Displaying publications 1 - 20 of 577 in total

Abstract:
Sort:
  1. Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM
    Polymers (Basel), 2024 Mar 05;16(5).
    PMID: 38475395 DOI: 10.3390/polym16050709
    Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
  2. Kainz M, Perak S, Stubauer G, Kopp S, Kauscheder S, Hemetzberger J, et al.
    Polymers (Basel), 2024 Feb 28;16(5).
    PMID: 38475341 DOI: 10.3390/polym16050655
    Additive and lithographic manufacturing technologies using photopolymerisation provide a powerful tool for fabricating multiscale structures, which is especially interesting for biomimetic scaffolds and biointerfaces. However, most resins are tailored to one particular fabrication technology, showing drawbacks for versatile use. Hence, we used a resin based on thiol-ene chemistry, leveraging its numerous advantages such as low oxygen inhibition, minimal shrinkage and high monomer conversion. The resin is tailored to applications in additive and lithographic technologies for future biofabrication where fast curing kinetics in the presence of oxygen are required, namely 3D inkjet printing, digital light processing and nanoimprint lithography. These technologies enable us to fabricate scaffolds over a span of six orders of magnitude with a maximum of 10 mm and a minimum of 150 nm in height, including bioinspired porous structures with controlled architecture, hole-patterned plates and micro/submicro patterned surfaces. Such versatile properties, combined with noncytotoxicity, degradability and the commercial availability of all the components render the resin as a prototyping material for tissue engineers.
  3. Tai MH, Thiam HS, Tee SF, Lim YS, Saw LH, Lai SO
    Polymers (Basel), 2023 Dec 08;15(24).
    PMID: 38139893 DOI: 10.3390/polym15244641
    Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed to create a healable PEM with improved durability and methanol barrier properties by combining sulfonated poly(ether ether ketone) (SPEEK) and poly-vinyl alcohol (PVA). The effect of changing the N,N-dimethylacetamide (DMAc) solvent concentration during membrane casting was investigated. Lower DMAc concentrations improved water absorption and, thus, membrane proton conductivity, but methanol permeability increased correspondingly. For the best trade-off between these two characteristics, the blend membrane with a 10 wt% DMAc solvent (SP10) exhibited the highest selectivity. SP10 also showed a remarkable self-healing capacity by regaining 88% of its pre-damage methanol-blocking efficiency. The ability to self-heal decreased with the increasing solvent concentration because of the increased crosslinking density and structure compactness, which reduced chain mobility. Optimizing the solvent concentration during membrane preparation is therefore an important factor in improving membrane performance in DMFCs. With its exceptional methanol barrier and self-healing characteristics, the pioneering SPEEK/PVA blend membrane may contribute to efficient and durable fuel cell systems.
  4. Payungwong N, Sakdapipanich J, Wu J, Ho CC
    Polymers (Basel), 2023 Dec 07;15(24).
    PMID: 38139887 DOI: 10.3390/polym15244636
    Natural rubber (NR) latex derived from Hevea brasiliensis is a complex colloid comprising mainly rubber hydrocarbons (latex particles) and a multitude of minor non-rubber constituents such as non-rubber particles, proteins, lipids, carbohydrates, and soluble organic and inorganic substances. NR latex is susceptible to enzymatic attack after it leaves the trees. It is usually preserved with ammonia and, to a lesser extent, with other preservatives to enhance its colloidal stability during storage. Despite numerous studies in the literature on the influence of rubber proteins on NR latex stability, issues regarding the effect of protein hydrolysis in the presence of ammonia on latex stability during storage are still far from resolved. The present work aims to elucidate the interplay between protein hydrolysis and ammoniation in NR latex stability. Both high- and low-ammonia (with a secondary preservative) NR latexes were used to monitor the changes in their protein compositions during storage. High-ammonia (FNR-A) latex preserved with 0.6% (v/v) ammonia, a low 0.1% ammonia/TMTD/ZnO (FNR-TZ) latex, and a deproteinized NR (PDNR) latex were labeled with fluorescence agents and observed using confocal laser scanning microscopy to determine their protein composition. Protein hydrolysis was confirmed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that protein hydrolysis increased with the storage duration. The change in protein composition accompanying hydrolysis also allows the spatial distribution of allergenic proteins to be estimated in the latex. Concurrently, the latex stability increased with the storage duration, as measured by the latex's mechanical stability time (MST) and the zeta potential of the latex particles. As monitored by AFM, the surface roughness of the NR latex film increased markedly during extended storage compared with that of the DPNR latex, which remained smooth. These results underscore the pivotal role of ammonia in bolstering NR latex stability brought on by protein hydrolysis, which greatly impacts latex film's formation behavior. NR latex stability underpins the quality of latex-dipped goods during manufacturing, particularly those for medical gloves.
