Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Ahmad F, Bakar SA, Ibrahim AZ, Read RW
    Planta Med, 1997 Apr;63(2):193-4.
    PMID: 17252347
  2. Al-Amin M, Eltayeb NM, Hossain CF, Khairuddean M, Fazalul Rahiman SS, Salhimi SM
    Planta Med, 2020 Apr;86(6):387-394.
    PMID: 32168546 DOI: 10.1055/a-1129-7026
    Zingiber montanum rhizomes are traditionally used for the treatment of numerous human ailments. The present study was carried out to investigate the inhibitory activity of the crude extract, chromatographic fractions, and purified compounds from Z. montanum rhizomes on the migration of MDA-MB-231 cells. The effect of the extract on cell migration was investigated by a scratch assay, which showed significant inhibition in a concentration-dependent manner. Vacuum liquid chromatography on silica gel afforded four fractions (Frs. 1 - 4), which were tested on cell migration in the scratch assay. Frs. 1 and 2 showed the most significant inhibition of MDA-MB-231 cell migration. The effect of the most potent fraction (Fr. 2) was further confirmed in a transwell migration assay. The study of Frs. 1 and 2 by gelatin zymography showed significant inhibition of MMP-9 enzyme activity. Chromatographic separation of Frs. 1 and 2 afforded buddledone A (1: ), zerumbone (2: ), (2E,9E)-6-methoxy-2,9-humuradien-8-one (3: ), zerumbone epoxide (4: ), stigmasterol (5: ), and daucosterol (6: ). In a cell viability assay, compounds 1:  - 4: inhibited the viability of MDA-MB-231 cells in a concentration-dependent manner. The study of buddledone A (1: ) and zerumbone epoxide (4: ) on cell migration revealed that 4: significantly inhibited the migration of MDA-MB-231 cells in both scratch and transwell migration assays. The results of the present study may lead to further molecular studies behind the inhibitory activity of zerumbone epoxide (4: ) on cell migration and support the traditional use of Z. montanum rhizomes for the treatment of cancer.
  3. Ali AM, Mackeen MM, Hamid M, Aun QB, Zauyah Y, Azimahtol HL, et al.
    Planta Med, 1997 Feb;63(1):81-3.
    PMID: 9063100
    The cytotoxicity of goniothalamin was found to be strong towards both cancerous (HGC-27, MCF-7, PANC-1, HeLa), and non-cancerous (3T3) cell lines, especially in cases of dividing cells. Drug exposure studies indicated that the cytotoxic action of goniothalamin was time- and dose-dependent. At the ultrastructural level, goniothalamin-induced cytotoxicity revealed a necrotic mode of cell death towards MCF-7 cells.
  4. Ang KP, Tan HK, Selvaraja M, Kadir AA, Somchit MN, Akim AM, et al.
    Planta Med, 2011 Nov;77(16):1782-7.
    PMID: 21614753 DOI: 10.1055/s-0030-1271119
    Development of early stage atherosclerosis involves the activation of endothelial cells by oxidized low-density lipoprotein (oxLDL) with subsequent increases in endothelial permeability and expression of adhesion molecules favoring the adherence of monocytes to the endothelium. Cryptotanshinone (CTS), a major compound derived from the Chinese herb Salvia miltiorrhiza, is known for its protective effects against cardiovascular diseases. The aim of this study was to determine whether CTS could prevent the oxLDL-induced early atherosclerotic events. OxLDL (100 µg/mL) was used to increase endothelial permeability and induce monocyte-endothelial cell adhesion in human umbilical vein endothelial cells (HUVECs). Endothelial nitric oxide (NO) concentrations, a permeability-regulating molecule, and expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were measured. Results show that a) endothelial hyperpermeability was suppressed by 94 % (p 
  5. Ayumi RR, Shaik Mossadeq WM, Zakaria ZA, Bakhtiar MT, Kamarudin N, Hisamuddin N, et al.
    Planta Med, 2020 May;86(8):548-555.
