Displaying publications 1 - 20 of 136 in total

Abstract:
Sort:
  1. Ismail SI, Abd Razak NF
    Plant Dis, 2020 Sep 23.
    PMID: 32967557 DOI: 10.1094/PDIS-07-20-1491-PDN
    Watermelon (Citrullus lanatus L.) is widely cultivated and consumed in Malaysia for its nutritional value. In June 2018, nearly 40% of the 'Red Rocky' watermelon plants in experimental plots of the research farm at Faculty of Agriculture, UPM Serdang, Selangor, Malaysia had leaf spot symptoms. Leaf spots were small, ranging 5 to 30 mm, yellow to brown, and circular to irregular in shape. With ages, the leafspots gradually enlarged and coalesced. To investigate the disease, ten symptomatic leaves were collected from the experimental plots. Diseased tissues (5 x 5 mm) were excied and surface sterilized with 0.5% sodium hypochlorite (NaOCl) for 2 min, rinsed twice with sterile distilled water, plated on potato dextrose agar (PDA), and incubated at 25 °C for 5 days. A total of ten isolates with similar colony morphologies were obtained from tissue samples. A single representative isolate "F" was further characterized by molecular analysis. All colonies were initially white in color, but later turned gray to black upon sporulation after 7 days. Conidia were produced in culture and were single-celled, black, smooth-walled, spherical in shape measuring 11.4 to 14 μm x 13.8 to 19 μm in diameter (n=40). These were borne on hyaline vesicles at the tip of a conidiophore. For molecular identification, genomic DNA was extracted from fresh mycelium of isolate F using DNeasy Plant Mini kit (Qiagen, Germantown, MD, USA). The internal transcribed spacer (ITS) region of rDNA and the translation elongation factor 1-alpha (TEF1-α) gene were amplified using the ITS5/ITS4 (White et al. 1990) and EF1-728F/EF1-986R primer sets (Carbone and Kohn 1999), respectively. BLASTn analysis of the ITS sequence revealed 100% identity (526 bp out of 526 bp) to Nigrospora sphaerica (GenBank Accession no. HQ608063). TEF1-α sequence had 100% identity (494 bp out 494 bp) with N. sphaerica (GenBank Accession no. MN995332). The resulting sequences were deposited in GenBank (ITS: Accession no. MK544066; TEF1-α Accession no. MT708197). Based on morphological and molecular characteristics, isolate "F" was identified as Nigrospora sphaerica (Sacc.) Mason (Chen et al. 2018). A pathogenicity test was conducted on five healthy leaves of five one-month-old watermelon 'Red Rocky' plants grown in a greenhouse. Leaves were wounded using a 34-mm-diameter florist pin frog and spray-inoculated until runoff with a conidial suspension (1 × 106 conidia/ml) of a 7-day-old culture. Five leaves from additional 2 plants were sprayed with sterile distilled water to serve as controls. Inoculated plants were covered with polyethylene bags for 48 h to maintain high humidity. Ten days post-inoculation, symptoms on inoculated leaves developed brown-to-black lesions similar to those observed in the field, while control leaves remained asymptomatic. N. sphaerica was re-isolated from all symptomatic tissues confirming Koch's postulates. N. sphaerica is distributed on a wide range of hosts and has been reported from 40 different host genera including monocotyledonous and dicotyledonous hosts (Wang et al. 2017). N. sphaerica has been reported to cause leaf spot of date palm in Pakistan (Alam et al. 2020) and kiwifruit in China (Chen et al. 2016). To our knowledge, this is the first report of N. sphaerica causing leaf spot of watermelon in Malaysia. This new disease could reduce fruit quality since sweetness and ripening are dependent on healthy foliage. Additionally, this disease can cause premature defoliation which would also reduce watermelon productivity.
  2. Ahmadi P, Muharam FM, Ahmad K, Mansor S, Abu Seman I
    Plant Dis, 2017 Jun;101(6):1009-1016.
    PMID: 30682927 DOI: 10.1094/PDIS-12-16-1699-RE
    Ganoderma boninense is a causal agent of basal stem rot (BSR) and is responsible for a significant portion of oil palm (Elaeis guineensis) losses, which can reach US$500 million a year in Southeast Asia. At the early stage of this disease, infected palms are symptomless, which imposes difficulties in detecting the disease. In spite of the availability of tissue and DNA sampling techniques, there is a particular need for replacing costly field data collection methods for detecting Ganoderma in its early stage with a technique derived from spectroscopic and imagery data. Therefore, this study was carried out to apply the artificial neural network (ANN) analysis technique for discriminating and classifying fungal infections in oil palm trees at an early stage using raw, first, and second derivative spectroradiometer datasets. These were acquired from 1,016 spectral signatures of foliar samples in four disease levels (T1: healthy, T2: mildly-infected, T3: moderately infected, and T4: severely infected). Most of the satisfactory results occurred in the visible range, especially in the green wavelength. The healthy oil palms and those which were infected by Ganoderma at an early stage (T2) were classified satisfactorily with an accuracy of 83.3%, and 100.0% in 540 to 550 nm, respectively, by ANN using first derivative spectral data. The results further indicated that the sensitive frond number modeled by ANN provided the highest accuracy of 100.0% for frond number 9 compared with frond 17. This study showed evidence that employment of ANN can predict the early infection of BSR disease on oil palm with a high degree of accuracy.
  3. Azuan NH, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D
    Plant Dis, 2019 Dec;103(12):3218-3225.
    PMID: 31596688 DOI: 10.1094/PDIS-10-18-1721-RE
    Basal stem rot (BSR), caused by the Ganoderma fungus, is an infectious disease that affects oil palm (Elaeis guineensis) plantations. BSR leads to a significant economic loss and reductions in yields of up to Malaysian Ringgit (RM) 1.5 billion (US$400 million) yearly. By 2020, the disease may affect ∼1.7 million tonnes of fresh fruit bunches. The plants appear symptomless in the early stages of infection, although most plants die after they are infected. Thus, early, accurate, and nondestructive disease detection is crucial to control the impact of the disease on yields. Terrestrial laser scanning (TLS) is an active remote-sensing, noncontact, cost-effective, precise, and user-friendly method. Through high-resolution scanning of a tree's dimension and morphology, TLS offers an accurate indicator for health and development. This study proposes an efficient image processing technique using point clouds obtained from TLS ground input data. A total of 40 samples (10 samples for each severity level) of oil palm trees were collected from 9-year-old trees using a ground-based laser scanner. Each tree was scanned four times at a distance of 1.5 m. The recorded laser scans were synched and merged to create a cluster of point clouds. An overhead two-dimensional image of the oil palm tree canopy was used to analyze three canopy architectures in terms of the number of pixels inside the crown (crown pixel), the degree of angle between fronds (frond angle), and the number of fronds (frond number). The results show that the crown pixel, frond angle, and frond number are significantly related and that the BSR severity levels are highly correlated (R2 = 0.76, P < 0.0001; R2 = 0.96, P < 0.0001; and R2 = 0.97, P < 0.0001, respectively). Analysis of variance followed post hoc tests by Student-Newman-Keuls (Newman-Keuls) and Dunnett for frond number presented the best results and showed that all levels were significantly different at a 5% significance level. Therefore, the earliest stage that a Ganoderma infection could be detected was mildly infected (T1). For frond angle, all post hoc tests showed consistent results, and all levels were significantly separated except for T0 and T1. By using the crown pixel parameter, healthy trees (T0) were separated from unhealthy trees (moderate infection [T2] and severe infection [T3]), although there was still some overlap with T1. Thus, Ganoderma infection could be detected as early as the T2 level by using the crown pixel and the frond angle parameters. It is hard to differentiate between T0 and T1, because during mild infection, the symptoms are highly similar. Meanwhile, T2 and T3 were placed in the same group, because they showed the same trend. This study demonstrates that the TLS is useful for detecting low-level infection as early as T1 (mild severity). TLS proved beneficial in managing oil palm plantation disease.
