Displaying publications 1 - 20 of 80 in total

Abstract:
Sort:
  1. Ariffin H, Hainaut P, Puzio-Kuter A, Choong SS, Chan AS, Tolkunov D, et al.
    Proc Natl Acad Sci U S A, 2014 Oct 28;111(43):15497-501.
    PMID: 25313051 DOI: 10.1073/pnas.1417322111
    The Li-Fraumeni syndrome (LFS) and its variant form (LFL) is a familial predisposition to multiple forms of childhood, adolescent, and adult cancers associated with germ-line mutation in the TP53 tumor suppressor gene. Individual disparities in tumor patterns are compounded by acceleration of cancer onset with successive generations. It has been suggested that this apparent anticipation pattern may result from germ-line genomic instability in TP53 mutation carriers, causing increased DNA copy-number variations (CNVs) with successive generations. To address the genetic basis of phenotypic disparities of LFS/LFL, we performed whole-genome sequencing (WGS) of 13 subjects from two generations of an LFS kindred. Neither de novo CNV nor significant difference in total CNV was detected in relation with successive generations or with age at cancer onset. These observations were consistent with an experimental mouse model system showing that trp53 deficiency in the germ line of father or mother did not increase CNV occurrence in the offspring. On the other hand, individual records on 1,771 TP53 mutation carriers from 294 pedigrees were compiled to assess genetic anticipation patterns (International Agency for Research on Cancer TP53 database). No strictly defined anticipation pattern was observed. Rather, in multigeneration families, cancer onset was delayed in older compared with recent generations. These observations support an alternative model for apparent anticipation in which rare variants from noncarrier parents may attenuate constitutive resistance to tumorigenesis in the offspring of TP53 mutation carriers with late cancer onset.
  2. Twining JP, Sutherland C, Zalewski A, Cove MV, Birks J, Wearn OR, et al.
    Proc Natl Acad Sci U S A, 2024 Mar 19;121(12):e2312252121.
    PMID: 38466845 DOI: 10.1073/pnas.2312252121
    The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.
  3. Chisholm RA, Kristensen NP, Rheindt FE, Chong KY, Ascher JS, Lim KKP, et al.
    Proc Natl Acad Sci U S A, 2023 Dec 19;120(51):e2309034120.
    PMID: 38079550 DOI: 10.1073/pnas.2309034120
    There is an urgent need for reliable data on the impacts of deforestation on tropical biodiversity. The city-state of Singapore has one of the most detailed biodiversity records in the tropics, dating back to the turn of the 19th century. In 1819, Singapore was almost entirely covered in primary forest, but this has since been largely cleared. We compiled more than 200 y of records for 10 major taxonomic groups in Singapore (>50,000 individual records; >3,000 species), and we estimated extinction rates using recently developed and novel statistical models that account for "dark extinctions," i.e., extinctions of undiscovered species. The estimated overall extinction rate was 37% (95% CI [31 to 42%]). Extrapolating our Singapore observations to a future business-as-usual deforestation scenario for Southeast Asia suggests that 18% (95% CI [16 to 22%]) of species will be lost regionally by 2100. Our extinction estimates for Singapore and Southeast Asia are a factor of two lower than previous estimates that also attempted to account for dark extinctions. However, we caution that particular groups such as large mammals, forest-dependent birds, orchids, and butterflies are disproportionately vulnerable.
  4. Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L, Wood TK, et al.
    Proc Natl Acad Sci U S A, 2021 Jul 06;118(27).
    PMID: 34210797 DOI: 10.1073/pnas.2021091118
    While modulatory effects of gut microbes on neurological phenotypes have been reported, the mechanisms remain largely unknown. Here, we demonstrate that indole, a tryptophan metabolite produced by tryptophanase-expressing gut microbes, elicits neurogenic effects in the adult mouse hippocampus. Neurogenesis is reduced in germ-free (GF) mice and in GF mice monocolonized with a single-gene tnaA knockout (KO) mutant Escherichia coli unable to produce indole. External administration of systemic indole increases adult neurogenesis in the dentate gyrus in these mouse models and in specific pathogen-free (SPF) control mice. Indole-treated mice display elevated synaptic markers postsynaptic density protein 95 and synaptophysin, suggesting synaptic maturation effects in vivo. By contrast, neurogenesis is not induced by indole in aryl hydrocarbon receptor KO (AhR-/-) mice or in ex vivo neurospheres derived from them. Neural progenitor cells exposed to indole exit the cell cycle, terminally differentiate, and mature into neurons that display longer and more branched neurites. These effects are not observed with kynurenine, another AhR ligand. The indole-AhR-mediated signaling pathway elevated the expression of β-catenin, Neurog2, and VEGF-α genes, thus identifying a molecular pathway connecting gut microbiota composition and their metabolic function to neurogenesis in the adult hippocampus. Our data have implications for the understanding of mechanisms of brain aging and for potential next-generation therapeutic opportunities.