  5. Al-Rajabi MM, Almanassra IW, Khalil AKA, Atieh MA, Laoui T, Khalil KA
    Polymers (Basel), 2023 Nov 30;15(23).
    PMID: 38232019 DOI: 10.3390/polym15234594
    Oil-contaminated water and industrial oily wastewater discharges have adversely affected aquatic ecosystems and human safety. Membrane separation technology offers a promising solution for effective oil-water separation. Thus, a membrane with high surface area, hydrophilic-oleophobic properties, and stability is a promising candidate. Electrospinning, a straightforward and efficient process, produces highly porous polymer-based membranes with a vast surface area and stability. The main objective of this study is to produce hydrophilic-oleophobic polyacrylonitrile (PAN) and cellulose acetate (CA) nanofibers using core-shell electrospinning. Incorporating CA into the shell of the nanofibers enhances the wettability. The core PAN polymer improves the electrospinning process and contributes to the hydrophilicity-oleophobicity of the produced nanofibers. The PAN/CA nanofibers were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, and surface-wetting behavior. The resulting PAN/cellulose nanofibers exhibited significantly improved surface-wetting properties, demonstrating super-hydrophilicity and underwater superoleophobicity, making them a promising choice for oil-water separation. Various oils, including gasoline, diesel, toluene, xylene, and benzene, were employed in the preparation of oil-water mixture solutions. The utilization of PAN/CA nanofibers as a substrate proved to be highly efficient, confirming exceptional separation efficiency, remarkable stability, and prolonged durability. The current work introduces an innovative single-step fabrication method of composite nanofibers, specially designed for efficient oil-water separation. This technology exhibits significant promise for deployment in challenging situations, offering excellent reusability and a remarkable separation efficiency of nearly 99.9%.
  6. Banjar MF, Joynal Abedin FN, Fizal ANS, Muhamad Sarih N, Hossain MS, Osman H, et al.
    Polymers (Basel), 2023 Nov 29;15(23).
    PMID: 38232004 DOI: 10.3390/polym15234565
    Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm2 scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.
  7. Lew JH, Matar OK, Müller EA, Luckham PF, Sousa Santos A, Myo Thant MM
    Polymers (Basel), 2023 Oct 10;15(20).
    PMID: 37896286 DOI: 10.3390/polym15204037
    In this work, the interaction of hydrolysed polyacrylamide (HPAM) of two molecular weights (F3330, 11-13 MDa; F3530, 15-17 MDa) with calcium carbonate (CaCO3) was studied via atomic force microscopy (AFM). In the absence of polymers at 1.7 mM and 1 M NaCl, good agreement with DLVO theory was observed. At 1.7 mM NaCl, repulsive interaction during approach at approximately 20 nm and attractive adhesion of approximately 400 pN during retraction was measured, whilst, at 1 M NaCl, no repulsion during approach was found. Still, a significantly larger adhesion of approximately 1400 pN during retraction was observed. In the presence of polymers, results indicated that F3330 displayed higher average adhesion (450-625 pN) and interaction energy (43-145 aJ) with CaCO3 than F3530's average adhesion (85-88 pN) and interaction energy (8.4-11 aJ). On the other hand, F3530 exerted a longer steric repulsion distance (70-100 nm) than F3330 (30-70 nm). This was likely due to the lower molecular weight. F3330 adopted a flatter configuration on the calcite surface, creating more anchor points with the surface in the form of train segments. The adhesion and interaction energy of both HPAM with CaCO3 can be decreased by increasing the salt concentration. At 3% NaCl, the average adhesion and interaction energy of F3330 was 72-120 pN and 5.6-17 aJ, respectively, while the average adhesion and interaction energy of F3530 was 11.4-48 pN and 0.3-2.98 aJ, respectively. The reduction of adhesion and interaction energy was likely due to the screening of the COO- charged group of HPAM by salt cations, leading to a reduction of electrostatic attraction between the negatively charged HPAM and the positively charged CaCO3.
