Displaying publications 1 - 20 of 136 in total

Abstract:
Sort:
  1. Ismail SI, Ahmad Dahlan K, Abdullah S, Zulperi D
    Plant Dis, 2020 Aug 04.
    PMID: 32748717 DOI: 10.1094/PDIS-06-20-1267-PDN
    Guava (Psidium guajava L.) is an economically important fruit crop in Malaysia with annual production of 67,087 tons in 2018 (FAO 2018). In February 2019, fruit rot symptoms were observed postharvest on approximately 30% of guava cv. Lohan collected from a commercial orchard in the Rawang district (3°23'22.8"N 101°26'55.7"E) of Selangor province, Malaysia. Symptoms on the fruits appeared as small, circular brown spots (ranging 5 to 20 mm in diameter) that coalesced and rapidly expanded to cover the entire fruit. Severely infected fruits became soft and rotted. Ten diseased guava fruits were collected from the sampling location. Small pieces (5x5x5 mm) of symptomatic fruit tissues were excised from the lesion margin, surface-sterilized with 0.5% sodium hypochlorite (NaOCl) for 1 min, rinsed twice with sterile distilled water, plated on potato dextrose agar (PDA) and incubated at 25 °C for 5 days. A Scytalidium-like fungus was consistently isolated from symptomatic tissues on PDA after 4 days. For morphological identification, single-spore cultures were grown on PDA at 25 °C and a representative isolate LB1 was characterized further. The fungal colonies were initially white, powdery, and later turned grayish-black with the onset of sporulation. The mycelia were branched with septa, pigmented, and brown in color. Fungal colonies produced dark-brown arthroconidia with thick-walled, 0 to 1-septa, averaged 9 μm x 5 μm (n=20), and cylindrical to oblong in shape. For molecular identification, genomic DNA was extracted from fresh mycelium of isolate LB1 using DNeasy Plant Mini kit (Qiagen, Germantown, MD, USA). The internal transcribed spacer (ITS) region of rDNA and translation elongation factor 1-alpha (TEF1-α) gene were amplified using ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1-986R primer set (Carbone and Kohn 1999), respectively. Both ITS (954 bp) and TEF1-α (412 bp) sequences exhibited 100% identity to Neoscytalidium dimidiatum with GenBank accession numbers FM211432 and MK495414, respectively. The resulting sequences were deposited in GenBank (ITS: Accession no. MT565490; TEF1-α Accession no. MT572846). Based on the morphological and molecular data, the pathogen was identified as N. dimidiatum (Penz.) Crous & Slippers (Crous et al. 2006). A pathogenicity test was conducted on 5 healthy detached mature guava fruits cv. Lohan by wound-inoculating using a sterile needle and pipetting 10-µl of a conidial suspension (1 × 106 conidia/ml) of isolate LB1 to the wound. Five additional fruits were wounded and pipetted 10-µl sterile distilled water to serve as controls. Inoculated fruits were placed in sterilized plastic container and incubated at 25 ± 1 °C, 90% relative humidity with a photoperiod of 12 h, and the experiment was conducted twice. All inoculated fruits developed symptoms as described above 4 to 7 days post-inoculation, while the control fruits remained asymptomatic. N. dimidiatum was re-isolated from all symptomatic tissues confirming Koch's postulates. N. dimidiatum has been reported causing brown spot disease on pitaya (Lan et al. 2012), and stem canker on dragon fruit in Malaysia and Florida (Mohd et al. 2013; Sanahuja et al. 2016) but this is the first report of N. dimidiatum causing postharvest fruit rot on guava in Malaysia. This disease can cause significant postharvest losses to guava production which could lower marketable yield and proper control strategies should be implemented.
  2. Ismail SI, Noor Asha NA, Zulperi D
    Plant Dis, 2020 Nov 02.
    PMID: 33135990 DOI: 10.1094/PDIS-06-20-1380-PDN
    Rockmelon, (Cucumis melo L.) is an economically important crop cultivated in Malaysia. In October 2019, severe leaf spot symptoms with a disease incidence of 40% were observed on the leaves of rockmelon cv. Golden Champion at Faculty of Agriculture, Universiti Putra Malaysia (UPM). Symptoms appeared as brown necrotic spots, 10 to 30 mm in diameter, with spots surrounded by chlorotic halos. Pieces (5 x 5 mm) of diseased tissue were sterilized with 0.5% NaOCl for 1 min, rinsed three times with sterile distilled water, plated onto potato dextrose agar (PDA) and incubated at 25°C for 7 days with a 12-h photoperiod. Nine morphologically similar isolates were obtained by using single spore isolation technique and a representative isolate B was characterized further. Colonies were abundant, whitish aerial mycelium with orange pigmentation. The isolates produced macroconidia with 5 to 6 septa, a tapered with pronounced dorsiventral curvature and measured 25 to 30 μm long x 3 to 5 μm wide. Microconidia produced after 12 days of incubation were single-celled, hyaline, ovoid, nonseptate, and 1.0 to 3.0 × 4.0 to 10.0 µm. Morphological characteristics of the isolates were similar to the taxonomic description of Fusarium equiseti (Leslie and Summerell 2006). Genomic DNA was extracted from fresh mycelium using DNeasy Plant Mini kit (Qiagen, USA). To confirm the identity of the fungus, two sets of primers, ITS4/ITS5 (White et al. 1990) and TEF1-α, EF1-728F/EF1-986R (Carbone and Kohn 1999) were used to amplify complete internal transcribed spacer (ITS) and partial translation elongation factor 1-alpha (TEF1-α) genes, respectively. BLASTn search in the NCBI database using ITS and TEF-1α sequences revealed 99 to 100% similarities with species of both F. incarnatum and F. equiseti. BLAST analysis of these in FUSARIUM-ID database showed 100% and 99% similarity with Fusarium incarnatum-F. equiseti species complex (FIESC) (NRRL34059 [EF-1α] and NRRL43619 [ITS]) respectively (Geiser et al. 2004). The ITS and TEF1-α sequences were deposited in GenBank (MT515832 and MT550682). The isolate was identified as F. equiseti, which belongs to the FIESC based on morphological and molecular characteristics. Pathogenicity was conducted on five healthy leaves of 1-month-old rockmelon cv. Golden Champion grown in 5 plastic pots filled with sterile peat moss. The leaves were surface-sterilized with 70% ethanol and rinsed twice with sterile-distilled water. Then, the leaves were wounded using 34-mm-diameter florist pin frog and inoculated by pipetting 20-μl conidial suspension (1 × 106 conidia/ml) of 7-day-old culture of isolate B onto the wound sites. Control leaves were inoculated with sterile-distilled water only. The inoculated plants were covered with plastic bags for 5 days and maintained in a greenhouse at 25 °C, 90% relative humidity with a photoperiod of 12-h. After 7 days, inoculated leaves developed necrotic lesions similar to the symptoms observed in the field while the control treatment remained asymptomatic. The fungus was reisolated from the infected leaves and was morphologically identical to the original isolate. F. equiseti was previously reported causing fruit rot of watermelon in Georgia (Li and Ji 2015) and China (Li et al. 2018). This pathogen could cause serious damage to established rockmelon as it can spread rapidly in the field. To our knowledge, this is the first report of a member of the Fusarium incarnatum-F.equiseti species complex causing leaf spot on Cucumis melo in Malaysia.
  3. Ismail SI, Rahim NA, Zulperi D
    Plant Dis, 2020 Dec 21.
