Displaying publications 1 - 20 of 571 in total

Abstract:
Sort:
  1. Fallahiarezoudar E, Ahmadipourroudposht M, Yusof NM, Idris A, Ngadiman NHA
    Polymers (Basel), 2017 Nov 06;9(11).
    PMID: 30965883 DOI: 10.3390/polym9110584
    Valvular dysfunction as the prominent reason of heart failure may causes morbidity and mortality around the world. The inability of human body to regenerate the defected heart valves necessitates the development of the artificial prosthesis to be replaced. Besides, the lack of capacity to grow, repair or remodel of an artificial valves and biological difficulty such as infection or inflammation make the development of tissue engineering heart valve (TEHV) concept. This research presented the use of compound of poly-l-lactic acid (PLLA), thermoplastic polyurethane (TPU) and maghemite nanoparticle (γ-Fe₂O₃) as the potential biomaterials to develop three-dimensional (3D) aortic heart valve scaffold. Electrospinning was used for fabricating the 3D scaffold. The steepest ascent followed by the response surface methodology was used to optimize the electrospinning parameters involved in terms of elastic modulus. The structural and porosity properties of fabricated scaffold were characterized using FE-SEM and liquid displacement technique, respectively. The 3D scaffold was then seeded with aortic smooth muscle cells (AOSMCs) and biological behavior in terms of cell attachment and proliferation during 34 days of incubation was characterized using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal laser microscopy. Furthermore, the mechanical properties in terms of elastic modulus and stiffness were investigated after cell seeding through macro-indentation test. The analysis indicated the formation of ultrafine quality of nanofibers with diameter distribution of 178 ± 45 nm and 90.72% porosity. In terms of cell proliferation, the results exhibited desirable proliferation (109.32 ± 3.22% compared to the control) of cells over the 3D scaffold in 34 days of incubation. The elastic modulus and stiffness index after cell seeding were founded to be 22.78 ± 2.12 MPa and 1490.9 ± 12 Nmm², respectively. Overall, the fabricated 3D scaffold exhibits desirable structural, biological and mechanical properties and has the potential to be used in vivo.
  2. Mohan D, Khairullah NF, How YP, Sajab MS, Kaco H
    Polymers (Basel), 2020 Apr 23;12(4).
    PMID: 32340327 DOI: 10.3390/polym12040986
    Drug delivery constitutes the formulations, technologies, and systems for the transport of pharmaceutical compounds to specific areas in the body to exert safe therapeutic effects. The main criteria for selecting the correct medium for drug delivery are the quantity of the drug being carried and the amount of time required to release the drug. Hence, this research aimed to improve the aforementioned criteria by synthesizing a medium based on calcium carbonate-nanocellulose composite and evaluating its efficiency as a medium for drug delivery. Specifically, the efficiency was assessed in terms of the rates of uptake and release of 5-fluorouracil. Through the evaluation of the morphological and chemical properties of the synthesized composite, the established 3D printing profiles of nanocellulose and CaCO3 took place following the layer-by-layer films. The 3D printed double laminated CaCO3-nanocellulose managed to release the 5-fluorouracil as an effective single composition and in a time-controlled manner.
  3. Ismail KI, Yap TC, Ahmed R
    Polymers (Basel), 2022 Nov 01;14(21).
    PMID: 36365656 DOI: 10.3390/polym14214659
    Fused Deposition Modelling (FDM) is an actively growing additive manufacturing (AM) technology due to its ability to produce complex shapes in a short time. AM, also known as 3-dimensional printing (3DP), creates the desired shape by adding material, preferably by layering contoured layers on top of each other. The need for low cost, design flexibility and automated manufacturing processes in industry has triggered the development of FDM. However, the mechanical properties of FDM printed parts are still weaker compared to conventionally manufactured products. Numerous studies and research have already been carried out to improve the mechanical properties of FDM printed parts. Reinforce polymer matrix with fiber is one of the possible solutions. Furthermore, reinforcement can enhance the thermal and electrical properties of FDM printed parts. Various types of fibers and manufacturing methods can be adopted to reinforce the polymer matrix for different desired outcomes. This review emphasizes the fiber types and fiber insertion techniques of FDM 3D printed fiber reinforcement polymer composites. A brief overview of fused deposition modelling, polymer sintering and voids formation during FDM printing is provided, followed by the basis of fiber reinforced polymer composites, type of fibers (synthetic fibers vs. natural fibers, continuous vs. discontinuous fiber) and the composites' performance. In addition, three different manufacturing methods of fiber reinforced thermoplastics based on the timing and location of embedding the fibers, namely 'embedding before the printing process (M1)', 'embedding in the nozzle (M2)', and 'embedding on the component (M3)', are also briefly reviewed. The performance of the composites produced by three different methods were then discussed.
