additionally, two dammarane-type triterpenoids, four apotirucallane-type triterpenoids and two tirucallane-type triterpenoids were also isolated. The chemical structures of pentandrucine A-K, were fully elucidated using 1D and 2D-NMR, and high resolution MS. All of the compounds were evaluated for cytotoxic activity against MCF-7 breast cancer cells in vitro. Melianodiol proved to be the most active with an IC50 of 16.84 μM comparing favourably with Cisplatin (13.2 μM).
  17. Sabandar CW, Ahmat N, Jaafar FM, Sahidin I
    Phytochemistry, 2013 Jan;85:7-29.
    PMID: 23153517 DOI: 10.1016/j.phytochem.2012.10.009
    The genus Jatropha (Euphorbiaceae) comprises of about 170 species of woody trees, shrubs, subshrubs or herbs in the seasonally dry tropics of the Old and the New World. They are used in medicinal folklore to cure various diseases of 80% of the human population in Africa, Asia and Latin America. Species from this genus have been popular to cure stomachache, toothache, swelling, inflammation, leprosy, dysentery, dyscrasia, vertigo, anemia, diabetis, as well as to treat HIV and tumor, opthalmia, ringworm, ulcers, malaria, skin diseases, bronchitis, asthma and as an aphrodisiac. They are also employed as ornamental plants and energy crops. Cyclic peptides alkaloids, diterpenes and miscellaneous compounds have been reported from this genus. Extracts and pure compounds of plants from this genus are reported for cytotoxicity, tumor-promoting, antimicrobial, antiprotozoal, anticoagulant, immunomodulating, anti-inflammatory, antioxidant, protoscolicidal, insecticidal, molluscicidal, inhibition AChE and toxicity activities.
  18. Sabandar CW, Jalil J, Ahmat N, Aladdin NA
    Phytochemistry, 2017 Feb;134:6-25.
    PMID: 27889244 DOI: 10.1016/j.phytochem.2016.11.010
    The genus Dillenia is comprised of about 100 species of evergreen and deciduous trees or shrubs of disjunct distribution in the seasonal tropics of Madagascar through South and South East Asia, Malaysia, North Australia, and Fiji. Species from this genus have been widely used in medicinal folklore to treat cancers, wounds, jaundice, fever, cough, diabetes mellitus, and diarrhea as well as hair tonics. The plants of the genus also produce edible fruits and are cultivated as ornamental plants. Flavonoids, triterpenoids, and miscellaneous compounds have been identified in the genus. Their extracts and pure compounds have been reported for their antimicrobial, anti-inflammatory, cytotoxic, antidiabetes, antioxidant, antidiarrheal, and antiprotozoal activities. Mucilage from their fruits is used in drug formulations.
  19. Rahmani M, Susidarti RA, Ismail HB, Sukari MA, Hin TY, Lian GE, et al.
    Phytochemistry, 2003 Oct;64(4):873-7.
    PMID: 14559284
    In a continuation of our study of the Rutaceae, detailed chemical investigation on Micromelum minutum (Rutaceae) collected from Sepilok, Sabah, Malaysia gave four new coumarins. The structures of the coumarins have been fully characterised by spectroscopic methods as 3",4"-dihydrocapnolactone 1, 2',3'-epoxyisocapnolactone 2, 8-hydroxyisocapnolactone-2',3'-diol 3 and 8-hydroxy-3",4"-dihydrocapnolactone-2',3'-diol 4.
  20. Ngadni MA, Chong SL, Hazni H, Asib N, Ishak IH, Mohmad Misnan N, et al.
    Phytochemistry, 2024 Apr 09;222:114092.
    PMID: 38604323 DOI: 10.1016/j.phytochem.2024.114092
    Phytochemical study of the fruits of Chisocheton erythrocarpus (Hiern) allowed the identification of eight undescribed limonoids, namely erythrocarpines O - V (1-6, 7a and 7b), along with seven known compounds. The structures of these compounds were elucidated based on spectroscopic and HRMS data, along with electronic circular dichroism to configure the absolute configuration. Erythrocarpines O and P are γ-hydroxybutenolide analogs of mexicanolide-type limonoids while erythrocarpine Q - V are phragmalin-type limonoids possessing a 1,29-oxymethylene bridge with either benzoyl or cinnamoyl moiety in their structures. Mosquito larvicidal activity revealed that crude DCM extract of C. erythrocarpus possessed a good larvicidal effect against Aedes aegypti larvae in 48 h (LC50 = 153.0 ppm). Subsequent larvicidal activity of isolated compounds indicated that erythrocarpine G (10) and 14-deoxyxyloccensin K (11) were responsible for the enhanced larvicidal effect of the extract, reporting LC50 values of 18.55 ppm and 41.16 ppm, respectively. Moreover, residual activity testing of the crude DCM extract revealed that the duration of its larvicidal effects is up to 14 days, where it maintained a 98 % larval mortality throughout the test period, under laboratory conditions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links