    PMID: 33349005 DOI: 10.1094/PDIS-06-20-1371-PDN
    Thai basil (Ocimum basilicum L.) is widely cultivated in Malaysia and commonly used for culinary purposes. In March 2019, necrotic lesions were observed on the inflorescences of Thai basil plants with a disease incidence of 60% in Organic Edible Garden Unit, Faculty of Agriculture in the Serdang district (2°59'05.5"N 101°43'59.5"E) of Selangor province, Malaysia. Symptoms appeared as sudden, extensive brown spotting on the inflorescences of Thai basil that coalesced and rapidly expanded to cover the entire inflorescences. Diseased tissues (4×4 mm) were cut from the infected lesions, surface disinfected with 0.5% NaOCl for 1 min, rinsed three times with sterile distilled water, placed onto potato dextrose agar (PDA) plates and incubated at 25°C under 12-h photoperiod for 5 days. A total of 8 single-spore isolates were obtained from all sampled inflorescence tissues. The fungal colonies appeared white, turned grayish black with age and pale yellow on the reverse side. Conidia were one-celled, hyaline, subcylindrical with rounded end and 3 to 4 μm (width) and 13 to 15 μm (length) in size. For fungal identification to species level, genomic DNA of representative isolate (isolate C) was extracted using DNeasy Plant Mini Kit (Qiagen, USA). Internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), and chitin synthase-1 (CHS-1) were amplified using ITS5/ITS4 (White et al. 1990), CL1C/CL2C (Weir et al. 2012), ACT-512F/783R, and CHS-79F/CHS-345R primer sets (Carbone and Kohn 1999), respectively. A BLAST nucleotide search of ITS, CHS-1, CAL and ACT sequences showed 100% similarity to Colletotrichum siamense ex-type cultures strain C1315.2 (GenBank accession nos. ITS: JX010171 and CHS-1: JX009865) and isolate BPDI2 (CAL: FJ917505, ACT: FJ907423). The ITS, CHS-1, CAL and ACT sequences were deposited in GenBank as accession numbers MT571330, MW192791, MW192792 and MW140016. Pathogenicity was confirmed by spraying a spore suspension (1×106 spores/ml) of 7-day-old culture of isolate C onto 10 healthy inflorescences on five healthy Thai basil plants. Ten infloresences from an additional five control plants were only sprayed with sterile distilled water and the inoculated plants were covered with plastic bags for 2 days and maintained in a greenhouse at 28 ± 1°C, 98% relative humidity with a photoperiod of 12-h. Blossom blight symptoms resembling those observed in the field developed after 7 days on all inoculated inflorescences, while inflorescences on control plants remained asymptomatic. The experiment was repeated twice. C. siamense was successfully re-isolated from the infected inflorescences fulfilling Koch's postulates. C. siamense has been reported causing blossom blight of Uraria in India (Srivastava et al. 2017), anthracnose on dragon fruit in India and fruits of Acca sellowiana in Brazil (Abirami et al. 2019; Fantinel et al. 2017). This pathogen can cause a serious threat to cultivation of Thai basil and there is currently no effective disease management strategy to control this disease. To our knowledge, this is the first report of blossom blight caused by C. siamense on Thai basil in Malaysia.
  4. Md Zali AZ, Ja'afar Y, Paramisparan K, Ismail SI, Saad N, Mohd Hata E, et al.
    Plant Dis, 2022 Jun 24.
    PMID: 35748735 DOI: 10.1094/PDIS-03-22-0650-PDN
    Rice (Oryza sativa) is a staple food for most of the world's populations, particularly in Asia (Gumma et al. 2011). The rice sector provides Malaysians with a food supply, food sufficiency, and income for growers (Man et al. 2009). From January to February 2022, panicle samples showing symptoms of bacterial panicle blight (BPB) disease, including reddish-brown, linear lesions with indistinct margins on flag-leaf sheaths and blighted, upright, grayish straw-colored florets with sterile and aborted grains on panicles were collected in granary areas in Sekinchan, Selangor, Malaysia with 90% disease incidence in fields. Surface-sterilization of infected leaf tissue was performed using 75% ethanol and 1% sodium hypochlorite, followed by rinsing three times in sterilized water. Leaf tissue was macerated in sterilized water and aliquots were spread on King's B agar medium, then cultured for 24 h to 48 h at 35 °C. All isolated bacteria were Gram-negative rods, positive for catalase and gelatinase but negative for indole, oxidase and hydrogen sulfide (H2S), and utilized sucrose, inositol, mannitol, glucose, and citrate. Colonies were circular and smooth-margined, producing a diffusible yellowish-green pigment on King's B agar medium, which are characteristics of Burkholderia species (Keith et al. 2005). Five representative isolates (UPMBG7, UPMBG8, UPMBG9, UPMBG15, UPMBG17) were selected for molecular and pathogenicity tests. PCR using specific primers targeting the gyrB gene for molecular characterization was performed, and the ∼470 bp amplicons were sequenced (Maeda et al. 2006) and deposited in GenBank (OM824438 to OM824442). A BLASTn analysis revealed that the five isolates were 99% identical to the B. gladioli reference strains MAFF 302533, GRBB15041, and LMG19584 in GenBank (AB190628, KX638432, and AB220898). A phylogenetic tree using Maximum-likelihood analysis of the gyrB gene sequences showed that the five isolates were 99% identical to B. gladioli reference strains (AB190628, KX638432, and AB220898). To verify the identification of these isolates, the 16S rDNA gene was amplified using 16SF/16SR primers (Ramachandran et al. 2021), producing ~1,400 bp amplicons. The resulting sequences of the five isolates (OM869953 to OM869957) were 98% identical to the reference strains of B. gladioli (NR113629 and NR117553). To confirm pathogenicity, 10 ml suspensions of the five isolates at of 108 CFU/ml were inoculated into the panicles and crowns of 75-day-old rice seedlings of local rice varieties MR269 and MR219 grown in a glasshouse with temperatures ranging from 37 °C to 41 °C (Nandakumar et al. 2009). Control rice seedlings were inoculated with sterilized water. All isolates produced BPB disease symptoms like those originally found in the rice fields at four weeks after inoculation. Control seedlings remained asymptomatic. To fulfill Koch's postulates, the bacteria were reisolated from symptomatic panicles and were confirmed as B. gladioli by sequence analysis of the gyrB and 16S rDNA genes. To our knowledge, this is the first report of B. gladioli causing BPB disease of rice in Malaysia. Since BPB disease causes a significant threat to the rice industry, it is crucial to investigate the diversity of this destructive pathogen for effective disease management strategies in Malaysia.
  5. Wang Y, Cao M, Hu T, Zhou X
    Plant Dis, 2024 Feb 06.
    PMID: 38319620 DOI: 10.1094/PDIS-12-23-2674-PDN
    Hibiscus latent Singapore virus (HLSV) and Hibiscus latent Fort Pierce virus (HLFPV) both belong to the genus Tobamovirus in the family Virgaviridae. The genomes of both HLSV and HLFPV consist of a linear positive sense single-stranded RNA of about 6.3 kb. HLSV is the causal agent of hibiscus leaf crinkle disease. Infections of HLSV in hibiscus (Hibiscus rosa-sinensis) have so far only been reported in Singapore, Japan and Malaysia (Srinivasan et al., 2002; Yoshida et al., 2018; Yusop et al., 2021). In 2017, leaf curling and chlorosis symptoms of lantana (Lantana camara) plants were found in Chenshan Botanical Garden, Shanghai, China. To detect potential virus(es) in these lantana samples, leaves from one lantana plant were collected and total RNA was extracted with RNAiso Plus (TaKaRa). A cDNA library was prepared by TruSeq RNA Sample Prep Kit (Illumina) after removing ribosomal RNA by Ribo-ZeroTM rRNA Removal Kit (Epicentre). The paired-end sequencing was then performed on an Illumina NovaSeq 6000. A total of 61,085,018 high quality reads were obtained and de novo assembly by StringTie revealed 124,516 contigs (greater than 50 bp, N50=719 bp) with an average length of 537 bp. BLASTx analyses in the National Center for Biotechnology Information (NCBI) database showed that 1 long contig of 6,305 bp, assembled of 1794 clean reads, shared significant nucleotide similarities with the genomic sequence of HLSV, and 1 contig of 6,271 bp, assembled of 3174 clean reads, shared significant similarities with the genomic sequence of HLFPV, yielding an average coverage of the whole genome at 42.65 and 75.83 per million reads, respectively. To obtain the complete genome of the viral RNA in this lantana sample, eleven overlapping regions covering the entire HLSV viral genome, and nine overlapping regions covering the entire HLFPV viral genome were amplified by reverse transcription-PCR (RT-PCR) and sequenced. In addition, the exact 5' and 3' ends of the genomic RNA of each virus were determined by rapid amplification of the cDNA ends (RACE) (Wang et al. 2020). The complete genome of the identified HLSV, deposited in GenBank: MZ020960, is 6,486 nt in length and shows 98.4% nucleotide sequence identity with HLSV Singapore isolate (GenBank: AF395898). Similar to other HLSV isolates, this virus isolate possesses an internal poly(A) tract of 87 nucleotides, which is crucial to virus replication (Niu et al., 2015). The complete genome of the Lantana HLFPV isolate is 6,463 nt (GenBank MZ020961) including a 73 nt internal poly(A) tract, and has 98.4% nt identity to HLFPV-Japan (AB917427). In two other lantana plants from the same site, the presence of HLSV and HLFPV was confirmed by RT-PCR using the primer pairs (5'-GCATCTGCATAACACGGTTG-3'/5'-ACGTTGTAGTAGACGTTGTTGTAG-3' and 5'-GGACCTTGCTAATCCGCTAAAGTTG-3'/5'-GGTCCATGTCCATCCAGATGCAATC-3'). In addition to the HLSV and HLFPV genomes, BLASTx analysis of three contigs of 3,006 bp, 2,845 bp and 2,200 bp, assembled of 1328, 352 and 2280 clean reads respectively, showed high identity to RNAs 1 (MG182148), 2 (DQ412731) and 3 (KY794710) of cucumber mosaic virus. To the best of our knowledge, this is the first report of L. camara as a new natural host of HLSV and HLFPV, and first identification of a mixed infection of HLSV and HLFPV.