  4. Hussin MSF, Mohd Serah A, Azlan KA, Abdullah HZ, Idris MI, Ghazali I, et al.
    Polymers (Basel), 2021 Feb 22;13(4).
    PMID: 33671617 DOI: 10.3390/polym13040647
    Collecting information from previous investigations and expressing it in a scientometrics study can be a priceless guide to getting a complete overview of a specific research area. The aim of this study is to explore the interrelated connection between alginate, gelatine, and hydroxyapatite within the scope of bone tissue and scaffold. A review of traditional literature with data mining procedures using bibliometric analyses was considered to identify the evolution of the selected research area between 2009 and 2019. Bibliometric methods and knowledge visualization technologies were implemented to investigate diverse publications based on the following indicators: year of publication, document type, language, country, institution, author, journal, keyword, and number of citations. An analysis using a bibliometric study found that 7446 papers were located with the keywords "bone tissue" and "scaffold", and 1767 (alginate), 185 (gelatine), 5658 (hydroxyapatite) papers with those specific sub keywords. The number of publications that relate to "tissue engineering" and bone more than doubled between 2009 (1352) and 2019 (2839). China, the United States and India are the most productive countries, while Sichuan University and the Chinese Academy of Science from China are the most important institutions related to bone tissue scaffold. Materials Science and Engineering C is the most productive journal, followed by the Journal of Biomedical Materials Research Part A. This paper is a starting point, providing the first bibliometric analysis study of bone tissue and scaffold considering alginate, gelatine and hydroxyapatite. A bibliometric analysis would greatly assist in giving a scientific insight to support desired future research work, not only associated with bone tissue engineering applications. It is expected that the analysis of alginate, gelatine and hydroxyapatite in terms of 3D bioprinting, clinical outcomes, scaffold architecture, and the regenerative medicine approach will enhance the research into bone tissue engineering in the near future. Continued studies into these research fields are highly recommended.
  5. Shamsuri AA, Md Jamil SNA, Abdan K
    Polymers (Basel), 2021 Aug 05;13(16).
    PMID: 34451137 DOI: 10.3390/polym13162597
    Biodegradable polymers are an exceptional class of polymers that can be decomposed by bacteria. They have received significant interest from researchers in several fields. Besides this, biodegradable polymers can also be incorporated with fillers to fabricate biodegradable polymer composites. Recently, a variety of ionic liquids have also been applied in the fabrication of the polymer composites. In this brief review, two types of fillers that are utilized for the fabrication of biodegradable polymer composites, specifically organic fillers and inorganic fillers, are described. Three types of synthetic biodegradable polymers that are commonly used in biodegradable polymer composites, namely polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL), are reviewed as well. Additionally, the influence of two types of ionic liquid, namely alkylimidazolium- and alkylphosphonium-based ionic liquids, on the mechanical, thermal, and chemical properties of the polymer composites, is also briefly reviewed. This review may be beneficial in providing insights into polymer composite investigators by enhancing the properties of biodegradable polymer composites via the employment of ionic liquids.
  6. Mahmood H, Shakeel A, Abdullah A, Khan MI, Moniruzzaman M
    Polymers (Basel), 2021 Jul 29;13(15).