  4. Holcomb GE, Aime MC
    Plant Dis, 2010 Feb;94(2):272.
    PMID: 30754293 DOI: 10.1094/PDIS-94-2-0272C
    Plumeria spp., native to tropical America, are popular small trees grown widely in tropical areas of the world and as potted plants elsewhere. P. rubra and P. obtusa cultivars and hybrids are most common. A rust disease of a Plumeria sp. (likely P. rubra based on pointed leaf tips, leaves more than 18 cm (7 inches) long, and high rust susceptibility) was observed in November 2008 and again in June 2009 on homeowner plants in Baton Rouge, LA. A survey of five Baton Rouge retail nurseries in September 2009 revealed that 87% (90 of 103) of the plumeria plants were heavily infected with rust. Early symptoms included numerous 1-mm chlorotic spots on adaxial leaf surfaces followed by leaf chlorosis, necrosis, and abscission. Uredinia were numerous, mostly hypophyllous and yellowish orange. Urediniospores were catenulate, orange en masse, verrucose, globose, ovoid, ellipsoidal or angular, and measured 21.8 to 41.9 × 16.4 to 32.8 μm (average 29.4 × 22.6 μm). The rust was identified as Coleosporium plumeriae Pat. (= C. plumierae) (3). Teliospores were not found during this study. Pathogenicity tests were performed by spraying urediniospores (20,000/ml of deionized water) on three healthy Thai hybrid plumeria plants. Five leaves of each plant were misted with water and covered with plastic bags and three to five leaves were inoculated. Plants were held at 27°C for 27 h in a dew chamber and then moved outdoors. Typical rust symptoms and uredinia with urediniospores developed in 10 days on all inoculated leaves while noninoculated leaves remained healthy. Characteristics and spore measurements matched those of the rust from original infected plants. Additional plumeria rust inoculations were made to other Apocynaceae family members that included Allamanda cathartica, Catheranthus roseus (Madagascar periwinkle), Mandevilla splendens, Nerium oleander, and Vinca major. Catheranthus roseus was very susceptible to C. plumeriae with chlorotic leaf spots developing on the six inoculated plants after 8 days and uredinia with urediniospores appearing after 11 days. None of the other plant genera were susceptible to the rust. Plumeria rust was also observed on plumeria trees in urban landscapes in peninsular (Penang) and Bornean (Kota Kinabalu, Sabah) Malaysia in December 2007. To confirm identity, ~1,000 bp of nuclear rDNA 28S subunit from each (Lousiana, Penang, and Kota Kinabalu) was sequenced with rust-specific primers (1) and shared 100% identity (GenBank No. GU145555-6). Plumeria rust was first found on the island of Guadeloupe (3) and then spread to Central and South America. It has been known from Florida since 1960 under the synonym C. domingense (2), but has not been reported elsewhere in the continental United States. In more recent years, plumeria rust has spread to Hawaii, many Pacific islands, India, China, Taiwan, Thailand, Australia, and Nigeria (4). To our knowledge, this is the first report of plumeria rust from Louisiana and Malaysia and of susceptibility of another member of the Apocynaceae, Madagascar periwinkle, to C. plumeriae. Voucher material from Louisiana and Malaysia has been deposited in the Mycology Herbarium of Louisiana State University (LSUM). References: (1) M. C. Aime. Mycoscience 47:112, 2006. (2) Anonymous. Index of Plant Diseases in the United States. U.S. Dept. Agric. Handb. No. 165. Washington, D.C., 1960. (3) N. Patouillard. Bull. Soc. Mycol. Fr. 18:171, 1902. (4) C. To-Anun et al. Nat. Hist. J. Chulalongkorn Univ. 4:41, 2004.
  5. Kuruppu M, Siddiqui Y, Ahmad K, Ali A
    Plant Dis, 2020 Dec 29.
    PMID: 33373283 DOI: 10.1094/PDIS-10-20-2318-PDN
    Repeated sampling conducted from December 2019 to March 2020, and fruit of pineapple (Ananas comosus) var MD2 showing early stem end rot symptoms including brown and rotten fruit skin near the stem end region (Fig.1Aa) or darker skin with black discoloration (Fig.1Ab) indicated a consistent fungal infection. The samples (30 fruits from each location) were collected from store houses in three farmer fields with 60% disease incidence in Serdang, (3.0220oN,101.7055oE), Selangor, West Malaysia. The pulp of infected fruits appeared watery with characteristic spoilage odour. Symptomatic necrotic tissues from stem end region and skin were cut in to pieces (1x1cm), surface sterilized and plated onto potato dextrose agar amended aseptically with 0.5 g L-1 streptomycin sulphate. The plates were incubated at room temperature (28±2oC) in natural light conditions. Five days old cultures were light grey in colour and gradually turned dark brown to black with dense deeply tufted, mycelium as the culture aged (Fig.1B, C). Conidial morphology was observed using compound microscope (Olympus model BX-50F4, Tokyo, Japan) equipped with Dino-Eye. Branched mycelia with 0-1 septate arthospores were evident in 14 days old cultures (Fig.1D). Measured arthroconidia (5 to10x3 to 4.5µm) were ellipsoid to ovoid or round shaped, hyaline with an acutely rounded apex, truncate base, initially aseptate (Fig.1E) and arranged as chain at maturity (Fig.1F). The pathogen was identified through PCR amplification of the internal transcribed spacer (ITS) region using ITS1 and ITS4 primers (White et al., 1990) and BLASTn homology search as Neoscytalidium dimidiatum based on 100% similarity to a reference sequence (accession number KJ648577) that was previously deposited (Mohd et al.,2013). The sequence was deposited in Gen Bank ( accession number MW082810). Pathogenicity test was performed using the mycelial plug inoculation method and repeated twice with five replicates. Healthy MD2 pineapple fruits were surface sterilized with 1% NaOCl solution for15 min. followed by washing with sterilized distilled water. One centimeter diameter PDA plug at the margin of actively growing seven days old cultures were inserted in each of two inoculation wounds made on the skin and stem end of each fruit then the wounds were wrapped with moist cotton wool. Non-colonized PDA plugs were used to inoculate the control fruits. Fruits were incubated under 85% RH at room temperature. Five days after inoculation, the fruits showed similar dark necrotic discoloration and confirmed as N.dimidiatum by PCR (Fig.1G). The Koch postulates were fulfilled by inoculation and re-isolation of the fungal pathogen. This pathogen has also been reported previously to cause economic losses on a number of other hosts, such as pitayah fruits in Israel and Malaysia (Erza et al., 2013; Mohd et al., 2013)) and almond in California (Mohomed et al., 2018). To our knowledge this is the first report of N. dimidiatum causing postharvest stem end rot on MD2 pineapple in Malaysia. It may have the possibility to develop postharvest economic losses to pineapple industry, if severely affected fruits with high population of the pathogen left unattended in store houses.
  6. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Ashtiani FA
    Plant Dis, 2012 Aug;96(8):1227.