  6. Qiu R, Zhang L, Hu Z, Du Y, Zheng X, Zhang Z, et al.
    Plant Dis, 2022 Oct 03.
    PMID: 36190300 DOI: 10.1094/PDIS-03-22-0677-PDN
    Anisomeles indica (L.) Kuntze is a perennial erect herb that belongs to the genus Epimeredi, family Labiatae (Hsieh et al., 2008). This herb is distributed in several southern provinces such as Yunnan, Sichuan and Guizhou in China, and it is also exported to Southeast Asian countries such as Singapore and Malaysia (Li., 2010; Yao et al., 2019). Due to its market potential and broad development prospects, the herb has been cultivated in Yunnan. In August 2021, virus-like symptoms on leaves, including shrinking, mosaic, and yellow mottling(Fig S1. A) appeared on approximately 80% of A. indica in the experimental fields of the Kunming Institute of Botany, Chinese Academy of Science, in Kunming, Yunnan. To unveil the possible viral agents associated with the disease symptoms, leaf samples were collected from 5 plants for transmission electron microscopy (TEM) analysis using negative staining (Zhang et al., 2016). Rhabditiform-shaped particles around 300 × 18 nm (Fig S1. C) were observed, which resemble those of tobamoviruses. To identify the exact virus, total RNA was extracted from the 20 leaf samples using the RNA-easy Isolation Reagent (Vazyme, Nanjing, China), followed by reverse transcription (RT)-PCR with a degenerate tobamovirus primer pair (Li et al., 2014). A 480-bp amplicon was obtained from each sample and cloned into the pMD18-T vector for Sanger sequencing (Takara, Dalian, China). BLASTn-analysis revealed that the 20 amplicons were identical and shared 100% nucleotide sequence identity with tobacco mosaic virus (TMV) isolate Bei Cang Zhu from Atractylodes lancea (acc. no. KU198186) One sequence was deposited in the GenBank under the accession number OK489807. ELISA testing with TMV-specific antibody (Agdia, USA) produced positive results for all of the 20 leaf samples. In order to understand the difference between TMV isolates from A. indica and those form other host plants, the sequences of movement protein (MP, 807 bp) and RNA-dependent RNA polymerase (RdRp, 3351 bp) of TMV were also obtained from one of the TMV infected samples using the target gene special primers (Tab. S1), and submitted to GenBank under the accession number OM3662406 (MP) and OM366242 (RdRp). BLASTn-analysis revealed that the amplicon of MP shared 97.75% nucleotide sequence identity with TMV isolate Henan 9-2-2017 from sweet potato (MN186255.1) and RdRp shared 97.43% nucleotide sequence identity with TMV isolate SXFQ from Solanum lycopersicum (JX993906.1). Phylogenetic analysis indicated that the isolate of A. indica grouped with several TMV isolates (e.g., tomato, AF103779.1 and tobacco, HE818449.1) from Northern China. The virus was successfully transmitted onto healthy A.indica plants (n = 5) upon mechanical inoculation as the plants not only developed foliar distortion symptoms but also tested positive for TMV by RT-PCR with the CP-specific primers (Tab. S1). Taken together, our results demonstrated that the diseased A. indica plants were infected with TMV. To our knowledge, this is the first report of TMV infected A. indica (L.) Kuntze in China. Symptomatic phenotype-based field surveys on some plantations in Yunnan Province indicated that the disease incidence ranged from 70% to 90%, resulting in significant loss of production of A. indica. It is necessary to monitor the viruses in the fields and find effective methods to protect TMV in the A. indica (L.) Kuntze industry.
  7. Li R, Liu Y, Yin C, Sun K, Zhang P
    Plant Dis, 2022 Oct 24.
    PMID: 36281022 DOI: 10.1094/PDIS-06-22-1427-PDN
    Tomato leaf curl New Delhi virus (ToLCNDV), a member of the genus Begomovirus in the family Geminiviridae is naturally transmitted by the whitefly Bemisia tabaci (order Hemiptera, family Aleyrodidae) in a circulative and persistent manner (Moriones et al. 2017). ToLCNDV has occurred in Bangladesh, India, Indonesia, Iran, Italy, Malaysia, Pakistan, Sri Lanka, Spain, Thailand and Tunisia (Moriones et al. 2017). To date, The primary cultivated host of ToLCNDV has been identified as tomato (Lycopersicon esculentum), but the virus is also known to infect 43 other plant species from a range of families including Cucurbitaceae, Euphorbiaceae, Solanaceae, Malvaceae and Fabaceae (Zaidi et al. 2017). In August 2021, virus-like symptoms including leaf deformation and curing were observed on tomato (Lycopersicon esculentum) in a greenhouse of about 0.5 hectares in Zhejiang Province, China. To identify viral agents potentially associated with this disease, an Oxford Nanopore cDNA library from a symptomatic sample was generated and sequenced. Total RNA was extracted using RNAiso Plus (TaKaRa, Tokyo, Japan). Libraries were constructed using Oxford Nanopore PCR-cDNA Sequencing Kit (SQK-PCS109; Oxford Nanopore Technologies, Oxford, UK), as recommended. Approximately 8.7 million reads were obtained from the Oxford MinION platform. After removing the adapters and low-quality reads, the clean reads were subjected to BLASTn analysis against the nt database. Approximately 797 and 168 reads produced high nt identities to the genome of ToLCNDV DNA-A (GeneBank Accession No. U15015.2) and ToLCNDV DNA-B (GeneBank Accession No. U15017.2) respectively. We designed 6 primer pairs (Table S1) to obtain the sequence of ToLCNDV Zhejiang (ToLCNDV-ZJ) isolate DNA-A and DNA-B. Briefly, total DNA from ToLCNDV-infected tomato was extracted using standard cetyl trimethylammonium bromide method. Segments of ToLCNDV DNA-A and DNA-B were amplified using high-fidelity DNA polymerase KOD-Plus-Neo (Toyobo, Osaka, Japan). PCR products were cloned into the pLB vector (Tiangen, Beijing, China) and Sanger sequenced. The obtained sequences were assembled into complete sequences of ToLCNDV-ZJ DNA-A (2,739 nt, GeneBank Accession No. OP356207) and DNA-B (2,693 nt, GeneBank Accession No. OP356208). Pairwise sequence comparison revealed that the ToLCNDV -ZJ shared the highest nt sequence identities of 98.7% and 98.4% with the genome segments of New Delhi isolate (genome A: HM159454) and India:Delhi:Cucumis:2012 isolate (genome B: KC545813) respectively. Furthermore, we performed PCR detection on 10 collected samples using the primer pair P1F and P1R. All eight symptomatic plants showing upward leaf curling and leaf distortion tested positive for ToLCNDV infection, whereas two asymptomatic plants were ToLCNDV free. To our knowledge, this is the first report of ToLCNDV infecting tomato in China, and with the widespread presence of B. tabaci in green houses, ToLCNDV may be a potential threat to the cultivation of tomato in China. In addition, ToLCNDV is an exceptional Old World bipartite begomovirus. In China, monopartite DNA satellite-associated begomoviruses with mostly narrow geographical ranges predominate, and are widespread (Li et al., 2022). The occurrence of ToLCNDV in China, which indicates that the success of this virus would become an emerging threat to vegetable and fiber crops.
  8. Zakaria L
    Plant Dis, 2023 Mar;107(3):603-615.