    PMID: 34372105 DOI: 10.3390/polym13152504
    The thermal kinetic modeling is crucial for development of sustainable processes where lignocellulosic fuels are a part of chemical system and their thermal degradation eventuates. In this paper, thermal decomposition of three lignocellulosic materials (bagasse, rice husk, and wheat straw) was obtained by the thermogravimetric (TG) technique and kinetics was analyzed by both model-fitting and isoconversional (model-free) methods to compare their effectiveness. Two models selected from each class include Arrhenius and Coats-Redfern (model-fitting), and Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) (model-free). The formal model-fitting approach simulating the thermal decomposition of solids by assuming a fixed mechanism was found to be unduly facile. However, activation energy (E) values calculated from two model-fitting techniques were considerably different from each other with a percentage difference in the range of 1.36% to 7.65%. Particularly, both model-fitting methods predicted different reaction mechanism for thermal disintegration of lignocellulosic materials (two-dimensional diffusion (D2) by Arrhenius and one-dimensional diffusion (D1) by Coat-Redfern method). Conversely, the model-free routine offers a transformation of mechanism and activation energy values throughout reaction and is, therefore, more authentic to illustrate the complexity of thermal disintegration of lignocellulosic particles. Based on the model-free kinetic analysis, the lignocellulosic materials may be devised in following order of activation energy: rice husk > bagasse > wheat straw, by both KAS and FWO methods with a percentage difference no more than 0.84% for fractional conversion up to 0.7. Isoconversional approach could be recommended as more realistic and precise for modeling non-isothermal kinetics of lignocellulosic residues compared to model-fitting approach.
  7. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Polymers
  8. Karimah A, Ridho MR, Munawar SS, Ismadi, Amin Y, Damayanti R, et al.
    Polymers (Basel), 2021 Dec 07;13(24).
    PMID: 34960839 DOI: 10.3390/polym13244280
    Asian countries have abundant resources of natural fibers, but unfortunately, they have not been optimally utilized. The facts showed that from 2014 to 2020, there was a shortfall in meeting national demand of over USD 2.75 million per year. Therefore, in order to develop the utilization and improve the economic potential as well as the sustainability of natural fibers, a comprehensive review is required. The study aimed to demonstrate the availability, technological processing, and socio-economical aspects of natural fibers. Although many studies have been conducted on this material, it is necessary to revisit their potential from those perspectives to maximize their use. The renewability and biodegradability of natural fiber are part of the fascinating properties that lead to their prospective use in automotive, aerospace industries, structural and building constructions, bio packaging, textiles, biomedical applications, and military vehicles. To increase the range of applications, relevant technologies in conjunction with social approaches are very important. Hence, in the future, the utilization can be expanded in many fields by considering the basic characteristics and appropriate technologies of the natural fibers. Selecting the most prospective natural fiber for creating national products can be assisted by providing an integrated management system from a digitalized information on potential and related technological approaches. To make it happens, collaborations between stakeholders from the national R&D agency, the government as policy maker, and academic institutions to develop national bioproducts based on domestic innovation in order to move the circular economy forward are essential.
  9. Shafiei M, Ansari MNM, Razak SIA, Khan MUA
    Polymers (Basel), 2021 Jul 30;13(15).
    PMID: 34372132 DOI: 10.3390/polym13152529
    Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
  10. Marta H, Wijaya C, Sukri N, Cahyana Y, Mohammad M
    Polymers (Basel), 2022 Nov 12;14(22).
    PMID: 36433002 DOI: 10.3390/polym14224875
    Starch can be found in the stems, roots, fruits, and seeds of plants such as sweet potato, cassava, corn, potato, and many more. In addition to its original form, starch can be modified by reducing its size. Starch nanoparticles have a small size and large active surface area, making them suitable for use as fillers or as a reinforcing material in bioplastics. The aim of reinforcing material is to improve the characteristics of bioplastics. This literature study aims to provide in-depth information on the potential use of starch nanoparticles as a reinforcing material in bioplastic packaging. This study also reviews starch size reduction methods including acid hydrolysis, nanoprecipitation, milling, and others; characteristics of the nano-starch particle; and methods to produce bioplastic and its characteristics. The use of starch nanoparticles as a reinforcing material can increase tensile strength, reduce water vapor and oxygen permeability, and increase the biodegradability of bioplastics. However, the use of starch nanoparticles as a reinforcing material for bioplastic packaging still encounters obstacles in its commercialization efforts, due to high production costs and ineffectiveness.