    PMID: 32294786 DOI: 10.1055/a-1144-3663
    The antinociceptive property of Centella asiatica extracts is known but the analgesic activity of its bioactive constituent asiaticoside has not been reported. We evaluated the antinociceptive activity of orally (p. o.) administered asiaticoside (1, 3, 5, and 10 mg/kg) in mice using the 0.6% acetic acid-induced writhing test, the 2.5% formalin-induced paw licking test, and the hot plate test. The capsaicin- and glutamate-induced paw licking tests were employed to evaluate the involvement of the vanilloid and glutamatergic systems, respectively. Asiaticoside (3, 5, and 10 mg/kg, p. o.) reduced the rate of writhing (p 
  6. Ayumi RR, Shaik Mossadeq WM, Zakaria ZA, Bakhtiar MT, Kamarudin N, Hisamuddin N, et al.
    Planta Med, 2020 May;86(8):e6.
    PMID: 32384548 DOI: 10.1055/a-1170-9487
  7. Balz JP, Das NP
    Planta Med, 1979 Jun;36(2):174-7.
    PMID: 461570
  8. Chan JSW, Lim XY, Japri N, Ahmad IF, Tan TYC
    Planta Med, 2024 Mar;90(3):204-218.
    PMID: 38035621 DOI: 10.1055/a-2219-9801
    Zingiber zerumbet, a plant native to tropical and subtropical Asia, has a vast range of traditional uses and has been continuously studied for its medicinal properties. However, a systematic methodological approach in evidence synthesis on the plant's efficacy is lacking, and there is a need to elicit the current research status of this plant. This scoping review was conducted to systematically explore and collate the available scientific evidence on the efficacy of Z. zerumbet and its main phytoconstituents in various formulations, their biological mechanisms, and their safety. Results included 54 articles consisting of animal studies, while there were no published human studies. Only half of the included studies provided adequate reporting on the quality-related details of Z. zerumbet formulations. Identified pharmacological activities were analgesic, anti-inflammatory, anti-diabetic, anti-hyperlipidemic, anti-neoplastic, immunomodulatory, antioxidant, antipyretic, hepatoprotective, nephroprotective, gastroprotective, and locomotor-reducing activities. Notably, the ethanolic extract of Z. zerumbet was found to be well tolerated for up to 28 days. In conclusion, Z. zerumbet and zerumbone have various pharmacological effects, especially in analgesic and anti-inflammatory models. However, there is still a pressing need for comprehensive safety data to conduct clinical trials.
  9. Chan KL, Choo CY, Morita H, Itokawa H
    Planta Med, 1998 Dec;64(8):741-5.
    PMID: 17253320 DOI: 10.1055/s-2006-957570
    An analytical method using HPLC with UV detection was developed to investigate the quassinoid content of Eurycoma longifolia Jack (Simaroubaceae) collected from various sources. Eurycomanone (1), longilactone (2), 14,15beta-dihydroxyklaineanone (3), 15beta-acetyl-14-hydroxyklaineanone (4), 6alpha-hydroxyeurycomalactone (5), and eurycomalactone (7) were isolated as reference standards and together with the synthesized 1beta,12alpha,15beta-triacetyleurycomanone (6, internal standard), were identified by NMR, MS, UV and IR spectroscopies. Their coefficient of variation values for 0.50-35 microg ml(-1) concentrations of quassinoids and their retention times measured within- and between-day were small. The recoveries of the spiked quassinoids in E. longifolia samples and their detection limits at 8.5 times signal to noise ratio were 99.75-109.13% and 0.01 microg ml(-1), respectively. From the root samples analysed, 1 had the highest concentration, being about 16.8-39.6 fold higher than the other quassinoids 2, 3, 5, 7 but 145.3 fold higher than 4 which showed the lowest concentration.
  10. Chan KL, Choo CY, Abdullah NR
    Planta Med, 2005 Oct;71(10):967-9.