    PMID: 35819350 DOI: 10.1094/PDIS-02-22-0358-FE
    Basal stem rot of oil palm caused by Ganoderma boninense is the most serious disease of oil palm in Malaysia, Indonesia, and other oil-palm-producing countries. Economic losses caused by the disease can be up to USD500 million a year. For many years, basal stem rot was found to infect older palm trees of more than 25 to 30 years in age. Only in the 1950s, the disease began to appear in much younger palm trees, 10 to 15 years old, and, in the last decade or so, palm trees as young as 1 year were infected by the disease. The highest incidence occurs in coastal areas of Southeast Asia but the disease has now infected oil palm in inland areas, mainly oil palm planted in peat soils. Disease incidence is also high in areas previously growing coconut or forest. Basal stem rot infection and spread occur through root-to-root contact, and basidiospores that colonize the roots also play a role. In the early stages of infection by G. boninense, the pathogen behaves as a biotroph and later as a necrotroph, secreting cell-wall-degrading enzymes and triggering host defense responses. Genes, gene products, and metabolic pathways involved in oil palm defense mechanisms against G. boninense have been identified and these metabolites have the potential to be used as markers for early detection of the disease. Integrated disease management used to control basal stem rot includes cultural practices, chemical control, and application of biocontrol agents or fertilizers. Early detection tools have also been developed that could assist in management of basal stem rot infections. Development of resistant or tolerant oil palm is still at an early stage; therefore, the existing integrated disease management practices remain the most appropriate methods for managing basal stem rot of oil palm.
  9. Qin R, Li Q, Huang S, Chen X, Mo J, Guo T, et al.
    Plant Dis, 2023 Mar 27.
    PMID: 36973906 DOI: 10.1094/PDIS-05-22-1168-PDN
    Persimmon (Diospyros kaki Thunb.) is widely cultivated in China. On October 15, 2019, about 10% of persimmon fruits showed fruit rot in the orchards of Guilin, Guangxi, China (24°45' N, 110°24' E), which could cause more than 15% of yield losses. The initial symptoms of fruit rot exhibited irregular brown to black spots (range from 2 to 4 cm in diameter), the areas surrounding the blackened spots would be soft and rotten, and three diseased fruit samples were collected from three orchards, respectively. Tissues (5×5 mm) were cut from infected margins, surface-disinfected in 75% ethanol for 10 s, 2% NaClO for 2 min, rinsed three times in sterilized distilled water, and incubated on potato dextrose agar (PDA) at 25°C under 12/12 h light/darkness for a week. Forty-one tissues yielded morphologically similar cultures, and three representative isolates LPG1-1, LPG1-2, and YSG-1 were selected from three samples for further study, respectively. Their colonies showed wavy edges, white surfaces, and dense aerial hyphae on PDA after two weeks. Conidia were fusiform, straight to slightly curved, and 4-septate; basal cells were conical, hyaline, thin, and verruculose with two or three long and hyaline apical appendages and one short apical appendage; three median cells of LPG1-1 with length 14.06 to 17.69 μm (n=100), and LPG1-2 with length 14.03 to 17.61 μm (n=100) were dark brown to olivaceous, while three median cells of YSG-1 with length 12.54 to 15.58 μm (n=100) were dark brown. The conidial sizes of LPG1-1, LPG1-2, and YSG-1 were 17.41 to 27.68 × 4.63 to 8.55 μm (n=100), 18.06 to 27.41 × 4.33 to 8.21 μm (n=100), and 16.58 to 27.73 × 4.99 to 8.39 μm (n=100), respectively. The morphological characteristics were consistent with Neopestalotiopsis spp. (Maharachchikumbura et al. 2012; Maharachchikumbura et al. 2014). Primer pairs ITS4/ITS5, BT2a/BT2b, and EF1-526F/EF-1567R were used to amplify internal transcribed spacer (ITS), beta-tubulin (TUB2), and translation elongation factor 1 alpha (TEF1-α), respectively (Shu et al., 2020). All DNA fragments were sequenced by Sangon Biotech Co., Ltd. (Shanghai, China). Sequences have been deposited in GenBank (ITS: OM349120 to OM349122, TUB2: OM688188 to OM688190, TEF1-α: OM688191 to OM688193). Based on BLASTn analysis of ITS, TUB2, and TEF1-α sequences, the LPG1-1 and LPG1-2 showed over 99% similarity to N. saprophytica, and YSG-1 showed over 99% similarity to N. ellipsospora. Phylogenetic analysis of the three isolates was performed with MEGA10 (version 10.0) based on sequences of ITS, TUB2, and TEF1-α using maximum parsimony analysis. The results revealed that LPG1-1 and LPG1-2 were clustered with N. saprophytica, and YSG-1 was clustered with N. ellipsospora. Pathogenicity tests of three isolates were conducted on 72 healthy persimmon fruits with and without wounds, and 9 fruits are for each treatment. The wound was made by a sterilized needle. Fruits were pre-processed with 75% ethanol for 10 s, 1% NaClO for 2 min and rinsed three times in sterile water. Conidial suspensions (10 µL, 106 conidia/mL in 0.1% sterile Tween 20) were inoculated on each site (4 sites/fruit). Control group was treated with 0.1% sterile Tween 20. All inoculated sites were covered with wet cotton. The inoculated fruits were placed in a plastic box to maintain humidity at 28℃. After 5 days, all wounded fruits showed fruit rot, whereas unwounded and control fruits remained asymptomatic, there were significant differences (P<0.05) in aggressiveness between N. saprophytica (average lesion diameter 13.1 mm) and N. ellipsospora (average lesion diameter 14.9 mm). Koch's postulates were fulfilled by re-isolating the causal agents from inoculated fruits. N. ellipsospora was previously reported as an endophyte in D. montana in southern India (Reddy et al. 2016). N. saprophytica could cause leaf spot of Erythropalum scandens and Magnolia sp., and fruit rot of Litsea rotundifolia in China and leaf spot of Elaeis guineensis in Malaysia (Yang et al. 2021, Ismail et al. 2017). To our knowledge, this is the first report of N. ellipsospora and N. saprophytica causing fruit rot on persimmon in the world. The results will provide a foundation for controlling fruit rot caused by pestalotioid fungi on persimmon.
  10. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MAZ, Nazerian E, Yassoralipour A
    Plant Dis, 2013 May;97(5):685.
    PMID: 30722205 DOI: 10.1094/PDIS-08-12-0759-PDN
    In August 2011, sweet potato (Ipomoea batatas), tomato (Solanum lycopersicum), and eggplant (S. melongena) crops from major growing areas of the Cameron highlands and Johor state in Malaysia were affected by a soft rot disease. Disease incidence exceeded 80, 75, and 65% in severely infected fields and greenhouses of sweet potato, tomato, and eggplant, respectively. The disease was characterized by dark and small water-soaked lesions or soft rot symptoms on sweet potato tubers, tomato stems, and eggplant fruits. In addition, extensive discoloration of vascular tissues, stem hollowness, and water-soaked, soft, dark green lesions that turned brown with age were observed on the stem of tomato and eggplant. A survey was performed in these growing areas and 22 isolates of the pathogen were obtained from sweet potato (12 isolates), tomato (6 isolates), and eggplant (4 isolates) on nutrient agar (NA) and eosin methylene blue (EMB) (4). The cultures were incubated at 27°C for 2 days and colonies that were emerald green on EMB or white to gray on NA were selected for further studies. All bacterial cultures isolated from the survey exhibited pectolytic ability on potato slices. These bacterial isolates were gram negative; rod shaped; N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG positive; and were also positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. They were negative for indol production, phosphatase activity, reducing substances from sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-mathyl-D-glocoside, and D-arabitol. The bacteria did not grow on NA at 37°C. Based on these biochemical and morphological assays, the pathogen was identified as Pectobacterium wasabiae (2). In addition, DNA was extracted and PCR assay with two primers (16SF1 and 16SR1) was performed (4). Partial sequences of 16S rRNA (GenBank Accession Nos. JQ665714, JX494234, and JX513960) of sweet potato, tomato, and eggplant, respectively, exhibited a 99% identity with P. wasabiae strain SR91 (NR_026047 and NR_026047.1). A pathogenicity assay was carried out on sweet potato tubers (cv. Oren), tomato stems (cv. 152177-A), and eggplant fruits (cv. 125066x) with 4 randomly representative isolates obtained from each crop. Sweet potato tubers, tomato stems, and eggplant fruits (4 replications) were sanitized in 70% ethyl alcohol for 30 s, washed and rinsed in sterile distilled water, and needle punctured with a bacterial suspension at a concentration of 108 CFU/ml. Inoculated tubers, stems, and fruits were incubated in a moist chamber at 90 to 100% RH for 72 h at 25°C when lesions were measured. All inoculated tubers, stems, and fruits exhibited soft rot symptoms after 72 h similar to those observed in the fields and greenhouses and the same bacteria were consistently reisolated. Symptoms were not observed on controls. The pathogenicty test was repeated with similar results. P. wasabiae have been previously reported to cause soft rot on Japanese horseradish (3), and aerial stem rot on potato in New Zealand (4), the U.S. (2), and Iran (1). To our knowledge, this is the first report of sweet potato, tomato, and eggplant soft rot caused by P. wasabiae in Malaysia. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2011. (2) S. De Boer and A. Kelman. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. N. Schaad et al., eds. APS Press, St. Paul, 2001. (3) M. Goto et al. Int. J. Syst. Bacteriol. 37:130, 1987. (4) A. R. Pitman et al. Eur. J. Plant Pathol. 126:423, 2010.