  11. Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, et al.
    Polymers (Basel), 2020 Nov 10;12(11).
    PMID: 33182825 DOI: 10.3390/polym12112648
    Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
  12. Ghumman ASM, Shamsuddin R, Nasef MM, Krivoborodov EG, Ahmad S, Zanin AA, et al.
    Polymers (Basel), 2021 Nov 22;13(22).
    PMID: 34833338 DOI: 10.3390/polym13224040
    Global enhancement of crop yield is achieved using chemical fertilizers; however, agro-economy is affected due to poor nutrient uptake efficacy (NUE), which also causes environmental pollution. Encapsulating urea granules with hydrophobic material can be one solution. Additionally, the inverse vulcanized copolymer obtained from vegetable oils are a new class of green sulfur-enriched polymer with good biodegradation and better sulfur oxidation potential, but they possess unreacted sulfur, which leads to void generations. In this study, inverse vulcanization reaction conditions to minimize the amount of unreacted sulfur through response surface methodology (RSM) is optimized. The copolymer obtained was then characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR confirmed the formation of the copolymer, TGA demonstrated that copolymer is thermally stable up to 200 °C temperature, and DSC revealed the sulfur conversion of 82.2% (predicted conversion of 82.37%), which shows the goodness of the model developed to predict the sulfur conversion. To further maximize the sulfur conversion, 5 wt% diisopropenyl benzene (DIB) as a crosslinker is added during synthesis to produce terpolymer. The urea granule is then coated using terpolymer, and the nutrient release longevity of the coated urea is tested in distilled water, which revealed that only 65% of its total nutrient is released after 40 days of incubation. The soil burial of the terpolymer demonstrated its biodegradability, as 26% weight loss happens in 52 days of incubation. Thus, inverse vulcanized terpolymer as a coating material for urea demonstrated far better nutrient release longevity compared with other biopolymers with improved biodegradation; moreover, these copolymers also have potential to improve sulfur oxidation.
  13. Shahdan D, Rosli NA, Chen RS, Ahmad S
    Polymers (Basel), 2022 Nov 18;14(22).
    PMID: 36433138 DOI: 10.3390/polym14225009
    Over the last few decades, processing and compatibility have become challenging and interesting investigation areas of polymer matrix nanocomposites. This study investigated the addition of maleic anhydride (MAH) at different ratios with graphene nanoplatelets (GnPs) in poly(lactic acid)/modified natural rubber/polyaniline/GnP (PLA/m-NR/PANI/GnP) nanocomposites via two processing methods: a two-step technique and a one-pot technique. The former technique involved first preparing a master batch of PLA grafted with MAH, followed by a second step involving the melt blending of the nanocomposite (T1) using MAH-g-PLA. On the other hand, the one-pot technique involved the direct mixing of MAH during the melt-blending process (T2). The mechanical, morphological and thermal properties of the prepared nanocomposites were investigated. The findings showed that adding MAH significantly improved the tensile strength and elongation at break by about 25% for PLA/m-NR/PANi/GnP nanocomposites, with an optimal ratio of 1:1 of MAH-g-PLA to GnP loading using the T1 technique. FTIR analysis confirmed the chemical interaction between MAH and PLA for T1 nanocomposites, which exhibited improved phase morphology with smoother surfaces. MAH-compatibilized nanocomposites had enhanced thermal stabilities when compared to the sample without a compatibilizer. The findings show that the compatibilized PLA nanocomposite is potentially suitable for bio-inspired materials.
  14. Ng ZC, Roslan RA, Lau WJ, Gürsoy M, Karaman M, Jullok N, et al.
    Polymers (Basel), 2020 Aug 21;12(9).