  8. Liu H, Ding Z, Fan Y, Luo Y, Yang Y
    Polymers (Basel), 2023 Sep 26;15(19).
    PMID: 37835940 DOI: 10.3390/polym15193892
    The bonding properties of BFRP composites have been demonstrated in previous studies, satisfying the strength and durability criteria. In this paper, a further in-depth study is carried out to bond Basalt Fibre Reinforced Polymer (BFRP) to Aluminum Alloy 5052 using two bonding agents, Aralite® 2012 and Aralite® 2015, respectively. The salt sprays under 80 °C, 3.5% NaCl environment; 80 °C, 5% NaCl environment; and pure water environment are also considered for comparison. Experimental results show that joints created with Araldite® 2012 adhesives show higher average breaking strength (10.66 MPa at 720 h) and better ductility in a 5% NaCl environment. While the Araldite® 2015 adhesive joint exhibits a combination of tear failure and interface failure, along with thin-layer cohesion failure. In the SEM images of the two adhesive joints' failure, fiber pullout due to tension and damage at the interface between fiber and resin is apparent. To validate the experimental outcomes, water absorption testing, DSC, TGA-DTG, and FTIR experiments were conducted on dog-bone-shaped adhesive specimens to elucidate the results.
  9. Chin SX, Lau KS, Ginting RT, Tan ST, Khiew PS, Chia CH, et al.
    Polymers (Basel), 2023 Sep 14;15(18).
    PMID: 37765612 DOI: 10.3390/polym15183758
    Wearable energy storage devices require high mechanical stability and high-capacitance flexible electrodes. In this study, we design a flexible supercapacitor electrode consisting of 1-dimensional carbon nanotubes (CNT), cellulose nanofibrils (CNF), and manganese dioxide nanowires (MnO2 NWs). The flexible and conductive CNT/CNF-MnO2 NWs suspension was first prepared via ultrasonic dispersion approach, followed by vacuum filtration and hot press to form the composite paper electrode. The morphological studies show entanglement between CNT and CNF, which supports the mechanical properties of the composite. The CNT/CNF-MnO2 NWs electrode exhibits lower resistance when subjected to various bending angles (-120-+120°) compared to the CNT/CNF electrode. In addition, the solid-state supercapacitor also shows a high energy density of 38 μWh cm-2 and capacitance retention of 83.2% after 5000 cycles.
  10. Muchtaridi M, Suryani AI, Wathoni N, Herdiana Y, Mohammed AFA, Gazzali AM, et al.
    Polymers (Basel), 2023 Sep 05;15(18).
    PMID: 37765512 DOI: 10.3390/polym15183658
    α-mangostin (Amg), a compound isolated from the mangosteen rind (Garcinia mangostana, L.), has demonstrated promising anticancer activity. However, its low solubility and selectivity against cancer cells limit its efficacy. To address this issue, researchers have developed chitosan/alginate polymeric nanoparticles (NANO-AMCAL) to enhance the effectiveness of Amg. In vitro studies have demonstrated that NANO-AMCAL is highly active against breast cancer cells. Therefore, an in vivo study was conducted to evaluate the efficacy of NANO-AMCAL in treating breast cancer in Wistar rats (Rattus norvegicus) and determine the effective dose. The rats were divided into seven treatment groups, including positive control, negative control, pure Amg, and NANO-AMCAL 5 mg, 10 mg, and 20 mg. The rats were injected subcutaneously with a carcinogenic agent, 7,12-dimethylbenz(a)anthracene (DMBA) and were evaluated for weight and tumor volume every three days during treatment. Surgery was performed on day 14, and histopathological studies were carried out on breast and lung cancer tissues. The results showed that NANO-AMCAL significantly enhanced the anticancer activity of Amg in treating breast cancer in Wistar rats. NANO-AMCAL containing 0.33 mg of Amg had a healing effect three times better than 20 mg pure Amg and was comparable to tamoxifen. The effective dose of NANO-AMCAL for anti-breast cancer treatment in Wistar rats was found to be 20 mg, which exhibited a good healing response, and the tumor volume continued to decrease up to 17.43% on the 14th day. Furthermore, histopathological tests showed tissue repair and no metastases. These findings suggest that NANO-AMCAL may be a promising therapeutic option for breast cancer treatment.