  11. Weng YY, Liou WC, Chien Y, Liao PQ, Wang CJ, Chiu YC, et al.
    Plant Dis, 2021 Mar 29.
    PMID: 33779263 DOI: 10.1094/PDIS-12-20-2666-PDN
    Snake gourd (Trichosanthes cucumerina L.), an annual climbing plant belonging to the family of Cucurbitaceae, is native to Southeast Asia countries, e.g., India, Pakistan, Malaysia, China, and Indonesia. It is commonly consumed as a vegetable and also used as a traditional herbal medicine due to the antidiabetic, anti-inflammatory, antibacterial, hepatoprotective, and cytotoxic activities (Devi 2017). In September 2020, phytoplasma-induced disease symptoms such as little leaf, yellowing, phyllody, virescence, and witches' broom were observed on snake gourd in Yunlin County, Taiwan. The cross-sectional examination of the symptomatic plant by transmission electron microscopy showed typical phytoplasma-like pleomorphic bodies with spherical, oval and tubular shapes in sieve elements. Further examination by nested PCR revealed that a 1.2 kb DNA fragment for 16S rRNA gene was only amplified from symptomatic leaf of snake gourd using the phytoplasma universal primer pairs P1/P7 followed by R16F2n/R16R2. BLAST and iPhyClassifier (https://plantpathology.ba.ars.usda.gov/cgi-bin/resource/iphyclassifier.cgi) analyses on the amplified DNA fragment (accession no. MW309142) revealed that it shares 100% identity with that of GenBank accession NZ_AMWZ01000008 (complement [31109 to 32640]) of peanut witches' broom (PnWB) phytoplasma, a 'Candidatus phytoplasma aurantifolia'-related strain (Firrao et al. 2004), and could be classified into the 16SrII-V subgroup. Samples examined by nested PCR were further characterized by western blotting using the polyclonal antibody raised against the Imp of PnWB phytoplasma (Chien et al. 2020a, b). An expected signal of 19 kDa specific for Imp was only detected in the symptomatic snake gourd, but not in healthy snake gourd. Since the disease symptoms caused by phytoplasma infection are highly dependent on the secreted effectors (Namba 2019), phyllogen gene that is responsible for phyllody and virescence symptoms was amplified from symptomatic snake gourd by PCR. BLAST analysis revealed that phyllogen identified in snake gourd is identical with that of PnWB phytoplasma. In Taiwan, species of family Cucurbitaceae such as loofah, bitter gourd, and pumpkin are commonly infected by 16SrVIII phytoplasma (Davis 2017). In this study, we report for the first time that snake gourd, a species of family Cucurbitaceae, was infected by 16SrII-V PnWB phytoplasma in Taiwan.
  12. Almaliky BSA, Abidin MAZ, Kader J, Wong MY
    Plant Dis, 2013 Jan;97(1):143.
    PMID: 30722276 DOI: 10.1094/PDIS-07-12-0627-PDN
    In April and June 2010, coconut seedlings with symptoms of very slow growth, yellowing of leaves, and general abnormal leaf growth were observed in germination beds in Teluk Intan, Perak, Malaysia. The roots were soft, rotten, and brown, extending upward and downward from these lesions. Rhizomorphs and basidiocarps were produced on coconut seeds near the germination eye and identified as Marasmiellus palmivorus according description by Turner (2). Three isolates were obtained by plating surface sterilized symptomatic roots and basidiocarp on malt extract agar (MEA) amended with 85% lactic acid (1 ml added to 11 of the medium). To confirm the identity of the fungus, genomic DNA was extracted from mycelia and basidiocarps of isolates and the large subunit (LSU) region was amplified and sequenced using LR0R/LR7 primers (3). All isolates had identical LSU sequences (GenBank Accession No. JQ654233 to JQ654235). Sequences were identical to each other and 99% similar to a M. palmivorus sequence deposited in the NCBI database (Accession No. AY639434).To confirm pathogenicity, three isolates of M. palmivorus that were obtained from symptomatic plant tissue was inoculated onto seeds of Malaysian Red Dwarf variety. Each isolate was grown in 100 ml of malt extract broth in 250 ml Erlenmeyer flasks and incubated at 27 ± 2°C for 5 days on an orbital shaker (125 rpm). The resulting culture was passed through two layers of sterile cloth. Mycelial suspension was obtained by blending mycelia in 100 ml of sterile water. Seeds were sterilized by soaking in 10% v/v sodium hypochlorite in distilled water for 3 min. The seeds were then rinsed three times over running tap water. The calyx portion of the seed was removed and five holes were made around the germination eye. The seeds were inoculated by injecting 2 ml of suspension into each hole. The control seeds were inoculated with sterile distilled water only. The seeds were transferred to 40-cm diameter plastic pots containing a mixture of sand, soil, and peat in the ratio of 3:2:1, respectively, and steam treated at 100°C for 1.5 h. Pots were placed in the glasshouse with normal exposures to day-night cycles, temperatures of 29 ± 4°C, and high relative humidity (85 to 95%) achieved by spraying water twice daily. After 2 months, 75% of the inoculated seeds failed to germinate. It was speculated that the artificial inoculum was higher than under germination bed conditions. Rhizomorphs and basidiocarps were produced on husk seeds near the germination eye. Seedlings that emerged successfully developed symptoms similar to those observed in the germination bed. No symptoms developed in the noninoculated seeds and seedlings. At 80 days post inoculation, basidiocarps were observed emerging from three diseased seedlings near the germination eye. Three reisolations were made on MEA from root lesions surface sterilized. Pathogenicity tests and LSU sequence analyses indicated that M. palmivorus is the causal agent of the symptoms observed on coconut seedlings. M. palmivorus was first recorded on coconuts and oil palm in the 1920s (1) and attacks the fruit and the petiole on oil palm (2). To our knowledge, this is the first report of M. palmivorus causing post-emergence damping off on coconut seedlings. References: (1) K. G. Singh. A check-list of host and diseases in Malaysia. Ministry of Agriculture and Fisheries, Malaysia, 1973. (2) P. D. Turner. Oil palm diseases and disorders. Oxford University Press. 1981. (3) R. Vilgalys et al. J. Bacteriol. 172:4238, 1990.
  13. Chong D, Alsultan W, Ariff SNH, Kong LL, Ho CL, Wong MY
    Plant Dis, 2023 Sep 14.