    PMID: 30727084 DOI: 10.1094/PDIS-03-12-0262-PDN
    Symptoms of gray leaf spot were first observed in June 2011 on pepper (Capsicum annuum) plants cultivated in the Cameron Highlands and Johor State, the two main regions of pepper production in Malaysia (about 1,000 ha). Disease incidence exceeded 70% in severely infected fields and greenhouses. Symptoms initially appeared as tiny (average 1.3 mm in diameter), round, orange-brown spots on the leaves, with the center of each spot turning gray to white as the disease developed, and the margin of each spot remaining dark brown. A fungus was isolated consistently from the lesions using sections of symptomatic leaf tissue surface-sterilized in 1% NaOCl for 2 min, rinsed in sterile water, dried, and plated onto PDA and V8 agar media (3). After 7 days, the fungal colonies were gray, dematiaceous conidia had formed at the end of long conidiophores (19.2 to 33.6 × 12.0 to 21.6 μm), and the conidia typically had two to six transverse and one to four longitudinal septa. Fifteen isolates were identified as Stemphylium solani on the basis of morphological criteria described by Kim et al. (3). The universal primers ITS5 and ITS4 were used to amplify the internal transcribed spacer region (ITS1, 5.8, and ITS2) of ribosomal DNA (rDNA) of a representative isolate (2). A 570 bp fragment was amplified, purified, sequenced, and identified as S. solani using a BLAST search with 100% identity to the published ITS sequence of an S. solani isolate in GenBank (1). The sequence was deposited in GenBank (Accession No. JQ736024). Pathogenicity of the fungal isolate was tested by inoculating healthy pepper leaves of cv. 152177-A. A 20-μl drop of conidial suspension (105 spores/ml) was used to inoculate each of four detached, 45-day-old pepper leaves placed on moist filter papers in petri dishes (4). Four control leaves were inoculated similarly with sterilized, distilled water. The leaves were incubated at 25°C at 95% relative humidity for 7 days. Gray leaf spot symptoms similar to those observed on the original pepper plants began to develop on leaves inoculated with the fungus after 3 days, and S. solani was consistently reisolated from the leaves. Control leaves did not develop symptoms and the fungus was not reisolated from these leaves. Pathogenicity testing was repeated with the same results. To our knowledge, this is the first report of S. solani causing gray leaf spot on pepper in Malaysia. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. P. S. Camara et al. Mycologia 94:660, 2002. (3) B. S. Kim et al. Plant Pathol. J. 15:348, 1999. (4) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002.
  7. Imran M, Khanal S, Zhou XS, Antony-Babu S, Atiq M
    Plant Dis, 2022 Feb 14.
    PMID: 35156847 DOI: 10.1094/PDIS-10-21-2253-PDN
    Multiple diseases, including brown spot (Cochliobolus miyabeanus), leaf spot (Epicoccum sorghimum), and blast (Magnaporthe oryzae), can cause spot-like symptoms on the leaves of rice. In July 2021, a disease showing symptoms like brown spot was observed in an 8-hectare field of rice, with disease incidence of >30%, in Beaumont, Texas. Lesions started as small pinhead-size blackish spots on leaf tips or from the edges of leaf blades. The spots enlarged to become irregular (most) or oval brown spots with a slight chlorotic halo. Diseased leaves were collected, washed in running tap water and cut into small pieces. Pieces of the tissue were surface sterilized with 1%NaOCl for 2 min followed by 75% ethanol for 30 s and then washed in sterile distilled water three times with each time lasting for 1 min. The disinfected tissue pieces were air dried, placed on potato dextrose agar (PDA) medium and incubated at 25℃. Initially fungal colonies were hairy in texture with light dark brown center and whitish edge and dark brown pigmentation at the reverse side. Mature colonies turned to black in the center and dark brown toward the edge, with black at the reverse side after 2 or more weeks of incubation. Conidia were oval to narrowly oblong, rounded at the ends, with 2 to 6 distoseptate, and 15 to 35 × 6 to 10 µm in size. These morphological characteristics were similar to those described for Curvularia hawaiiensis (Aslam et al. 2019; Ellis 1971; Kusai et al. 2015). For molecular identification, DNA was extracted and the two different rRNA regions internal transcribed spacer (ITS) and large subunit (LSU), and the two genes RNA Polymerase II (RPB1) and translation elongation factor 1 alpha (EF1) of the fungus were amplified using the primers of ITS1/ITS4 (Wang et al. 2014), D1/D2 domain region of LSU (Fell et al. 200), and RPB1 and EF1 (Wang et al. 2014), respectively, and sequenced. The ITS sequence (OK397200) was 98.27% identical to C. hawaiiensis (KP131943); the EF1 sequence (OK492159) was 99.78% identical to C. hawaiiensis (KC503942); the LSU sequence (OK397295) was 98.96% identical to multiple C. hawaiiensis (MN055715, MH160813, MH875853, etc.); the RPB1 sequence (OK492160) was 97.41% identical to C. hawaiiensis (JN992363). To evaluate pathogenicity, three rice plants (cv. Presidio) at the 3-leaf stage were spray inoculated with a conidial suspension of 1 x 106 conidia/ml. Another set of three plants that were sprayed with sterilized distilled water served as the controls. Treated plants were maintained in a greenhouse with temperature ranging from 25 to 30℃. After 2 weeks, typical symptoms, like those observed in the field, developed on the inoculated plants while no symptoms developed on the control plants. The same fungus was consistently re-isolated from the diseased plants. The pathogenicity test was conducted three times with similar results. To our knowledge, this is the first report of brown leaf spot caused by C. hawaiiensis in rice in the United States. Curvularia species are frequently associated with rice grain and cause blackish discoloration symptoms on grain kernels. Recently, however, C. hawaiiensis has also been reported to cause brown leaf spot in Malaysia (Kusai et al. 2015) and Pakistan (Aslam et al. 2019). This research will help identify this disease from other leaf spot-like diseases and develop effective management strategies.
  8. Balmas V, Corda P, Marcello A, Bottalico A
    Plant Dis, 2000 Jul;84(7):807.
    PMID: 30832117 DOI: 10.1094/PDIS.2000.84.7.807B
    Fusarium nygamai Burgess & Trimboli was first described in 1986 in Australia (1) and subsequently reported in Africa, China, Malaysia, Thailand, Puerto Rico, and the United States. F. nygamai has been reported on sorghum, millet, bean, cotton, and in soil where it exists as a colonizer of living plants or plant debris. F. nygamai was also reported as a pathogen of the witch-weed Striga hermonthica (Del.) Benth. To our knowledge, no reports are available on its pathogenicity on crops of economic importance. In a survey of species of Fusarium causing seedling blight and foot rot of rice (Oryza sativa L.) carried out in Sardinia (Oristano, S. Lucia), F. nygamai was isolated in association with other Fusarium species-F. moniliforme, F. proliferatum, F. oxysporum, F. solani, F. compactum, and F. equiseti. Infected seedlings exhibited a reddish brown cortical discoloration, which was more intense in older plants. The identification of F. nygamai was based on monoconidial cultures grown on carnation leaf-piece agar (CLA) (2). The shape of macroconidia, the formation of microconidia in short chains and false heads, and the presence of chlamydospores were used as the criteria for identification. Two pathogenicity tests comparing one isolate of F. nygamai with one isolate of F. moniliforme were conducted on rice cv. Arborio sown in artificially infested soil in a greenhouse at 22 to 25°C. The inoculum was prepared by growing both Fusarium species in cornmeal sand (1:30 wt/wt) at 25°C for 3 weeks. This inoculum was added to soil at 20 g per 500 ml of soil. Pre- and post-emergence damping-off was assessed. Both F. nygamai and F. moniliforme reduced the emergence of seedlings (33 to 59% and 25 to 50%, respectively, compared to uninoculated control). After 25 days, the seedlings in infested soil exhibited a browning of the basal leaf sheaths, which progressed to a leaf and stem necrosis. Foot rot symptoms caused by F. nygamai and F. moniliforme were similar, but seedlings infected by F. nygamai exhibited a more intense browning on the stem base and a significant reduction of plant height at the end of the experiment. Either F. nygamai or F. moniliforme were consistently isolated from symptomatic tissue from the respective treatments. References: (1) L. W. Burgess and D. Trimboli. Mycologia 78:223,1986. (2) N. L. Fisher et al. Phytopathology 72:151,1982.
  9. Choi IY
    Plant Dis, 2011 Feb;95(2):227.