    PMID: 32825561 DOI: 10.3390/polym12091883
    The non-selective property of conventional polyurethane (PU) foam tends to lower its oil absorption efficiency. To address this issue, we modified the surface properties of PU foam using a rapid solvent-free surface functionalization approach based on the chemical vapor deposition (CVD) method to establish an extremely thin yet uniform coating layer to improve foam performance. The PU foam was respectively functionalized using different monomers, i.e., perfluorodecyl acrylate (PFDA), 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA), and hexamethyldisiloxane (HMDSO), and the effect of deposition times (1, 5 and 10 min) on the properties of foam was investigated. The results showed that all the modified foams demonstrated a much higher water contact angle (i.e., greater hydrophobicity) and greater absorption capacities compared to the control PU foam. This is due to the presence of specific functional groups, e.g., fluorine (F) and silane (Si) in the modified PU foams. Of all, the PU/PHFBAi foam exhibited the highest absorption capacities, recording 66.68, 58.15, 53.70, and 58.38 g/g for chloroform, acetone, cyclohexane, and edible oil, respectively. These values were 39.19-119.31% higher than that of control foam. The promising performance of the PU/PHFBAi foam is due to the improved surface hydrophobicity attributed to the original perfluoroalkyl moieties of the HFBA monomer. The PU/PHFBAi foam also demonstrated a much more stable absorption performance compared to the control foam when both samples were reused for up to 10 cycles. This clearly indicates the positive impact of the proposed functionalization method in improving PU properties for oil absorption processes.
  15. Asif K, Lock SSM, Taqvi SAA, Jusoh N, Yiin CL, Chin BLF, et al.
    Polymers (Basel), 2021 Jul 01;13(13).
    PMID: 34279343 DOI: 10.3390/polym13132199
    Polysulfone-based mixed matrix membranes (MMMs) incorporated with silica nanoparticles are a new generation material under ongoing research and development for gas separation. However, the attributes of a better-performing MMM cannot be precisely studied under experimental conditions. Thus, it requires an atomistic scale study to elucidate the separation performance of silica/polysulfone MMMs. As most of the research work and empirical models for gas transport properties have been limited to pure gas, a computational framework for molecular simulation is required to study the mixed gas transport properties in silica/polysulfone MMMs to reflect real membrane separation. In this work, Monte Carlo (MC) and molecular dynamics (MD) simulations were employed to study the solubility and diffusivity of CO2/CH4 with varying gas concentrations (i.e., 30% CO2/CH4, 50% CO2/CH4, and 70% CO2/CH4) and silica content (i.e., 15-30 wt.%). The accuracy of the simulated structures was validated with published literature, followed by the study of the gas transport properties at 308.15 K and 1 atm. Simulation results concluded an increase in the free volume with an increasing weight percentage of silica. It was also found that pure gas consistently exhibited higher gas transport properties when compared to mixed gas conditions. The results also showed a competitive gas transport performance for mixed gases, which is more apparent when CO2 increases. In this context, an increment in the permeation was observed for mixed gas with increasing gas concentrations (i.e., 70% CO2/CH4 > 50% CO2/CH4 > 30% CO2/CH4). The diffusivity, solubility, and permeability of the mixed gases were consistently increasing until 25 wt.%, followed by a decrease for 30 wt.% of silica. An empirical model based on a parallel resistance approach was developed by incorporating mathematical formulations for solubility and permeability. The model results were compared with simulation results to quantify the effect of mixed gas transport, which showed an 18% and 15% percentage error for the permeability and solubility, respectively, in comparison to the simulation data. This study provides a basis for future understanding of MMMs using molecular simulations and modeling techniques for mixed gas conditions that demonstrate real membrane separation.
  16. Hossain K, Sabapathy T, Jusoh M, Abdelghany MA, Soh PJ, Osman MN, et al.
    Polymers (Basel), 2021 Aug 22;13(16).