    PMID: 37709725 DOI: 10.1094/PDIS-04-23-0636-PDN
    Coconut (Cocos nucifera) is a high economic value cash crop in Malaysia. In December 2021, irregular spots with dotted rust-like appearance were observed mainly on the tip of the leaves of MATAG variety coconut seedlings at the nursery in Perak state. More than 90% of the coconut seedlings surveyed were infected with leaf spot symptoms. These symptoms could bring huge economic losses due to the downgrade value of the seedlings. 15 symptomatic leaves were obtained from the nursery, 10 mm2 of cut leaves were disinfected with 10% sodium hypochlorite for 10 minutes and rinsed with sterile distilled water before plated on potato dextrose agar (PDA). A total of 4 single-spore isolates were obtained and were observed morphologically. The isolates had white cotton-like appearance with undulate edge. Black acervuli were seen after 7 days of incubation at 26 °C. The conidia were fusiform and contained five cells with four septate and three versicolor cells in between the apical and basal cell. The conidia were 17.2 µm long and 5.9 µm wide (n=30). Conidia consisted of two to three apical appendages and one basal appendage. These morphological characters were consistent with the original description of Neopestalotiopsis clavispora (Santos et al., 2019; Abbas et al., 2022). Species identification was done by amplifying internal transcribed spacer (ITS) region using primers ITS 4 and ITS 5 (White et al., 1990) and beta-tubulin (TUB2) using primers Bt2a and Bt2b (Glass & Donaldson et al., 1995) of the representative isolate LKR1, then sequenced. The 488 bp ITS and 409 bp TUB2 sequences were deposited in GenBank under the accession numbers ON844193 and OP004810, respectively. Isolate LKR1 shares 99.8% identity with the ITS sequence (MH860736.1) of the reference pathogenic N. clavispora strain CBS:447.73 and 100% identity with the TUB2 sequence (KM199443.1) of the reference pathogenic N. clavispora strain CBS 447.73. The phylogenetic analysis confirmed that the isolate LKR1 belonged to N. clavispora when a supported clade is formed with 98% and 94% bootstrap support for ITS and TUB2 respectively with other related N. clavispora. Pathogenicity test was conducted by using five replicates of 8 month old seedlings, they were incubated under greenhouse condition and were watered daily. The leaves of the seedlings were injured with sterile needles and were sprayed with conidial suspension (1 x 10^6 conidia/ml). The control plants were also injured but sprayed with sterile distilled water. After a month, signature symptoms of spots on the leaves appear but none on the control seedling. N. clavispora was successfully re-isolated only from the inoculated symptomatic leaves and identified morphologically. No fungus was re-isolated from the control seedlings. The result was consistent even after repeating the test one more time. N. clavispora has been reported causing leaf spot on Macadamia integrifolia (Santos et al., 2019), Phoenix dactylifera L. (Basavand et al., 2020) and Musa acuminata (Qi et al., 2022). N. clavispora has also been reported causing rust-like appearance of leaves on strawberry (Fragaria × ananassa Duch.) (Obregón et al., 2018). To our knowledge, this is the first report of N. clavispora causing leaf spot disease on coconut seedlings in Malaysia. Through the identification of N. clavispora as the causal agent of leaf spot on coconut, this can help coconut growers to tackle the disease problem earlier thus, preventing the disease from spreading until the adult phase.
  14. French-Monar RD, Patton AF, Douglas JM, Abad JA, Schuster G, Wallace RW, et al.
    Plant Dis, 2010 Apr;94(4):481.
    PMID: 30754480 DOI: 10.1094/PDIS-94-4-0481A
    In August 2008, 30% of tomato (Solanum lycopersicum) plants in plots in Lubbock County, Texas showed yellowing, lateral stem dieback, upward leaf curling, enlargement of stems, adventitious roots, and swollen nodes. Yellowing in leaves was similar to that seen with zebra chip disease (ZC) of potato that was confirmed in a potato field 112 km away in July 2008 and was associated with a 'Candidatus Liberibacter' species (1), similar to findings earlier in 2008 in New Zealand and California (2,3). Tissue from four symptomatic plants of cv. Spitfire and two of cv. Celebrity were collected and DNA was extracted from midribs and petioles with a FastDNA Spin Kit (Qbiogene, Inc., Carlsbad, CA,). PCR amplification was done with 16S rRNA gene primers OA2 and OI2c, which are specific for "Ca. Liberibacter solanacearum" from potato and tomato and amplify a 1.1-kb fragment of the 16S rRNA gene of this new species (1,3). Amplicons of 1.1 kb were obtained from all samples and these were sequenced in both orientations (McLab, San Francisco, CA). Sequences of the 16S rRNA gene were identical for both Spitfire and Celebrity and were submitted to the NCBI as GenBank Accession Nos. FJ939136 and FJ939137, respectively. On the basis of a BLAST search, sequence alignments revealed 99.9% identity with a new species of 'Ca. Liberibacter' from potato (EU884128 and EU884129) in Texas (1); 99.7% identity with the new species "Ca. Liberibacter solanacearum" described from potato and tomato (3) in New Zealand (EU849020 and EU834130, respectively) and from the potato psyllid Bactericera cockerelli in California (2) (EU812559, EU812556); 97% identity with 'Ca L. asiaticus' from citrus in Malaysia (EU224393) and 94% identity with both 'Ca. L. africanus' and 'Ca. L. americanus' from citrus (EU921620 and AY742824, respectively). A neighbor-joining cladogram constructed using the 16S rRNA gene fragments delineated four clusters corresponding to each species, and these sequences clustered with "Ca. L. solanacearum". A second PCR analysis was conducted with the CL514F/CL514R primer pair, which amplifies a sequence from the rplJ and rplL ribosomal protein genes of "Ca. L. solanacearum". The resulting 669-bp products were 100% identical to a sequence reported from tomato in Mexico (FJ498807). This sequence was submitted to NCBI (GU169328). ZC, a disease causing losses to the potato industry, is associated with a 'Candidatus Liberibacter' species (1-3) and was reported in Central America and Mexico in the 1990s, in Texas in 2000, and more recently in other states in the United States (4). In 2008, a "Ca. Liberibacter solanacearum" was detected on Capsicum annuum, S. betaceum, and Physalis peruviana in New Zealand (3). Several studies have shown that the potato psyllid, B. cockerelli, is a potential vector for this pathogen (2,4). To our knowledge, this is the first report of "Ca. Liberibacter solanacearum" in field tomatoes showing ZC-like foliar disease symptoms in the United States. References: (1). J. A. Abad et al. Plant Dis. 93:108, 2009 (2) A. K. Hansen et al. Appl. Environ. Microbiol. 74:5862, 2008. (3) L. W. Liefting et al. Plant Dis. 93:208, 2009. (4) G. A. Secor et al. Plant Dis. 93:574, 2009.
  15. Jiang A, Hou J, Jiang G, Fan C, Wei JG, Ren L, et al.
    Plant Dis, 2022 Jul 08.
    PMID: 35801898 DOI: 10.1094/PDIS-01-22-0164-PDN
    Illicium difengpi B. N. Chang et al., a shrub with aromatic odor in the Illicium genus, is extensively used as a medicinal plant in China. In June of 2020, a leaf spot on I. difengpi with incidence of about sixty percent was observed in a field located in Guilin (25°4'40"N; 110°18'21"E), Guangxi Province, China. Initial leaf symptoms were round spots with gray centers, surrounded by yellow halos. The spots gradually spread and merged. Six samples of symptomatic leaves were collected from six diseased plants, and they were surface disinfested before isolation. Potato dextrose agar (PDA) was used to culture pathogens. Successively, pure cultures were obtained by transferring hyphal tips to new PDA plates. A total of 10 isolates were obtained from the affected leaves. Two single-spore isolates (GX-1 and GX-2) were obtained and confirmed to be identical based on morphological characteristics. The representative isolate GX-2 was selected for further study on morphological and molecular characteristics. The colony of isolate GX-2 was about 4 cm in diameter on a PDA plate in 5 days, dark green with a granular surface, and irregular white edge. Conidia were hyaline, unicellular, oval, narrow at the end with a single apical appendage, and 8.2 to 13.8 × 3.7 to 7.2 µm (n = 50). Spermatia were hyaline, bacilliform with swollen ends, 3.8 to 8.9 × 1.3 to 1.9 µm (n = 50). Morphological characteristics of isolate GX-2 were consistent with the description of Phyllosticta capitalensis (Wikee et al. 2013). The internal transcribed spacer (ITS) region, translation elongation factor 1-α (tef1-α), glyceraldehyde-3-phosphate dehydrogenase (GPDH) and actin (ACT) were amplified using primers ITS1/ITS4, EF-728F/EF-986R, Gpd1-LM/Gpd2-LM and ACT-512F/ACT-783R, respectively (Wikee et al. 2013). Sequences were deposited in GenBank with accession numbers OL505439 for ITS, OL539429 for ACT, OL539430 for tef1-α and OL539431 for GPDH. BLAST analysis in GenBank showed that these sequences were 99 to 100% similar to the corresponding ITS (MT649668), ACT (MN958710), tef1-α (MN958711) and GPDH (KU716077) sequences of P. capitalensis. Also, the phylogenetic tree based on genes of ITS, tef1-α, GPDH and ACT by the maximum likelihood method showed that isolate GX-2 clustered together with P. capitalensis. The pathogenicity tests were carried out on a healthy 3 year-old plant in the greenhouse with 80% relative humidity at 25 °C. Four sterilized leaves were wounded with a needle and inoculated with 20 μL spore suspension (1 × 106 spores/ml). Another four sterilized leaves were inoculated with 20 μL sterile water as a control. All plants were incubated in a chamber with 98% relative humidity at 25 ± 1°C. After 12 days, disease symptoms similar to the field were observed on leaves, whereas control plants remained healthy. P. capitalensis was successfully reisolated only from the inoculated leaves and identified based on morphological characters. P. capitalensis caused leaf spots on various host plants around the world (Wikee et al. 2013), including on tea plants in China (Cheng et al. 2019) and oil palm in Malaysia (Nasehi et al. 2020), but it has not been reported on I. difengpi. Thus, this is the first report of P. capitalensis causing leaf spot on I. difengpi. This study will provide an important reference for the control of the disease. The epidemiology of this disease should be investigated in further research.