    PMID: 30743439 DOI: 10.1094/PDIS-05-10-0371
    This study was conducted to identify the causal organism of bark dieback disease of highbush blueberry (Vaccinium corymbosum L.) observed in Korea. Blueberry, a woody plant that is native to North America, belongs to the family Ericaceae and genus Vaccinium. Of the 400 species of blueberry in the world, most are distributed in the tropics of Malaysia and Southeast Asia. Highbush blueberry is abundantly grown in Canada and the United States and has become a popular commercial crop in Korea for products such as jam, wine, and sauce. Bark dieback disease of blueberry was found in Sunchang (<5% incidence), Jeollabuk-do, Korea in July 2009. Typical symptoms of the disease were blight and dieback on the stems with lesions extending along entire branches. Morphological examination revealed that the perithecia were of the globose type with a nipple, 155 to 490 (374.6) μm, and brown on the dead bark. Asci were bitunicate and clavate or cylindrical with dimensions of 63 to 125 × 16 to 20 μm and containing eight ascospores. Ascospores were of the long ovoid type with dimensions of 13.2 to 23.7 (17.98) × 25.4 to 41.1 (33.21) μm. From extracted genomic DNA, the internal transcribed spacer (ITS)-5.8S ribosomal DNA region was amplified with universal primers ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'). A BLAST search of GenBank with the ITS sequence revealed that the Sunchang isolate (GenBank Accession No. HQ384217) had 99 to 100% sequence identity with the following Botryosphaeria dothidea accessions: FJ517657, AJ938005, FJ478129, FJ171723, and AJ938004. Phylogenetic analysis with the Sunchang isolate, B. dothidea strains, and related species revealed that the B. dothidea isolate and strains comprised a monophyletic group distinguished from other Botryosphaeria spp. including B. ribis, B. parva, B. protearum, B. lutea, B. australis, B. rhodina, B. obtuse, and B. stevensii (2). On the basis of morphological and molecular results, the isolate was identified as B. dothidea (Moug.) Ces. & De Not. A culture of B. dothidea isolate was grown on potato dextrose agar (PDA) for 10 days. A 5-mm plug was inoculated into stem wounds created with a No. 2 cork borer in 20 2-year-old disease-free blueberry plants grown in a greenhouse. Six plants inoculated with only PDA plugs served as noninoculated controls. The wounds were covered with Parafilm. After 3 months, the Parafilm was removed and black lesions were observed at the fungal inoculation sites, while no lesion was observed on the control plants. To complete Koch's postulates, the fungus was reisolated from the lesions and confirmed to be B. Dothidea (1). There is an urgent need to determine the spread of this disease in Korea, estimate the losses, and develop methods for reducing damage through biological and eco-friendly cultural control methods. References: (1) D. Jurc et al. Plant Pathol. 55:299, 2006. (2) B. Slippers et al. Mycologia 96:83, 2004.
  10. Khoo YW, Gao L, Khaw YS, Tan HT, Li S, Chong KP
    Plant Dis, 2023 May 25.
    PMID: 37227434 DOI: 10.1094/PDIS-01-23-0109-PDN
    Paspalum conjugatum (family Poaceae), locally known as Buffalo grass, is a perennial weed that can be found in rice field, residential lawn, and sod farm in Malaysia (Uddin et al. 2010; Hakim et al. 2013). In September 2022, Buffalo grass with rust symptoms and signs were collected from the lawn located in Universiti Malaysia Sabah in the province of Sabah (6°01'55.6"N, 116°07'15.7"E). The incidence was 90%. Yellow uredinia were observed primarily on the abaxial surface of the leaves. As the disease progressed, leaves were covered with coalescing pustules. Microscopic examination of pustules revealed the presence of urediniospores. Urediniospores were ellipsoid to obovoid in shape, contents in yellow, 16.4-28.8 x 14.0-22.4 μm and echinulate, with a prominent tonsure on most of the spores. A fine brush was used to collect yellow urediniospores, and genomic DNA was extracted based on Khoo et al. (2022a). The primers Rust28SF/LR5 (Vilgalys and Hester 1990; Aime et al. 2018) and CO3_F1/CO3_R1 (Vialle et al. 2009) were used to amplify partial 28S ribosomal RNA (28S) and cytochrome c oxidase III (COX3) gene fragments following the protocols of Khoo et al. (2022b). The sequences were deposited in GenBank under accession numbers OQ186624- OQ186626 (985/985 bp) (28S) and OQ200381-OQ200383 (556/556 bp) (COX3). They were 100% similar to Angiopsora paspalicola 28S (MW049243) and COX3 (MW036496) sequences. Phylogenetic analysis using maximum likelihood based on the combined 28S and COX3 sequences indicated that the isolate formed a supported clade to A. paspalicola. Koch's postulates were performed with spray inoculations of urediniospores suspended in water (106 spores/ml) on leaves of three healthy Buffalo grass leaves, while water was sprayed on three additional Buffalo grass leaves which served as control. The inoculated Buffalo grass were placed in the greenhouse. Symptoms and signs similar to those of the field collection occurred after 12 days post inoculation. No symptoms occurred on controls. To our knowledge, this is the first report of A. paspalicola causing leaf rust on P. conjugatum in Malaysia. Our findings expand the geographic range of A. paspalicola in Malaysia. Albeit P. conjugatum is a host of the pathogen, but the host range of the pathogen especially in Poaceae economic crops need to be studied. Weed management could be an effective way to eliminate inoculum sources of A. paspalicola.
  11. Khoo YW, Hui Teng T, Khaw YS, Li S, Chong KP
    Plant Dis, 2022 Apr 12.
    PMID: 35412330 DOI: 10.1094/PDIS-12-21-2779-PDN
    Crinum asiaticum (family Amaryllidaceae), locally known as 'Pokok Bakung', is an ornamental medicinal plant grown in Malaysia. It contains chemical compounds used for antimicrobial, antioxidant, antitumor, antiemetic and wound healing (Patel, 2017). In July 2021, 'Pokok Bakung' leaves with anthracnose symptoms were collected from a park of Universiti Malaysia Sabah in the Sabah province. The disease severity was about 100% with 20% incidence. Red spots were primarily found on the leaf surfaces. Anthracnose developed as the disease progressed, and acervuli were observed in the spots. Small pieces of infected leaves (5 x 5 mm) were excised from spot margins, surface sterilized based on Khoo et al. (2022a), placed on potato dextrose agar (PDA) in Petri dishes, which were incubated for 5 days at 25°C in the dark. The colonies formed on the PDA plates were abundant with gray-white fluffy mycelia after 5 days, and the reverse view revealed brown. UMS01, a representative isolate, was used to morphologically and molecularly characterize the fungus. Conidia were one-celled, cylindrical, hyaline, smooth, and blunt at the ends, measuring 13.8 to 16.5 x 3.6 to 6.7 µm (n = 20). Appressoria ranged in size from 7.6 to 9.3 x 5.5 to 6.9 µm (n= 20) and were ovoid to clavate, spherical to irregular in shape and dark brown in color. Genomic DNA was extracted from fresh mycelia of isolate UMS01 based on Khoo et al. (2021) with the addition of mechanical disruption using a micro pestle before heating at 95°C. PCR amplification was performed based on Khoo et al. (2022a) using ITS1/ITS4, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-354R, and GDF1/GDR1 primer pairs to amplify the internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), chitin synthase (CHS-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Weir et al. 2012). PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. for sequencing. The sequences were deposited in GenBank under accession numbers OK458683 (ITS), OL953033 (CAL), OL953030 (ACT), OL953036 (CHS-1), and OL953039 (GAPDH). Before BLAST, the search set were adjusted to exclude model sequences (XM/XP) and the uncultured/environmental sample sequences, and limit to sequences from type material. They were 99-100% similar to the Colletotrichum siamense ITS (JX010171), CAL (JX009714), ACT (FJ907423) and CHS-1 (JX009865), and Colletotrichum changpingense GAPDH (MZ664048) type sequences. The GAPDH marker did not reliably resolve the relationships within the C. gloeosporioides complex (Vieira et al. 2020). Phylogenetic analysis using maximum likelihood based on the combined ITS, CAL, ACT, CHS-1 and GAPDH indicated that the isolate formed a supported clade (100% bootstrap value) to the most related C. siamense. Morphological and molecular characterization matched the description of C. siamense (Huang et al. 2021). Pathogenicity tests were performed to fulfil Koch's postulates by spraying a spore suspension (106 spores/ml) on the leaves of three healthy four-month-old 'Pokok Bakung' plants, while three additional plants were sprayed with water as a control. The inoculated plants were covered with plastics for 48 h at 25°C in the dark. Incubation was performed based on Iftikhar et al. (2022). Symptoms similar to those of the field collection occurred after 6 days post inoculation. No symptoms occurred on the control plants. The experiment was repeated two more times. The reisolated fungal isolates were identical to C. siamense morphologically and molecularly. Previously, C. siamense has been reported to cause anthracnose on Allamanda cathartica (Huang et al. 2021) and avocado (Li et al. 2022) in China, and 'Purple Dream' eggplant in Malaysia (Khoo et al. 2022b). Colletotrichum fructicola has been reported to cause anthracnose on C. asiaticum in China (Qing et al. 2020). To our knowledge, this is the first report of C. siamense causing anthracnose on C. asiaticum in Malaysia. Our findings expand the geographic range of C. siamense and indicate that it could be a potential threat limiting the growth and production of C. asiaticum in Malaysia.