    PMID: 16254833 DOI: 10.1055/s-2005-864188
    Among the quassinoids isolated from Eurycoma longifolia Jack, eurycomanone was identified as the most potent and toxic inhibitor of the chloroquine-resistant Gombak A isolate of Plasmodium falciparum. Several diacylated derivatives of eurycomanone, 1,15-di-O-isovaleryleurycomanone, 1,15-di-O-(3,3-dimethylacryloyl)- eurycomanone and 1,15-di-O-benzoyleurycomanone were synthesized by direct acylation with the respective acid chlorides. The monoacylated 15-O-isovaleryleurycomanone was synthesized by selective protection of the other hydroxy groups of eurycomanone with trimethylsilyl trifluoromethanesulphonate to enable the exclusive acylation of its C-15 hydroxy group. This was followed by the removal of the protecting groups with citric acid. The diacylated eurycomanones exhibited lower antiplasmodial activity against the Gombak A isolates and lower toxicity in the brine shrimp assay when compared to eurycomanone. In contrast, the monoacylated derivative displayed comparable antiplasmodial potency to eurycomanone, but its toxicity was reduced. Thus, preliminary studies of the synthesized acylated eurycomanones have shown that acylation only at the C-15 hydroxy group may be worthy of further antimalarial investigation.
  11. Chan KL, Yuen KH, Jinadasa S, Peh KK, Toh WT
    Planta Med, 1997 Feb;63(1):66-9.
    PMID: 9063097
    A high-performance liquid chromatography assay equipped with a glassy carbon electrode for electrochemical detection (HPLC-ECD) was developed at reductive mode for the analysis of artemisinin, the antimalarial drug from Artemisia annua (Asteraceae) in human plasma. This method was selective, sensitive, and produced satisfactory recovery, precision, and accuracy. Analysis of plasma samples from 8 male volunteers given 10 mg kg-1 of artemisinin orally as an aqueous suspension showed a mean peak plasma concentration (Cmax) of 580.89 ng ml-1 +/- 88.64 SD at 2.5 h +/- 0.5 SD after dosing, and the mean area under the plasma concentration-time curve (AUC0-infinity) was 2227.57 ng h ml-1 +/- 677.22 SD. In addition, the elimination rate constant (Ke), elimination half-life (t1/2), and apparent volume of distribution (Vd) were calculated to be 0.2971 h-1 +/- 0.0644 SD, 2.42 h +/- 0.46 SD, and 16.26 l kg-1 +/- 3.44 SD, respectively.
  12. Cho KH, Tan SP, Tan HY, Liew SY, Nafiah MA
    Planta Med, 2023 Jan;89(1):79-85.
    PMID: 35288885 DOI: 10.1055/a-1797-0548
    A phytochemical study has been carried out on CH2Cl2 extract of Alphonsea cylindrica leaves, resulting in the isolation of three new morphinan alkaloids. They are kinomenine (1: ), N-methylkinomenine (2: ), and hydroxymethylkinomenine (3: ). The structures of these compounds were elucidated by extensive spectroscopic analysis (1D and 2D NMR, IR, UV, HRESIMS) and comparison with the data reported in literature for similar alkaloids. Kinomenine (1: ) and N-methylkinomenine (2: ) showed weak inhibition against S. aureus (MIC values of 1: and 2:  = 500 µg/mL; pIC50 values in 95% C. I. of: 1:  = 2.9 to 3.0; 2:  = 2.9 to 3.1), while kinomenine (1: ) also showed weak inhibition against E. coli (MIC values of 1:  = 500 µg/mL; pIC50 value in 95% C. I. of: 1:  = 2.9) by broth microdilution method. The results obtained can be used as future referencefor the discovery of morphinans and the potential of A. cylindrica as an antibacterial source.
  13. Coldren CD, Hashim P, Ali JM, Oh SK, Sinskey AJ, Rha C
    Planta Med, 2003 Aug;69(8):725-32.