    PMID: 34451357 DOI: 10.3390/polym13162819
    In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular- and a nonagonal-shaped unit cell. The size of the antenna was 0.825 λ0 × 0.75 λ0 × 0.075 λ0, whereas each MTMUCA was sized at 0.312 λ0 × 0.312 λ0, with respect to a free space wavelength of 7.5 GHz. The antenna was fabricated using viscose-wool felt due to its strong metal-polymer adhesion. A naturally available polymer, wool, and a human-made polymer, viscose, that was derived from regenerated cellulose fiber were used in the manufacturing of the adopted viscose-wool felt. The MTMUCA exhibits the characteristics of ENG, with a bandwidth (BW) of 11.68 GHz and an NZRI BW of 8.5 GHz. The MTMUCA was incorporated on the planar monopole to behave as a shunt LC resonator, and its working principles were described using an equivalent circuit. The results indicate a 10 dB impedance fractional bandwidth of 142% (from 2.55 to 15 GHz) in simulations, and 138.84% (from 2.63 to 14.57 GHz) in measurements obtained by the textile UWB antenna. A peak realized gain of 4.84 dBi and 4.4 dBi was achieved in simulations and measurements, respectively. A satisfactory agreement between simulations and experiments was achieved, indicating the potential of the proposed negative index metamaterial-based antenna for microwave applications.
  17. Akbari S, Mahmood SM, Ghaedi H, Al-Hajri S
    Polymers (Basel), 2019 Jun 14;11(6).
    PMID: 31207965 DOI: 10.3390/polym11061046
    Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid-known as sulfonated polyacrylamide polymers-had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.
    Matched MeSH terms: Polymers
  18. Rahmadiawan D, Abral H, Kotodeli RA, Sugiarti E, Muslimin AN, Admi RI, et al.
    Polymers (Basel), 2023 Jan 26;15(3).
    PMID: 36771944 DOI: 10.3390/polym15030643
    Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Herein, this study aims to prepare and characterize an all-cellulose film from 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) powders without adding metal compounds and treated by ultrasonication. TOBC powders are sonicated with various powers of 250, 500, and 750 W for 20 min without any other substance. It was proved that increasing the ultrasonication power level resulted in a significant improvement in the properties of the film. The ultrasonication of 750 W increased tensile strength by 85%, toughness by 308%, light transmittance by 542%, and electrical conductivity by 174% compared to the nonsonicated film. A light-emitting diode connected to a power source through this sonicated film was much brighter than that connected via a nonsonicated film. For the first time, this study reports the preparation of electrically conductive, transparent, strong, and bendable pure TOBC films by increasing ultrasonic power for environmentally friendly electronic devices application.
  19. Aziz SB, Dannoun EMA, Hamsan MH, Ghareeb HO, Nofal MM, Karim WO, et al.
    Polymers (Basel), 2021 Mar 17;13(6).
    PMID: 33803001 DOI: 10.3390/polym13060930
    The fabrication of energy storage EDLC in this work is achieved with the implementation of a conducting chitosan-methylcellulose-NH4NO3-glycerol polymer electrolyte system. The simple solution cast method has been used to prepare the electrolyte. The impedance of the samples was fitted with equivalent circuits to design the circuit diagram. The parameters associated with ion transport are well studied at various plasticizer concentrations. The FTIR investigation has been done on the films to detect the interaction that occurs among plasticizer and polymer electrolyte. To get more insights into ion transport parameters, the FTIR was deconvoluted. The transport properties achieved from both impedance and FTIR are discussed in detail. It was discovered that the transport parameter findings are in good agreement with both impedance and FTIR studies. A sample with high transport properties was characterized for ion dominancy and stability through the TNM and LSV investigations. The dominancy of ions in the electrolyte verified as the tion of the electrolyte is established to be 0.933 whereas it is potentially stable up to 1.87 V. The rechargeability of the EDLC is steady up to 500 cycles. The internal resistance, energy density, and power density of the EDLC at the 1st cycle are 53 ohms, 6.97 Wh/kg, and 1941 W/kg, respectively.
    Matched MeSH terms: Polymers
  20. Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S
    Polymers (Basel), 2021 May 12;13(10).
    PMID: 34065779 DOI: 10.3390/polym13101544
    Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links