  12. Khoo YW, Tan HT, Khaw YS, Li SF, Chong KP
    Plant Dis, 2022 Mar 06.
    PMID: 35253484 DOI: 10.1094/PDIS-01-22-0058-PDN
    'Purple Dream' eggplant (Solanum melongena) is widely grown for its edible fruits in Malaysia. In July 2021, anthracnose symptoms were observed on fruit with a disease severity of approximately 80% and an incidence of 10% in a field (14.6 m2) (5°56'50.9"N, 116°04'31.9"E) located in the Penampang district of Sabah province. The symptoms initially appeared as irregular light brown spots. As the disease progressed, the spots enlarged and merged into extensive lesion patches that appeared in concentric circles. The symptomatic fruit tissues (5 x 5 mm) were surface sterilized based on Khoo et al. (2022), and plated onto potato dextrose agar (PDA), and incubated at 25°C in the dark. Colonies with gray-white fluffy mycelia developed after 7 days, and the reverse of the colonies was dark brown. A representative isolate named Penampang was characterized morphologically and molecularly. The conidia were one-celled, cylindrical, blunt at the ends, hyaline, smooth, and measured 13.3 to 16.1 x 3.9 to 6.0 µm (n= 20). Appressoria ranged in size from 7.6 to 9.3 m x 5.5 to 6.6 µm (n= 20) and were spherical to irregular in shape and dark brown in colour. Genomic DNA was extracted from fresh mycelia of isolate Penampang based on Khoo et al. (2021) and Khoo et al. (2022). ITS1/ITS4, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-354R, and GDF1/GDR1 primer pairs were used to amplify the isolate's internal transcribed spacer region (ITS), and partial calmodulin (CAL), actin (ACT), chitin synthase (CHS-1), and glyceraldehyde-3-phosphate dehydrogenase genes (GAPDH) (Weir et al. 2012). PCR products were sequenced by Apical Scientific Sdn. Bhd. (Selangor, Malaysia). Sequences were deposited in GenBank under the accession numbers OL957466 (ITS), OL953035 (CAL), OL953032 (ACT), OL953038 (CHS-1), and OL953041 (GAPDH). They were 99% to 100% identical to the Colletotrichum ti ITS (NR_120143) (515 bp out of 519 bp), and C. siamense CAL (JX009714) (729 bp out of 731 bp), ACT (JX009518) (282 bp out of 282 bp), CHS-1 (JX009865) (299 bp out of 299 bp), and GAPDH (JX009924) (276 bp out of 277 bp) sequences. ITS sequences do not reliably resolve relationships within the C. gloeosporioides complex (Weir et al. 2012). The phylogenetic maximum likelihood analysis using the combined ITS, CAL, ACT, CHS-1, and GAPDH sequences indicated that the isolate was part of the C. siamense clade (100% bootstrap value) that also contained the type isolate ICMP 18578 of this species. Morphological and molecular characterization matched the description of C. siamense (Huang et al. 2021; Ismail et al. 2021). Koch's postulates were performed similarly as described by Chai et al. (2017) but using spray-inoculation (108 spores/ml) of three healthy 'Purple Dream' eggplant fruit with isolate Penampang. Water was sprayed on three additional fruits that served as controls. All the fruits were incubated at 25°C and less than 90% relative humidity. Symptoms similar to those observed in the field developed 5 days after inoculation. No symptoms occurred on controls. The experiment was repeated two more times. The reisolated fungi were identical to the pathogen morphologically and molecularly. To our knowledge, this is the first report of C. siamense causing anthracnose on fruit of 'Purple Dream' S. melongena in Malaysia as well as worldwide. Our findings expand the host range of C. siamense and indicate that the pathogen could potentially limit 'Purple Dream' eggplant production in Malaysia.
  13. Khoo YW, Hui Teng T, Khaw YS, Li S, Chong KP
    Plant Dis, 2022 Mar 22.
    PMID: 35316084 DOI: 10.1094/PDIS-02-22-0277-PDN
    Ixora chinensis (family Rubiaceae), locally known as 'Bunga Jejarum', is widely grown as an ornamental shrub and as sources for phytochemicals with medicinal properties in Malaysia. In May 2021, irregular brown spots were found on the leaves of some 'Bunga Jejarum' in Universiti Malaysia Sabah (6°02'01.0"N 116°07'20.2"E) located in Sabah province. As the disease progressed, the spots enlarged and coalesced into large necrotic areas giving rise to drying of infected leaves. The disease severity was about 70% with 20% incidence. Five symptomatic leaves (5 x 5 mm) from five plants were excised and sterilized based on Khoo et al. (2022) before plated on five potato dextrose agar (PDA) and cultured at 25°C. After 5 days, white to pale honey and dense mycelia with lobate edge were observed on all PDA plates. Globose, black conidiomata semi-immersed on PDA were observed after a week. Two to four hyaline filamentous appendages 7.7 to 17.6 μm long attached to fusoid conidia (11.8 to 20.9 x 5.7 to 7.6 μm, n = 20), which consisted of a hyaline apical cell, basal cell, and three versicolored median cells. The upper two median cells were dark brown, while the lowest median cell was pale brown. The isolate of the causal pathogen was characterized molecularly. Genomic DNA of isolate UMS01 was extracted based on Khoo et al. (2021) and Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS), tubulin (TUB) and translation elongation factor 1-α (TEF) region was performed based on Khoo et al. (2022) using primers ITS1/ITS4 (White et al. 1990), T1/Bt2b (Glass and Donaldson, 1995; O'Donnell and Cigelnik, 1997) and EF1-728/EF2 (O'Donnell et al. 1998; Carbone and Kohn, 1999), respectively. PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. for sequencing. The isolate's sequences were deposited in GenBank as OM320626 (ITS), OM339539 (TUB) and OM339540 (TEF). They were 99% to 100% identical to ITS(KM199347) (545 out of 545 bp), TUB (KM199438) (768 out of 769 bp) and TEF (KM199521) (480 out of 481 bp) of the type sequences (CBS 600.96). Phylogenetic analysis using the maximum likelihood method based on the combined ITS, TEF and TUB sequences placed the isolate UMS01 in the same clade as the isolate CBS 600.96 of Neopestalotiopsis cubana. Thus, the pathogen was identified as N. cubanabased on the morphological description from Pornsuriya et al. (2020), molecular data in Genbank database and multigene sequence analysis. To further confirm its pathogenicity, the first and second leaves of three 'Bunga Jejarum' plants were inoculated by pipetting 1 ml aliquots of a 1 × 106 conidia/ml spore suspension. Three additional 'Bunga Jejarum' plants were mock inoculated by pipetting 1 ml of sterile distilled water on similar age leaves. The plants were covered with plastic bags after inoculation for 48 h before placing them in a glasshouse under room temperature. The leaves were sprayed with water to keep the leaf surfaces moist along the experiment. The incubation and disease observation were performed based on Chai et al. (2017) and Iftikhar et al. (2022). After 7 days post-inoculation, all infected leaves exhibited the symptoms observed in the field, whereas the controls showed no symptoms. The same fungus was isolated from the diseased leaves and, thus confirmed Koch's postulates. The experiment was repeated two more times. The reisolated fungi were visually and genetically identical to the original isolate obtained from the field samples. To our knowledge, this is the first report of N. cubana causing leaf blight on 'Bunga Jejarum' in Malaysia, as well as the world. Our finding has broadened the distribution and host range of N. cubana, indicating that it poses potential damage to the medicinal plant Bunga Jejarum in Malaysia.