    PMID: 14531023
    The molecular pathways underlying the diverse biological activity of the triterpeniod compounds isolated from the tropical medicinal plant Centella asiatica were studied with gene microarrays and real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to quantify the expression of 1053 human genes in human fibroblasts. Fibroblast cells grown in culture were used as a model system to evaluate the stimulation of wound healing by titrated extract from Centella asiatica (TECA) as well as by the four principal triterpenoid components of Centella. TECA treatment effects the expression of genes involved in angiogenesis and the remodeling of extracellular matrix, as well as diverse growth factor genes. The extent of expression change of TNFAIP6, an extracellular hyaluronan binding protein, was found to be largely dose-dependent, to respond most strongly to the free acids asiatic acid and madecassic acid, and to increase in expression over 48 hours of treatment. These results show that Centella triterpenes evoke a gene-expression response consistent with their prevailing medical uses in the treatment of connective tissue disorders such as wound healing and microangiopathy. The identification of genes modulated by these compounds provides the basis for a molecular understanding of Centella's bioactivity, and opportunities for the quantitative correlation of this activity with clinical effectiveness at a molecular level.
  14. Ebrahimi F, Ibrahim B, Teh CH, Murugaiyah V, Lam CK
    Planta Med, 2017 Jan;83(1-02):172-182.
    PMID: 27399233 DOI: 10.1055/s-0042-110857
    Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The (1)H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The (1)H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotelling's T(2) plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotelling's T(2) plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and discriminated E. longifolia roots from different locations. These findings could be applicable to future research on E. longifolia where the higher content of quassinoids is required.
  15. Han WB, Dou H, Yuan WH, Gong W, Hou YY, Ng SW, et al.
    Planta Med, 2015 Jan;81(2):145-51.
    PMID: 25519918 DOI: 10.1055/s-0034-1383392
    The endophytic fungus Guignardia mangiferae isolated from Ilex cornuta leaves was shown to produce a family of meroterpenes with toll-like receptor 3 regulating activity (1-9), of which 1-3 possessed new structures. The absolute stereochemistry of 1-3 was assigned through a combination of nuclear magnetic resonance experiments, chemical derivation, CD spectra, and single-crystal X-ray diffraction analyses (CuK α ). The precursor labeled cultivation suggests that these meroterpenes are most likely assembled through terpenoid-shikimate pathways. Moreover, meroterpenes 1-3, 5-7, and 9 selectively upregulate, but 4 and 8 downregulate the toll-like receptor 3 expression in mouse dendritic cells at 10.0 µM.
  16. Haque MA, Jantan I, Harikrishnan H, Abdul Wahab SM
    Planta Med, 2018 Nov;84(17):1255-1264.
    PMID: 29906814 DOI: 10.1055/a-0637-9936
    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF-κB, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF-κB, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF-α, IL-1β, and PGE2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF-κB activation by prompting p65, IκBα, and IKKα/β phosphorylation as well as IκBα degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF-κB, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF-α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses.
  17. Hazni H, Ahmad N, Hitotsuyanagi Y, Takeya K, Choo CY
    Planta Med, 2008 Dec;74(15):1802-5.
    PMID: 18991205 DOI: 10.1055/s-0028-1088340
    The methanolic extract of the leaves of CASSIA ALATA was sequentially partitioned in increasing polarity to afford the hexane, chloroform, butanol and residual extract. Crude extracts were evaluated against MRSA using the agar well diffusion assay. The butanol and chloroform extracts both exhibited inhibition against MRSA with inhibition indexes of 1.03 +/- 0.16 and 0.78 +/- 0.07 at the concentration of 50 mg/mL. The butanol extracts were further purified using silica gel and reverse phase chromatography to afford kaempferol ( 1), kaempferol 3- O-beta-glucopyranoside ( 2), kaempferol 3- O-gentiobioside ( 3) and aloe emodin ( 4). The four constituents showed varying degrees of inhibition against MRSA. Both 1 and 4 exhibited MIC (50) values of 13.0 +/- 1.5 microg/mL and 12.0 +/- 1.5 microg/mL, respectively. The kaempferol glycosides 2 and 3 were less active with MIC (50) values of 83.0 +/- 0.9 microg/mL and 560.0 +/- 1.2 microg/mL, respectively. A free hydroxyl group at C-3 of the flavonol structure is a structural requirement for the inhibition of MRSA.