  16. Wu JB, Zhang CL, Mao PP, Qian YS, Wang HZ
    Plant Dis, 2014 Jul;98(7):996.
    PMID: 30708927 DOI: 10.1094/PDIS-09-13-1006-PDN
    Dendrobium (Dendrobium candidum Wall. ex Lindl.) is a perennial herb in the Orchidaceae family. It has been used as traditional medicinal plant in China, Malaysia, Laos, and Thailand (2). Fungal disease is one of the most important factors affecting the development of Dendrobium production. During summer 2012, chocolate brown spots were observed on leaves of 2-year-old Dendrobium seedlings in a greenhouse in Hangzhou, Zhejiang Province, China, situated at 30.26°N and 120.19°E. Approximately 80% of the plants in each greenhouse were symptomatic. Diseased leaves exhibited irregular, chocolate brown, and necrotic lesions with a chlorotic halo, reaching 0.8 to 3.2 cm in diameter. Affected leaves began to senesce and withered in autumn, and all leaves of diseased plants fell off in the following spring. Symptomatic leaf tissues were cut into small pieces (4 to 5 mm long), surface-sterilized (immersed in 75% ethanol for 30 s, and then 1% sodium hypochlorite for 60 s), rinsed three times in sterilized distilled water, and then cultured on potato dextrose agar (PDA) amended with 30 mg/liter of kanamycin sulfate (dissolved in ddH2O). Petri plates were incubated in darkness at 25 ± 0.5°C, and a grey mycelium with a white border developed after 4 days. Fast-growing white mycelia were isolated from symptomatic leaf samples, and the mycelia became gray-brown with the onset of sporulation after 5 days. Conidia were unicellular, black, elliptical, and 11.4 to 14.3 μm (average 13.1 μm) in diameter. Based on these morphological and pathogenic characteristics, the isolates were tentatively identified as Nigrospora oryzae (1). Genomic DNA was extracted from a representative isolate F12-F, and a ~600-bp fragment was amplified and sequenced using the primers ITS1 and ITS4 (4). BLAST analysis showed that F12-F ITS sequence (Accession No. KF516962) had 99% similarity with the ITS sequence of an N. oryzae isolate (JQ863242.1). Healthy Dendrobium seedlings (4 months old) were used in pathogenicity tests under greenhouse conditions. Leaves were inoculated with mycelial plugs (5 mm in diameter) from a 5-day-old culture of strain F12-F, and sterile PDA plugs served as controls. Seedlings were covered with plastic bags for 5 days and maintained at 25 ± 0.5°C and 80 ± 5% relative humidity. Eight seedlings were used in each experiment, which was repeated three times. After 5 days, typical chocolate brown spots and black lesions were observed on inoculated leaves, whereas no symptoms developed on controls, which fulfilled Koch's postulates. This shows that N. oryzae can cause leaf spot of D. candidum. N. oryzae is a known pathogen for several hosts but has not been previously reported on any species of Dendrobium in China (3). To our knowledge, on the basis of literature, this is the first report of leaf spot of D. candidum caused by N. oryzae in China. References: (1) H. J. Hudson. Trans. Br. Mycol. Soc. 46:355, 1963. (2) Q. Jin et al. PLoS One. 8(4):e62352, 2013. (3) P. Sharma et al. J. Phytopathol. 161:439, 2013. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.
  17. Nazerian E, Sijam K, Zainal Abidin MA, Vadamalai G
    Plant Dis, 2011 Nov;95(11):1474.
    PMID: 30731752 DOI: 10.1094/PDIS-10-10-0754
    Cucumber (Cucumis sativus L.) is one of the most important vegetable fruits in Malaysia. Cucumber is principally grown in the states of Johor, Kelantan, and Perak. The broad host range Enterobacteriaceae pathogen, Pectobacterium carotovorum, can cause soft rot on stems or cucumber fruit. In Malaysia, cucumber is produced in a warm, humid climate, thus the plant is susceptible to attack by P. carotovorum at any time during production. In 2010, cucumber samples with wilted and chlorotic leaves, water-soaked lesions, and collapsed fruits were found in multiple fields. Small pieces of infected stems and fruit were immersed in 5 ml of saline solution (0.85% NaCl) for 20 min and then 50 μl of this suspension was spread onto nutrient agar (NA) and incubated at 27°C for 24 h. White-to-pale gray colonies with irregular margins were selected for analysis. For pathogenicity tests, cucumber fruits were surface sterilized by ethyl alcohol 70%, washed with sterilized distilled water, cut into small pieces, and inoculated with 20 μl of 108 CFU/ml suspensions of five representative strains. Cucumber plants were grown for 3 weeks in sterilized soil and their stems were inoculated with 20 μl of 108 CFU/ml of bacterial suspension. Inoculated samples and control (noninoculated) plants were placed in a growth chamber with 80 to 90% relative humidity at 27°C. Symptoms occurred on fruit slices and stems after 1 to 3 days and appeared the same as naturally infected samples, but the control samples remained healthy. Koch's postulates were fulfilled with the reisolation of cultures with the same characteristics as described earlier. Hypersensitivity reaction (HR) assays were done by infiltrating 108 CFU/ml of bacterial suspension into tobacco leaf epidermis and HR developed. All strains were subjected to biochemical and morphological assays, as well as molecular assessment. The strains were gram negative, facultative anaerobes, rod shaped, able to macerate potato slices and growth at 37°C; catalase positive; oxidase and phosphatase negative; able to degrade pectate; sensitive to erythromycin; negative for utilization of α-methyl glycoside, indole production, and reduction of sugars from sucrose; acid production from arabitol, sorbitol, and utilization of citrate were negative, but positive for raffinose and melibiose utilization. PCR amplification of the pel gene by Y1 and Y2 primers produced a 434-bp fragment on agarose gel 1% (1). Amplification of intergenic transcribed spacer region by G1 and L1 primers gave two main bands at approximately 535 and 580 bp on agarose gel 1.5%. The ITS-PCR products were digested with RsaI restriction enzyme (3). On the basis of biochemical and morphological characteristics, PCR-based pel gene and characterization of the ITS region, and digestion of the ITS-PCR products with RsaI restriction enzyme, all isolates were identified as P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of soft rot caused by P. carotovorum subsp. carotovorum on cucumber from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society Press, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  18. Naderali N, Nejat N, Tan YH, Vadamalai G
    Plant Dis, 2013 Nov;97(11):1504.