  14. Khoo YW, Hui Teng T, Khaw YS, Li S, Chong KP
    Plant Dis, 2022 Jan 31.
    PMID: 35100032 DOI: 10.1094/PDIS-12-21-2646-PDN
    Aloe vera L. var. chinensis (Haw.) Berg. (family Asphodelaceae), locally known as 'Lidah Buaya', is an economically important plant as the gel from the leaves possesses anti-inflammatory, anti-arthritic, antibacterial, and hypoglycemic properties and is used for cosmetic, pharmaceutical and healing purpose in Malaysia. In July 2021, irregular black sunken spots (3- to 10-mm in diameter) were observed on the leaves of 'Lidah Buaya' plants under leaf development stage in the field located in the district Penampang of Sabah province (N5°56'37.1" E116°04'21.5"). The disease severity was about 30% with 10% incidence. The tissues surrounding the black spots became brown and dry when the plants grew older. No gel contained in the sunken zones. Symptomatic leaf tissues (5 x 5 mm) were cut from the infected margin, surface sterilised with 75% ethanol for 1 minute, washed with 2% sodium hypochlorite solution for 1 minute, rinsed, and air dried before plating on five potato dextrose agar (PDA) plates (pH 7). Plates were incubated at 25°C for 3 days in the dark. Greyish-white fluffy mycelia were observed, and then became dark grey with age. Dark pigmentation in each plate was produced after a week of incubation at 25°C. A representative isolate Penampang was further characterized morphologically and molecularly. Immature conidia were single-celled, aseptate, ellipsoid and hyaline, measuring 19.4 × 24.5 µm (n = 30). Mature conidia were brown, thick-walled and one-septate with longitudinal striations, 22.5 × 28.3 µm (n = 30). Genomic DNA was extracted from fresh mycelia of isolate Penampang based on the extraction method described by Khoo et al. (2021) with additional of mechanical disruption using micro pestle before heating. KOD One PCR master mix (Toyobo, Japan) containing hot-start modified KOD DNA polymerase was used for PCR amplification. The PCR condition were 94°C for 10 s, 55°C for 5 s and 72°C for 2 s, for 30 cycles, and initial denaturation of 94°C for 3 min and a final extension step of 72°C for 5 min. The internal transcribed spacer (ITS) region of rDNA and tubulin (TUB) genes were amplified using ITS1/ITS4 and T10/Bt2b primer sets, respectively (O'Donnell et al. 1997; White et al. 1990). The products were then sent to Apical Scientific Sdn. Bhd. for sequencing. The generated ITS (OK209451) and TUB (OL660667) were 100% identical to L. theobromae isolate MRR-161 and CPC:27690 (GenBank MW282884 and MT592639, respectively) in BLASTn analysis. Phylogenetic analysis using maximum likelihood based on the combined ITS and TUB sequences indicated that the isolates formed a supported clade (91% bootstrap value) to the related L. theobromae. The morphological and molecular characterization of the fungus matched L. theobromae described by Pečenka et al. (2021). Mycelial agar plugs (5-mm-diameter) from 7-day-old PDA culture of Penampang isolate were placed onto pinpricked leaves of three 2-month-old 'Lidah Buaya' plants. Pinpricked leaves of three 2-month-old 'Lidah Buaya' plants received sterile 5-mm-diameter PDA agar plugs to serve as controls. The inoculated 'Lidah Buaya' plants were covered with plastics for 48 h, and were incubated at 25°C. All inoculated leaves developed symptoms as described above 6 to 7 days post-inoculation, whereas no symptoms occurred on controls, thus fulfilling Koch's postulates. The experiments were repeated twice. The reisolated fungus was identical to representative isolate Penampang morphologically and molecularly. L. theobromae was reported previously on A. vera in Cuba (Urtiaga 1986) and India (Mathur 1979). To our knowledge, this is the first report of L. theobromae causing leaf spot on A. vera in Malaysia. The occurrence of this disease emphasizes the importance of disease surveillance in the region. Plant disease management strategies need to be established to reduce the losses.
  15. Khoo YW, Rosina B, Amiruddin S, Tan HT, Khaw YS, Li S, et al.
    Plant Dis, 2022 Dec 21.
    PMID: 36541883 DOI: 10.1094/PDIS-08-22-1939-PDN
    Rice (Oryza sativa L.) has been farmed in Malaysia since ancient times and is one of the most important commercial crops (Ma'arup et al. 2020). Throughout January to August 2022, chlorotic spots with brown halos ranging 2 to 10 mm wide were found on upper leaves of rice variety Mahsuri in the vegetative stage with a severity and incidence of approximately 60% and 100%, respectively in Kampung Tagas, Sabah, Malaysian Borneo (06°09'41.8"N, 116°13'45.1"E). As the disease developed, the spots coalesced into larger chlorotic spots. Three leaf pieces (5 x 5 mm) were excised from lesion margins, surface sterilized based on Khoo et al. (2022a), before plating on water agar (WA) at 25°C. Purification of fungi was conducted on WA using hyphal tip isolation. When three pure cultures were obtained, the fungi were cultured on potato dextrose agar (PDA) and WA for 7 days in 12 h light and 12 h dark at 25°C for the macro- and micro-morphological characterization, respectively. The colonies of the three isolates on PDA were initially gray, later becoming dark. Conidia (n=30) were fusiform, smooth-walled, dark-brown, and melanized with three transverse septa, measuring 7.3 to 11.4 × 16.2 to 27.2 µm. The isolates were named Tagas01, Tagas02, Tagas03. Genomic DNA was extracted from fresh mycelia of the pathogens based on the extraction method described by Khoo et al. (2022b). The primers ITS1/ITS4 (White et al. 1990), GPD1/GPD2 (Berbee et al. 1991), and EF1-983F/EF1-2218R (Schochet al. 2009) were used to amplify the internal transcribed spacer (ITS) region of rDNA, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and translation elongation factor (EF-1α) region, respectively based on PCR conditions as described previously (Khoo et al. 2022a). The sequences were deposited in GenBank under accession numbers OP268402, OP271304, OP271305 (677/677 bp) (ITS), OP270699, OP270703, OP270704 (609/613 bp) (GAPDH), OP270700-OP270702 (928/930 bp) (EF-1α). They were 99.35-100% similar to the Curvularia lunata ITS (HF934911), GAPDH (LT715821), and Curvularia dactyloctenicola EF-1α (MF490858) type sequences. Although C. dactyloctenicolais related to C. lunata, the conidia of the former are much wider making them easier to differentiate (Marin-Felix et al. 2017). Phylogenetic analysis using maximum likelihood based on the combined ITS, GAPDH and EF-1α sequences indicated that the isolate formed a supported clade to C. lunata. The pathogens were identified as C. lunata based on morphological and molecular characterization. Koch's postulates were performed. Three replicate healthy rice at the vegetative stage were sprayed with a spore suspension of 1 × 106 spore/ml in distilled sterilized water, prepared from 1-week-old fungal culture, grown in the dark on WA. Three replicate rice plants were sprayed with distilled sterilized water as control. Plants were covered with transparent polyethylene bags to keep moisture, and kept in a greenhouse at ~27°C. Bags were removed after 4 days of incubation. Monitoring and incubation were performed in greenhouse based on Iftikhar et al. (2022). The pathogenicity test was also performed using isolate Tagas02 and Tagas03. All inoculated leaves developed symptoms as described after 6 days post-inoculation, whereas no symptoms occurred on controls. The experiments were repeated twice. The reisolated fungi were identical to the pathogen morphologically and molecularly, thus fulfilling Koch's postulates. C. lunata has been reported in Peninsular Malaysia (Lee et al. 2012). This is the first report of C. lunata causing leaf spot on Oryza sativa in Sabah, Malaysian Borneo. This illness not only reduces yields and lowers milling quality, but it may also be mistaken for rice blast, necessitating needless fungicide spraying.