  18. Hsum YW, Yew WT, Hong PL, Soo KK, Hoon LS, Chieng YC, et al.
    Planta Med, 2011 Jan;77(2):152-7.
    PMID: 20669087 DOI: 10.1055/s-0030-1250203
    Chronic inflammation is one of the predisposing factors for neoplastic transformation. Targeting inflammation through suppression of the pro-inflammatory pathway by dietary phytochemicals provides an important strategy for cancer prevention. Maslinic acid is a novel natural triterpenoid known to inhibit proliferation and induce apoptosis in some tumor cell lines. Although maslinic acid has cytotoxic and pro-apoptotic effects on cancer cells, the underlying mechanisms of its effects on the inflammatory pathway have yet to be elucidated. It has been reported that abnormal expression of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) causes promotion of cellular proliferation, suppression of apoptosis, enhancement of angiogenesis and invasiveness. In the present study, the suppressive effect of maslinic acid on COX-2 expression and the binding activity of upstream transcription factors NF- κB and AP-1, which are known to regulate COX-2 transcriptional activation, were assessed using Raji cells. The anti-inflammatory action of maslinic acid was benchmarked against oleanolic acid and other standard drugs. Western blot analysis and electrophoretic mobility shift assay (EMSA) were employed to analyze COX-2 expression as well as NF- κB and AP-1 binding activity. Our results showed that maslinic acid suppresses COX-2 expression in a concentration-dependent manner. Likewise, the constitutive nuclear NF- κB (p65) activity as well as phorbol 12-myristate 13-acetate (PMA)- and sodium N-butyrate (SnB)-induced AP-1 binding activity in Raji cells were significantly reduced following treatment with maslinic acid. Since maslinic acid suppresses COX-2 expression in Raji cells at concentrations that also lowered the NF- κB (p65) and AP-1 binding activity, it is possible that the suppression of COX-2 by this natural triterpenoid might be achieved, at least in part, via the NF- κB and AP-1 signaling pathways.
  19. Hussain K, Ismail Z, Sadikun A, Ibrahim P
    Planta Med, 2010 Mar;76(5):418-25.
    PMID: 19862670 DOI: 10.1055/s-0029-1186279
    The present study aimed to investigate standardized ethanol extracts of fruit and leaves of Piper sarmentosum for their in vivo antioxidant activity in rats using a CCl (4)-induced oxidative stress model. The standardization was based on the quantification of the markers pellitorine, sarmentine and sarmentosine by high performance liquid chromatography (HPLC), and determination of total primary and secondary metabolites. The rats, divided into 7 groups each (n = 6), were used as follows: group 1 (CCl (4), negative control), group 2 (untreated, control), groups 3 and 4 (fruit extract 250 and 500 mg/kg, respectively), groups 5 and 6 (leaf extract 250 and 500 mg/kg, respectively) and group 7 (vitamin-E 100 mg/kg, positive control). The doses were administered orally for 14 days; 4 h following the last dose, a single dose of CCl (4) (1.5 mg/kg) was given orally to all the groups except group 2, and after 24 h, blood and liver of each animal were obtained. Analysis of plasma and liver homogenate exhibited significant preservation of markers of antioxidant activity, total plasma antioxidant activity (TPAA), total protein (TP), superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid reactive species (TBARS), in the pretreated groups as compared to the CCl (4) group (p < 0.05). Histology of the liver also evidenced the protection of hepatocytes against CCl (4) metabolites in the pretreated groups. The results of this study indicate the IN VIVO antioxidant activity of both extracts of the plant, which may be valuable to combat diseases involving free radicals.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links