    PMID: 30708488 DOI: 10.1094/PDIS-04-13-0412-PDN
    The foxtail palm (Wodyetia bifurcata), an Australian native species, is an adaptable and fast-growing landscape tree. The foxtail palm is most commonly used in landscaping in Malaysia. Coconut yellow decline (CYD) is the major disease of coconut associated with 16SrXIV phytoplasma group in Malaysia (1). Symptoms consistent with CYD, such as severe chlorosis, stunting, general decline, and death were observed in foxtail palms from the state of Selangor in Malaysia, indicating putative phytoplasma infection. Symptomatic trees loses their green and vivid appearance as a decorative and landscape ornament. To determine the presence of phytoplasma, samples were collected from the fronds of 12 symptomatic and four asymptomatic palms in September 2012, and total DNA was extracted using the CTAB method (3). Phytoplasma DNA was detected in eight symptomatic palms using nested PCR with universal phytoplasma 16S rDNA primer pairs, P1/P7 followed by R16F2n/R16R2 (2). Amplicons (1.2 kb in length) were generated from symptomatic foxtail palms but not from symptomless plants. Phytoplasma 16S rDNAs were cloned using a TOPO TA cloning kit (Invitrogen). Several white colonies from rDNA PCR products amplified from one sample with R16F2n/R16R2 were sequenced. Phytoplasma 16S rDNA gene sequences from single symptomatic foxtail palms showed 99% homology with a phytoplasma that causes Bermuda grass white leaf (AF248961) and coconut yellow decline (EU636906), which are both members of the 16SrXIV 'Candidatus Phytoplasma cynodontis' group. The sequences also showed 99% sequence identity with the onion yellows phytoplasma, OY-M strain, (NR074811), from the 'Candidatus Phytoplasma asteris' 16SrI-B subgroup. Sequences were deposited in the NCBI GenBank database (Accession Nos. KC751560 and KC751561). Restriction fragment length polymorphism (RFLP) analysis was done on nested PCR products produced with the primer pair R16F2n/R16R2. Amplified products were digested separately with AluI, HhaI, RsaI, and EcoRI restriction enzymes based on manufacturer's specifications. RFLP analysis of 16S rRNA gene sequences from symptomatic plants revealed two distinct profiles belonging to groups 16SrXIV and 16SrI with majority of the 16SrXIV group. RFLP results independently corroborated the findings from DNA sequencing. Additional virtual patterns were obtained by iPhyclassifier software (4). Actual and virtual patterns yielded identical profiles, similar to the reference patterns for the 16SrXIV-A and 16SrI-B subgroups. Both the sequence and RFLP results indicated that symptoms in infected foxtail palms were associated with two distinct phytoplasma species in Malaysia. These phytoplasmas, which are members of two different taxonomic groups, were found in symptomatic palms. Our results revealed that popular evergreen foxtail palms are susceptible to and severely affected by phytoplasma. To our knowledge, this is the first report of a mixed infection of a single host, Wodyetia bifurcata, by two different phytoplasma species, Candidatus Phytoplasma cynodontis and Candidatus Phytoplasma asteris, in Malaysia. References: (1) N. Nejat et al. Plant Pathol. 58:1152, 2009. (2) N. Nejat et al. Plant Pathol. J. 9:101, 2010. (3) Y. P. Zhang et al. J. Virol. Meth. 71:45, 1998. (4) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.
  19. Nazerian E, Sijam K, Mior Ahmad ZA, Vadamalai G
    Plant Dis, 2011 Apr;95(4):491.
    PMID: 30743350 DOI: 10.1094/PDIS-09-10-0683
    Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetables cultivated in Pahang and Kelantan, Malaysia. Pectobacterium carotovorum can cause soft rot on a wide range of crops worldwide, especially in countries with warm and humid climates such as Malaysia. Cabbage with symptoms of soft rot from commercial fields were sampled and brought to the laboratory during the winter of 2010. Disease symptoms were a gray to pale brown discoloration and expanding water-soaked lesions on leaves. Several cabbage fields producing white cultivars were investigated and 27 samples were collected. Small pieces of leaf samples were immersed in 5 ml of saline solution (0.80% NaCl) for 20 min to disperse the bacterial cells. Fifty microliters of the resulting suspension was spread on nutrient agar (NA) and King's B medium and incubated at 30°C for 48 h. Purification of cultures was repeated twice on these media. Biochemical and phenotypical tests gave these results: gram negative, rod shaped, ability to grow under liquid paraffin (facultative anaerobe); oxidase negative; phosphatase negative; positive degradation of pectate; sensitive to erythromycin; negative to Keto-methyl glucoside utilization, indole production and reduction sugars from sucrose were negative; acid production from sorbitol and arabitol was negative and from melibiose, citrate, and raffinose was positive. Hypersensitivity reaction on tobacco leaf with the injection of 106 CFU/ml of bacterial suspension for all strains was positive. Four representative strains were able to cause soft rot using cabbage slices (three replications) inoculated with a bacterial suspension at 106 CFU/ml. Inoculated cabbage slices were incubated in a moist chamber at 80% relative humidity and disease symptoms occurred after 24 h. Cabbage slices inoculated with water as a control remained healthy. The bacteria reisolated from rotted cabbage slices on NA had P. carotovorum cultural characteristics and could cause soft rot in subsequent tests. PCR amplification with Y1 and Y2 primers (1), which are specific for P. carotovorum, produced a 434-bp band with 15 strains. PCR amplification of the 16S-23S rRNA intergenic transcribed spacer region (ITS) using G1 and L1 primers gave two main bands approximately 535 and 580 bp and one faint band approximately 740 bp when electrophoresed through a 1.5% agarose gel. The ITS-PCR products were digested with RsaI restriction enzyme. According to biochemical and physiological characterictics (2), PCR-based pel gene (1), and analysis by ITS-PCR and ITS-restriction fragment length polymorphism (3), all isolates were identified as P. carotovorum subsp. carotovorum. This pathogen has been reported from Thailand, Indonesia, and Singapore with whom Malaysia shares its boundaries. To our knowledge, this is the first report of P. carotovorum subsp. carotovorum in cabbage from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W. Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
  20. Sulaiman R, Thanarajoo SS, Kadir J, Vadamalai G
    Plant Dis, 2012 May;96(5):767.
    PMID: 30727556 DOI: 10.1094/PDIS-06-11-0482-PDN
    Physic nut (Jatropha curcas L.) is an important biofuel crop worldwide. Although it has been reported to be resistant to pests and diseases (1), stem cankers have been observed on this plant at several locations in Peninsular Malaysia since early February 2008. Necrotic lesions on branches appear as scars with vascular discoloration in the tissue below the lesion. The affected area is brownish and sunken in appearance. Disease incidence of these symptomatic nonwoody plants can reach up to 80% in a plantation. Forty-eight samples of symptomatic branches collected from six locations (University Farm, Setiu, Gemenceh, Pulau Carey, Port Dickson, and Kuala Selangor) were surface sterilized in 10% bleach, rinsed twice with sterile distilled water, air dried on filter paper, and plated on water agar. After 4 days, fungal colonies on the agar were transferred to potato dextrose agar (PDA) and incubated at 25°C. Twenty-seven single-spore fungal cultures obtained from all locations produced white, aerial mycelium that became dull gray after a week in culture. Pycnidia from 30-day-old pure cultures produced dark brown, oval conidia that were two celled, thin walled, and oval shape with longitudinal striations. The average size of the conidia was 23.63 × 12.72 μm with a length/width ratio of 1.86. On the basis of conidial morphology, these cultures were identified as Lasiodiplodia theobromae. To confirm the identity of the isolates, the internal transcribed spacer (ITS) region was amplified with ITS1/ITS4 primers and sequenced. The sequences were deposited in GenBank (Accession Nos. HM466951, HM466953, HM466957, GU228527, HM466959, and GU219983). Sequences from the 27 isolates were 99 to 100% identical to two L. theobromae accessions in GenBank (Nos. HM008598 and HM999905). Hence, both morphological and molecular characteristics confirmed the isolates as L. theobromae. Pathogenicity tests were performed in the glasshouse with 2-month-old J. curcas seedlings. Each plant was wound inoculated by removing the bark on a branch to a depth of 2 mm with a 10-mm cork borer. Inoculation was conducted by inserting a 10-mm-diameter PDA plug of mycelium into the wound and wrapping the inoculation site with wetted, cotton wool and Parafilm. Control plants were treated with plugs of sterile PDA. Each isolate had four replicates and two controls. After 6 days of incubation, all inoculated plants produced sunken, necrotic lesions with vascular discoloration. Leaves were wilted and yellow above the point of inoculation on branches. The control plants remained symptomless. The pathogen was successfully reisolated from lesions on inoculated branches. L. theobromae has been reported to cause cankers and dieback in a wide range of hosts and is common in tropical and subtropical regions of the world (2,3). To our knowledge, this is the first report of stem canker associated with L. theobromae on J. curcas in Malaysia. References: (1) S. Chitra and S. K. Dhyani. Curr. Sci. 91:162, 2006. (2) S. Mohali et al. For. Pathol. 35:385, 2005. (3) E. Punithalingam. Page 519 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, Surrey, UK. 1976.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links