  16. Khoo YW, Baadu R, Hui Teng T, Khaw YS, Li S, Chong KP
    Plant Dis, 2022 Dec 12.
    PMID: 36510434 DOI: 10.1094/PDIS-10-21-2266-PDN
    Basella alba is an evergreen perennial vine that grows as an edible leafy vegetable in Malaysia (Nordin et al. 2007). During January 2021, a cottony white hypha associated with aggregates of white to brown sclerotia and symptoms of damping-off were visualized on the stem base of B. alba at the soil surface in an isolated field (~0.03 ha) located in the district of Penampang, Sabah province, Malaysia (5°56'51.0"N 116°04'31.8"E). Yellowing and wilting of leaves, and defoliation were observed after four days of the development of damping-off. Survey was conducted on 100 plants which 30 were found infected. The disease severity (90%) on stems was estimated using IMAGEJ. Symptomatic stem tissues were surface sterilized with 75% of ethanol for 1 min, washed with 2% of sodium hypochlorite solution for 1 min, rinsed thrice with sterile distilled water, air dried and plated on potato dextrose agar (PDA). Plates were incubated for 7 days at 25°C in the dark. After 7 days, fungi were isolated; colony color was white and had a cottony appearance. On day 14, white to brown sclerotia 1.0 to 2.2 mm in diameter were produced. Hyaline septate hyphae with clamp connections and multiple nuclei were seen. Conidia and conidiophores were absent from the colony on PDA. Genomic DNA of fungi was extracted based on Khoo et al. (2022a and 2022b). PCR amplification (Khoo et al. 2022b) was performed using primer set ITS1/ITS4, EF983/EF2218 and LR0R/LR05 to amplify the internal transcribed spacer (ITS) region of rDNA, partial translation elongation factor 1 alpha (TEF-1α) gene and partial large subunit ribosomal RNA (LSU rRNA) gene, respectively (Vilgalys and Hester 1990; White et al. 1990; Carbone and Kohn, 1999; Rehner 2001). Phylogenetic analysis indicated that the isolates formed a supported clade to the related Athelia rolfsii sequences. The sequencing result (GenBank Accession Nos. OK465460, OP809607, OP857217) had a 99% identity over 625 bp, 941 bp, and 1,101 bp with the corresponding gene sequence of A. rolfsii (GenBank Accession Nos. MN622806, AY635773, MW322687) after analysis in BLASTn program. Pathogenicity test was performed based on Le (2011). Three 8-week-old B. alba plants cultivated on sterilized soil were inoculated with 5-mm mycelia plugs from 7-day-old culture. A plug was put on the upper soil surface layer 2 cm away from the base of the stem of B. alba plant before fully covered with a layer of sterilized soil. Plants that were inoculated with sterile PDA plugs served as the control treatment. Plastic bags were used to cover the plants after inoculation for 24 h before keeping them in a glasshouse under ambient conditions. Water-soaked and brown lesions were visualized on the stem base of all inoculated plants after four days of inoculation. Symptom of damping-off and leaf blight was observed after another 3 days. No symptoms developed on the mock controls. The pathogenicity test was repeated twice. Re-isolation was performed from the symptomatic tissues of inoculated plants and mock controls. The isolates reisolated from the symptomatic tissues were verified as A. rolfsii based on morphology and molecular characterization, thus fulfilling Koch's postulates. No pathogens were isolated from the mock controls. To our knowledge, this is the first report of A. rolfsii causing damping-off and leaf blight on B. alba in Malaysia, as well as worldwide. Our findings documented the wider geographical and host range of A. rolfsii and indicate its potential threat to B. alba production in Malaysia.
  17. Khoo YW, Khaw YS, Tan HT, Li SF, Chong KP
    Plant Dis, 2022 May 17.
    PMID: 35581916 DOI: 10.1094/PDIS-11-21-2478-PDN
    Pometia pinnata (family Sapindaceae), locally known as 'Kasai', is a tropical hardwood and fruit tree species grown in Malaysia. The decoction of the bark is used for the treatment of fever, sores and colds, while the fruits are edible (Adema et al. 1996). In May 2021, irregular brown spots and necrotic lesions were observed on 'Kasai' with an incidence and severity of approximately 60% and 10% on 10 plants in a nursery (5°55'30.7"N 116°04'36.2"E) in Penampang, Sabah province. When the disease progressed, the spots coalesced into extended patches, blightening the leaves and, gradually, the entire foliage. Small pieces (5 x 5 mm) of infected leaves were excised from the infected margin, and then surface sterilized according to Khoo et al. (2022b), and plated on potato dextrose agar (PDA), and cultured at 25 °C. for 6 days. Colonies were dark brown in color initially whitish on the PDA. The color of fungal colony was dark as the culture aged. Semi-appressed mycelia were observed on the plates with abundant microsclerotia engrossed in the agar. Aggregation of hyphae formed black and round to oblong or irregular shaped microsclerotia. Thirty sclerotia from a representative isolate measured average 63-171 μM length x 57-128 μM wide. The morphological features matched the description of Macrophomina phaseolina (Abd Rahim et al. 2019). The fungal genomic DNA was extracted based on Khoo et al. (2022a and 2022b). PCR was performed using primer sets ITS1/ITS4 (White et al. 1990), EF1-728/EF2 (O'Donnell et al. 1998; Carbone and Kohn, 1999) and T1/T22 (O'Donnell and Cigelnik 1997) to amplify the internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-α (TEF-1α) region and partial β-tubulin (TUB) gene. PCR products with positive amplicons were sent to Apical Scientific Sdn. Bhd. in Malaysia for sequencing. According to results (GenBank Accession No. OK465197, OM677767, ON237461), they were 100% identical with the reference sequence of Macrophomina phaseolina containing approximately 537 bp, 438 bp and 659 bp of the presented ITS, TEF-1α and TUB region (GenBank Accession No. MN629245, MN136199 and KF952208, respectively). The pathogen was identified as M. phaseolina based on its morphological and molecular data (Abd Rahim et al. 2019). To confirm the pathogenicity test, three non-wounded and healthy leaves of one-month-old 'Kasai' seedlings were inoculated with mycelium plug (1 x 1 cm) of M. phaseolina. Additional three 'Kasai' seedlings were inoculated with sterile PDA agar plug (1 x 1 cm) to serve as controls. The seedlings were monitored and incubated in a greenhouse at ambient temperature based on Iftikhar et al. (2022). After 6 days of inoculation, all infected leaves exhibited the symptoms as observed in the nursery, while the controls remained asymptomatic. The experiment was repeated twice. Re-isolation was performed from the symptomatic leaves and controls. The reisolated fungal isolates were identical to M. phaseolina morphologically and molecularly. No pathogens were isolated from the mock controls. M. phaseolina has been reported to cause leaf blight on Jasminium multiflorum in India (Mahadevakumar and Janardhana, 2016), and Crinum asiaticum and Hymenocallis littoralis in Malaysia (Abd Rahim et al. 2019). To our knowledge, this is the first report of M. phaseolina causing leaf blight on 'Kasai' in Malaysia and worldwide. Our findings serve as a warning for the authorities and farmers that the disease threat has appeared for 'Kasai' in Malaysia.