  11. Ismail KI, Pang R, Ahmed R, Yap TC
    Polymers (Basel), 2023 Aug 17;15(16).
    PMID: 37631493 DOI: 10.3390/polym15163436
    A 3D printed composite via the fused filament fabrication (FFF) technique has potential to enhance the mechanical properties of FFF 3D printed parts. The most commonly employed techniques for 3D composite printing (method 1) utilized premixed composite filaments, where the fibers were integrated into thermoplastic materials prior to printing. In the second method (method 2), short fibers and thermoplastic were mixed together within the extruder of a 3D printer to form a composite part. However, no research has been conducted on method 3, which involves embedding short fibers into the printed object during the actual printing process. A novel approach concerning 3D printing in situ fiber-reinforced polymer (FRP) by embedding glass fibers between deposited layers during printing was proposed recently. An experimental investigation has been undertaken to evaluate the tensile behavior of the composites manufactured by the new manufacturing method. Neat polylactic acid (PLA) and three different glass fiber-reinforced polylactic acid (GFPLA) composites with 1.02%, 2.39%, and 4.98% glass fiber contents, respectively, were 3Dprinted. Tensile tests were conducted with five repetitions for each sample. The fracture surfaces of the samples were then observed under scanning electron microscopy (SEM). In addition, the porosities of the 3D printed samples were measured with a image processing software (ImageJ 1.53t). The result shows that the tensile strengths of GFPLA were higher than the neat PLA. The tensile strength of the composites increased from GFPLA-1 (with a 1.02% glass fiber content) to GFPLA-2.4 (with a 2.39% glass fiber content), but drastically dropped at GFPLA-5 (with a 4.98% glass fiber content). However, the tensile strength of GFPLA-5 is still higher than the neat PLA. The fracture surfaces of tensile samples were observed under scanning electron microscopy (SEM). The SEM images showed the average line width of the deposited material increased as glass fiber content increased, while layer height was maintained. The intralayer bond of the deposited filaments improved via the new fiber embedding method. Hence, the porosity area is reduced as glass fiber content increased.
  12. Islam MS, Chan KY, Thien GSH, Low PL, Lee CL, Wong SK, et al.
    Polymers (Basel), 2023 Aug 16;15(16).
    PMID: 37631477 DOI: 10.3390/polym15163420
    Polymer-dispersed liquid crystal (PDLC) film is an active smart film penetrating the market due to its unique functionalities. These functional characteristics include switchable tint capabilities, which shield building residents from the sun's harmful ultraviolet (UV) rays, improve energy-saving features, and produce higher cost-efficiency. Although PDLC films are promising in several applications, there is still ambiguity on the performance of PDLC films. Particularly, the sizing effects' (such as film thickness and area) correlation with visible light transmission (VLT), ultraviolet rejection (UVR), infrared rejection (IRR), light intensity, current consumption, and apparent power consumption is not well understood. Therefore, this study investigated the sizing effects of PDLC films, including the thickness effect on VLT, UVR, IRR, light intensity, and area influence on current and apparent power consumptions. The varying applied voltage effect on the light transmittance of the PDLC film was also effectively demonstrated. A 0.1 mm PDLC film was successfully presented as a cost-efficient film with optimal parameters. Consequently, this study paves the way for a clearer understanding of PDLC films (behavior and sizing effects) in implementing economic PDLC films for large-scale adoption in commercial and residential premises.