  18. Khoo YW, Tan HT, Khaw YS, Li SF, Chong KP
    Plant Dis, 2022 May 31.
    PMID: 35640953 DOI: 10.1094/PDIS-03-22-0566-PDN
    Selenicereus megalanthus (family Cactaceae), commonly known as yellow pitahaya is a new crop being planted commercially in Malaysia. In May 2021, stem canker symptoms with sign of black pycnidia formed on the surface of canker (30- to 55-mm in diameter) were observed on the stem of 80% of 'yellow pitahaya' plants in the field (~8 ha) located in the district Keningau of Sabah, Malaysia (5°20'53.1"N 116°06'23.0"E). The infected stems became rotted when black pycnidia formed. To isolate the pathogen, the symptom margin was excised into four small blocks (5 x 5 x 5 mm), and the blocks were surface sterilized based on Khoo et al. (2022) before plating on potato dextrose agar (PDA). Plates were incubated at 25°C for 7 days in the dark. Two isolates were obtained and were named Keningau and Keningau02. Powdery white mycelia were initially observed in two plates, and then became dark grey with age. Dark pigmentation in plates was observed after a week of incubation at 25°C in the dark. Arthroconidia (n= 30) were hyaline to dark brown, circular or cylindrical with round to truncate ends, with zero to one septum, measuring 8.9 x 5.6 µm in size. Conidia (n= 30) exuded in milky white cirrhus from pycnidia were one-celled, aseptate, oblong, measuring 10.3 × 4.6 µm in size. When reached the maturity stage, conidia were brown and septate. Genomic DNA from Keningau and Keningau02 were extracted from fresh mycelia based on Khoo et al. (2021) and Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-α (TEF1) region and β-tubulin (TUB) genes were performed using ITS1/ITS4, EF1-728F/EF1-986R and T10/Bt2b primer sets, respectively (Carbone and Kohn, 1999; O'Donnell et al. 1997; White et al. 1990). The products were sent to Apical Scientific Sdn. Bhd. for sequencing. BLASTn analysis of the newly generated ITS (GenBank OK458559, OM649909), TEF1 (GenBank OM677768, OM677769) and TUB (GenBank OL697398, OM677766) indicated 99% identity to Neoscytalidium novaehollandiae strain CBS 122071 (GenBank MT592760). Phylogenetic analysis using maximum likelihood and Bayesian inference on the concatenated ITS-TEF1-TUB was constructed using IQ-Tree and MrBayes3.2.7. Neoscytalidium hyalinum, N. novaehollandiae and Neoscytalidium orchidacearum are reduced to synonymy with N. dimidiatum (Philips et al. 2013; Zhang et al. 2021). Although N. novaehollandiae is morphologically and phylogenetically similar to N. dimidiatum, but N. novaehollandiae produce muriform, Dichomera-like conidia that distinguish this species from other known Neoscytalidium species (Crous et al. 2006). No muriform, Dichomera-like conidia were observed in the Malaysia' isolates. The pathogen was identified as N. dimidiatum based on molecular data and morphological characterization (Serrato-Diaz and Goenaga, 2021). Pathogenicity tests were performed based on Mohd et al. (2013) by injection inoculation of 0.2 ml of conidial suspensions (1 x 106 conidia/ml) from isolate Keningau to three 30-month-old yellow pitahaya stems using a disposable needle and syringe. Distilled water was injected into three mock controls. The inoculated yellow pitahaya plants were covered with plastics for 48 h and incubated at 25°C. The pathogenicity test was also performed using isolate Keningau02. All inoculated stems developed symptoms as described after 6 days post-inoculation, whereas no symptoms occurred on controls, thus fulfilling Koch's postulates. The experiments were repeated two more times. The reisolated fungi were identical to the pathogen morphologically and molecularly. To our knowledge, this is the first report of N. dimidiatum causing stem canker on S. megalanthus in Malaysia. Our findings serve as a warning for the authorities and farmers that the disease threat has appeared in the Malaysian yellow pitahaya production.
  19. Khoo YW, Khaw YS, Tan HT, Li SF, Chong KP
    Plant Dis, 2022 May 17.
    PMID: 35581908 DOI: 10.1094/PDIS-03-22-0699-PDN
    'Thai Gold' yellow pitahaya (family Cactaceae, Selenicereus megalanthus) is a new crop being planted commercially in Malaysia. In May 2021, reddish-brown necrotic lesions were observed on the stems of approximately 60% of 'yellow pitahaya' plants in the field (~8 ha) located in the district Keningau of Sabah, Malaysia (5°20'53.1"N 116°06'23.0"E). As the disease progressed, the smaller lesions merged into larger irregularly shaped areas that formed dark brown in color. Stems with reddish-brown spot symptoms from ten plants were collected from the field and brought to the laboratory in sterilized paper bags. The symptom margin was excised into small blocks (5 x 5 x 5 mm). The blocks were surface sterilized based on Khoo et al. (2022), and placed on potato dextrose agar (PDA). The pathogens were isolated (three isolates were obtained) and cultured on potato dextrose agar (PDA) at 25°C for 5 days in the dark. The isolates developed floccose, white colony that darkened with age in PDA. Conidia (n = 30) were single celled, black, smooth, globose to subglobose, 13.9 to 18.7 μm in diameter, and borne singly on a hyaline vesicle at the tip of each conidiophore. Genomic DNA was extracted from fresh mycelia based on Khoo et al. (2021) and Khoo et al. (2022). Amplification of the internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-α (tef1-a) region and β-tubulin (tub2) genes were performed using ITS1/ITS4 (White et al. 1990), EF1-728F/EF2 (O'Donnell et al. 1998; Carbone and Kohn, 1999) and T10/Bt2b (Glass and Donaldson, 1995; O'Donnell and Cigelnik, 1997) primer sets, respectively. The products were sent to Apical Scientific Sdn. Bhd. for purification and sequencing. BLASTn analysis of the newly generated ITS (OK448496, OM832586, OM832589) were 100% identical to Nigrospora sphaerica isolate 1SS (MN339998) (507/507 bp), tef1-a (OM223859, OM826971, OM826972) were 100% identical to Nigrospora sphaerica isolate F (MT708197) (497/497 bp) and tub2 (OL697400, OM826973, OM826974) were 100% identical to Nigrospora sphaerica isolate SN180517 (MN719407) (434/434 bp). The isolates established a supported clade to the related N. sphaerica type sequences, according to phylogenetic analysis using maximum likelihood based on the concatenated ITS, tef1-a and tub2 sequences. Morphological and molecular characterization matched the description of N. sphaerica (Kee et al. 2019). Koch's postulates were performed by spray inoculation (106 spores/ml) of isolate Keningau on the stem of three 'Thai Gold' yellow pitahaya plants in growth stage 4 (BBCH code: 419) (Kishore, 2016), while water was sprayed on three mock controls. The experiment was repeated using isolate Keningau02 and Keningau03 as inoculants. The inoculated stems on yellow pitahaya plants were covered with plastics for 48 h, and the plants were maintained in a greenhouse at room temperature 25 to 28°C with a relative humidity of 80 to 90%. All the inoculated stems developed symptoms 5 days post-inoculation, whereas no symptoms occurred on mock controls, thus fulfilling the Koch's postulates. No pathogen was isolated from the mock controls. The experiments were repeated two more times for each isolate. The reisolated fungi were identical to N. sphaerica morphologically and molecularly. Previously, N. sphaerica has been reported to cause stem brown spot disease on S. megalanthus in the Philippines (Taguiam et al. 2020). To our knowledge, this is the first report of N. sphaerica causing stem brown spot on 'Thai Gold' S. megalanthus in Malaysia. Our findings serve as a warning for the authorities and farmers that the disease threat has appeared for the Malaysian yellow pitahaya production.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links