  13. Iskalieva A, Yesmurat M, Al Azzam KM, Ainakulova D, Yerbolat Y, Negim ES, et al.
    Polymers (Basel), 2023 Jul 26;15(15).
    PMID: 37571059 DOI: 10.3390/polym15153165
    Blend copolymers (PVA/S) were grafted with polyethylene glycol methyl methacrylate (PEGMA) with different ratios. Potassium persulfate was used as an initiator. The blend copolymer (PVA/S) was created by combining poly(vinyl alcohol) (PVA) with starch (S) in various ratios. The main idea was to study the effect of different ratios of the used raw materials on the biodegradability of plastic films. The resulting polymers (PVA/S/PEGMA) were analyzed using FTIR spectroscopy to investigate the hydrogen bond interaction between PVA, S, and PEGMA in the mixtures. TGA and SEM analyses were used to characterize the polymers (PVA/S/AA). The biodegradability and mechanical properties of the PVA/S/PEGMA blend films were evaluated. The findings revealed that the mechanical properties of the blend films are highly influenced by PEGMA. The time of degradation of the films immersed in soil and Coca-Cola increases as the contents of PVA and S and the molecular weight (MW) of PEGMA increase in the terpolymer. The M8 sample (PVA/S/PEGMA in the ratio of 3:1:2, respectively) with a MW of 950 g/mol produced the lowest elongation at break (67.5%), whereas M1 (PVA/S/PEGMA in the ratio of 1:1:1, respectively) with a MW of 300 g/mol produced the most (150%). The film's tensile strength and elongation at break were improved by grafting PEGMA onto the blending polymer (PAV-b-S). Tg and Tm increased when the PEGMA MW increased from 300 to 950. Tg (48.4 °C) and Tm (190.9 °C) were the lowest in M1 (300), while Tg (84.8 °C) and Tm (190.9 °C) were greatest in M1 (950) at 209.3 °C. The increased chain and molecular weight of PEGMA account for the increase in Tg and Tm of the copolymers.
  14. Khoo PS, Ilyas RA, Uda MNA, Hassan SA, Nordin AH, Norfarhana AS, et al.
    Polymers (Basel), 2023 Jul 21;15(14).
    PMID: 37514503 DOI: 10.3390/polym15143114
    Over the past three decades, chemical and biological water contamination has become a major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and dyes are among the harmful substances that contribute to water pollution, which jeopardies the human health. For this reason, it is of the utmost importance to locate methods for the cleanup of wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocompatibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible environmentally friendly material for sustainable water remediation. Starch could exhibit significant adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have demonstrated a promising future for environmental wastewater treatment, additional research is required to optimize the technique before the starch-based adsorbent can be used in large-scale in situ wastewater treatment.
  15. Ago C, Li G, Wu J, Md Yusoff NI
    Polymers (Basel), 2023 Jul 18;15(14).
    PMID: 37514465 DOI: 10.3390/polym15143077
    Hydrophobic aggregates have the great ability to prevent asphalt pavement roads from stripping-off of the asphalt in presence of water. In addition, they give the option to consume less asphalt and save cost. On the other hand, natural aggregates have been found to be non-renewable and rare. Geopolymer based artificial aggregates are great materials as they demonstrated to have exceptional features, such as high strength, superior durability, and greater resistance to fire exposure. In this study, a new hydrophobic geopolymer based aggregate has been produced with rice ash (RA) and fly ash as precursors as well as, Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) as activators. The mechanical properties combined with the softening coefficient, surface properties of samples, contact angle and adhesion were characterized as well as microstructure X-ray diffraction (XRD) and Scanning electron microscopy (SEM) test. The results indicate that the activators Na2SiO3/NaOH at a mix ratio of 1 have a suitable effect on the pores and the compressive strength of the new artificial aggregate most particularly sodium hydroxide. Nonetheless, it has been found that coating the artificial aggregate with asphalt showed a great improvement of the hydrophobic nature of the produced artificial aggregate based geopolymer. Hence, indicates the possibility of using it as recycle aggregate pavement. From a microstructure point, the hydrophobic nature of the new alkali-activated artificial aggregate can be improved by increasing the quantity of mullite in the mix proportion design.
  16. Yasin SNN, Said Z, Halib N, Rahman ZA, Mokhzani NI
    Polymers (Basel), 2023 Jul 18;15(14).
    PMID: 37514474 DOI: 10.3390/polym15143085
    Excellent wound dressings should have crucial components, including high porosity, non-toxicity, high water absorption, and the ability to retain a humid environment in the wound area and facilitate wound healing. Unfortunately, current wound dressings hamper the healing process, with poor antibacterial, anti-inflammatory, and antioxidant activity, frequent dressing changes, low biodegradability, and poor mechanical properties. Hydrogels are crosslinked polymer chains with three-dimensional (3D) networks that have been applicable as wound dressings. They could retain a humid environment on the wound site, provide a protective barrier against pathogenic infections, and provide pain relief. Hydrogel can be obtained from natural, synthetic, or hybrid polymers. Honey is a natural substance that has demonstrated several therapeutic efficacies, including anti-inflammatory, antibacterial, and antioxidant activity, which makes it beneficial for wound treatment. Honey-based hydrogel wound dressings demonstrated excellent characteristics, including good biodegradability and biocompatibility, stimulated cell proliferation and reepithelization, inhibited bacterial growth, and accelerated wound healing. This review aimed to demonstrate the potential of honey-based hydrogel in wound healing applications and complement the studies accessible regarding implementing honey-based hydrogel dressing for wound healing.
  17. Kamairudin N, Abdullah LC, Hoong SS, Biak DRA, Ariffin H
    Polymers (Basel), 2023 Jul 13;15(14).
    PMID: 37514418 DOI: 10.3390/polym15143028
    Recently, most of the commercial polyols used in the production of rigid polyurethane foams (RPUFs) have been derived from petrochemicals. Therefore, the introduction of modified palm oil derivatives-based polyol as a renewable material into the formulation of RPUFs is the focus of this study. A palm oil derivative-namely, methyl oleate (MO)-was successfully modified through three steps of reactions: epoxidation reaction, ring-opened with glycerol, followed by amidation reaction to produce a bio-based polyol named alkanolamide polyol. Physicochemical properties of the alkanolamide polyol were analyzed. The hydroxyl value of alkanolamide polyol was 313 mg KOH/g, which is suitable for producing RPUFs. Therefore, RPUFs were produced by replacing petrochemical polyol with alkanolamide polyol. The effects of alkanolamide polyol on the physical, mechanical and thermal properties were evaluated. The results showed that the apparent density and compressive strength increased, and cell size decreased, upon introducing alkanolamide polyol. All the RPUFs exhibited low water absorption and excellent dimensional stability. The RPUFs made with increased amounts of alkanolamide polyol showed higher thermal conductivity. Nevertheless, the thermal conductivities of RPUFs made with alkanolamide polyol are still within the range for thermal insulating materials (<0.1 W/m.K). The thermal stability of RPUFs was improved with the addition of alkanolamide polyol into the system. Thus, the RPUFs made from alkanolamide polyol are potential candidates to be used as insulation for refrigerators or freezers.
  18. Herdiana Y, Husni P, Nurhasanah S, Shamsuddin S, Wathoni N
    Polymers (Basel), 2023 Jul 05;15(13).
    PMID: 37447598 DOI: 10.3390/polym15132953
    Breast cancer is a major cause of death globally, accounting for around 13% of all deaths. Chemotherapy, the common treatment for cancer, can have side effects that lead to the production of reactive oxygen species (ROS) and an increase in oxidative stress in the body. Antioxidants are important for maintaining the health of cells and helping the immune system function properly. They play a crucial role in balancing the body's internal environment. Using natural antioxidants is an alternative to mitigate the harmful effects of oxidative stress. However, around 80% of natural antioxidants have limited effectiveness when taken orally because they do not dissolve well in water or other solvents. This poor solubility affects their ability to be absorbed by the body and limits their bioavailability. One strategy that has been considered is to increase their water solubility to increase their oral bioavailability. Chitosan-based nanoparticle (CSNP) systems have been extensively explored due to their reliability and simpler synthesis routes. This review focuses on the various methods of chitosan-based nanoformulation for developing effective oral dosage forms for natural antioxidants based on the pharmacokinetics and pharmacodynamics properties. Chitosan (CS) could be a model, because of its wide use in polymeric NPs research, thus providing a better understanding of the role of vehicles that carry natural antioxidants in maintaining the stability and enhancing the performance of cancer drugs.
  19. Bahlouli S, Belaadi A, Makhlouf A, Alshahrani H, Khan MKA, Jawaid M
    Polymers (Basel), 2023 Jun 30;15(13).
    PMID: 37447555 DOI: 10.3390/polym15132910
    In this research work, we aim to study the effect of the incorporation of vegetable fiber reinforcement on the thermo-mechanical and dynamic properties of a composite formed by a polymeric matrix reinforced with cellulosic fibers with the various Washingtonia fiber (WF) loadings (0%, 10%, 20%, and 30% by wt%) as reinforced material in high-density polyethylene (HDPE) Biocomposites to evaluate the optimum fiber loading of biocomposites. In addition, several characterization techniques (i.e., thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal mechanical analysis (TMA)) were used to better understand the characteristics of the new composites prepared. With these techniques, we managed to verify the rigidity and thermal stability of the composites so elaborated, as well as the success of the polymer and the structural homogeneity of the obtained biocomposites. Hence, the biocomposite with the best ratio (HDPE/20WF) showed a loss modulus (E″) of 224 MPa, a storage modulus (E') of 2079 MPa, and a damping factor (Tanδ) of 0.270 to the glass transition (Tg) of 145 °C. In addition, thermomechanical analysis (TMA) of the biocomposite samples exhibited marginally higher Ts compared to the HDPE matrix. The best results were recorded with biocomposites with 20% WF, which showed better thermal properties. This composite material can be used as insulation in construction materials (buildings, false ceilings, walls, etc.).
  20. Wan Yahaya WA, Azman NAM, Adam F, Subramaniam SD, Abd Hamid KH, Almajano MP
    Polymers (Basel), 2023 Jun 29;15(13).
    PMID: 37447534 DOI: 10.3390/polym15132884
    Biodegradable films made from biopolymer materials have the potential to replace conventional plastics, which can reduce waste disposal problems. This study aims to explore the potential of different seaweed derivate films consisting of 2% (w/w) of kappaphycus alverezi (KA), kappa carrageenan (KC), refined carrageenan (RC) and semi-refined carrageenan (SRC) as bio-based materials with 0.9% (w/w) glycerol (G), and reinforced with different concentrations of cellulose nanofibers (CNFs) derived from palm waste. A characterization of the glycerol-plasticized seaweed derivatives containing 0, 5, 10, and 15% (v/w) cellulose nanofiber is carried out. The CNFs were studied based on their mechanical, physical and thermal properties including mechanical properties, thickness, moisture content, opacity, water solubility, water vapor permeability and thermal stability. The hydrogen bonding was determined using the DFT calculation generated by Gauss view software version 9.6. The KA + G + 10%CNF film exhibited a surface with slight cracks, roughness, and larger lumps and dents, resulting in inferior mechanical properties (18.50 Mpa), making it unsuitable for biofilm production. The KC + G + 10%CNF film exhibited mechanical properties 24.97 Mpa and water vapor permeability of 1.42311 × 10-11 g s-1 m-1 Pa-1. The RC/G/10%CNF film displayed the highest TS (48.23 MPa) and water vapor permeability (1.4168 × 10-11 g s-1 m-1 Pa-1), but it also had higher solubility in water (66%). In contrast, the SRC + G + 10%CNF film demonstrated excellent mechanical properties (45.98 MPa), low water solubility (42.59%), low water vapor permeability (1.3719 × 10-11 g s-1 m-1 Pa-1), and a high decomposition temperature (250.62 °C) compared to KA, KC and RC. These attributes develop films suitable for various applications, including food packaging with enhanced properties and stability.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links