  5. Mills MB, Malhi Y, Ewers RM, Kho LK, Teh YA, Both S, et al.
    Proc Natl Acad Sci U S A, 2023 Jan 17;120(3):e2214462120.
    PMID: 36623189 DOI: 10.1073/pnas.2214462120
    Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO2 exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha-1 yr-1 within moderately logged plots and 5.23 ± 1.23 Mg C ha-1 yr-1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world's tropical forests may be considerably lower than currently estimated.
  6. Vincent JR, Carson RT, DeShazo JR, Schwabe KA, Ahmad I, Chong SK, et al.
    Proc Natl Acad Sci U S A, 2014 Jul 15;111(28):10113-8.
    PMID: 24982171 DOI: 10.1073/pnas.1312246111
    Inadequate funding from developed countries has hampered international efforts to conserve biodiversity in tropical forests. We present two complementary research approaches that reveal a significant increase in public demand for conservation within tropical developing countries as those countries reach upper-middle-income (UMI) status. We highlight UMI tropical countries because they contain nearly four-fifths of tropical primary forests, which are rich in biodiversity and stored carbon. The first approach is a set of statistical analyses of various cross-country conservation indicators, which suggests that protective government policies have lagged behind the increase in public demand in these countries. The second approach is a case study from Malaysia, which reveals in a more integrated fashion the linkages from rising household income to increased household willingness to pay for conservation, nongovernmental organization activity, and delayed government action. Our findings suggest that domestic funding in UMI tropical countries can play a larger role in (i) closing the funding gap for tropical forest conservation, and (ii) paying for supplementary conservation actions linked to international payments for reduced greenhouse gas emissions from deforestation and forest degradation in tropical countries.
  7. Li JF, Dai YT, Lilljebjörn H, Shen SH, Cui BW, Bai L, et al.
    Proc Natl Acad Sci U S A, 2018 12 11;115(50):E11711-E11720.
    PMID: 30487223 DOI: 10.1073/pnas.1814397115
    Most B cell precursor acute lymphoblastic leukemia (BCP ALL) can be classified into known major genetic subtypes, while a substantial proportion of BCP ALL remains poorly characterized in relation to its underlying genomic abnormalities. We therefore initiated a large-scale international study to reanalyze and delineate the transcriptome landscape of 1,223 BCP ALL cases using RNA sequencing. Fourteen BCP ALL gene expression subgroups (G1 to G14) were identified. Apart from extending eight previously described subgroups (G1 to G8 associated with MEF2D fusions, TCF3-PBX1 fusions, ETV6-RUNX1-positive/ETV6-RUNX1-like, DUX4 fusions, ZNF384 fusions, BCR-ABL1/Ph-like, high hyperdiploidy, and KMT2A fusions), we defined six additional gene expression subgroups: G9 was associated with both PAX5 and CRLF2 fusions; G10 and G11 with mutations in PAX5 (p.P80R) and IKZF1 (p.N159Y), respectively; G12 with IGH-CEBPE fusion and mutations in ZEB2 (p.H1038R); and G13 and G14 with TCF3/4-HLF and NUTM1 fusions, respectively. In pediatric BCP ALL, subgroups G2 to G5 and G7 (51 to 65/67 chromosomes) were associated with low-risk, G7 (with ≤50 chromosomes) and G9 were intermediate-risk, whereas G1, G6, and G8 were defined as high-risk subgroups. In adult BCP ALL, G1, G2, G6, and G8 were associated with high risk, while G4, G5, and G7 had relatively favorable outcomes. This large-scale transcriptome sequence analysis of BCP ALL revealed distinct molecular subgroups that reflect discrete pathways of BCP ALL, informing disease classification and prognostic stratification. The combined results strongly advocate that RNA sequencing be introduced into the clinical diagnostic workup of BCP ALL.
  8. Palmer S, Albergante L, Blackburn CC, Newman TJ
    Proc Natl Acad Sci U S A, 2018 02 20;115(8):1883-1888.
    PMID: 29432166 DOI: 10.1073/pnas.1714478115
    For many cancer types, incidence rises rapidly with age as an apparent power law, supporting the idea that cancer is caused by a gradual accumulation of genetic mutations. Similarly, the incidence of many infectious diseases strongly increases with age. Here, combining data from immunology and epidemiology, we show that many of these dramatic age-related increases in incidence can be modeled based on immune system decline, rather than mutation accumulation. In humans, the thymus atrophies from infancy, resulting in an exponential decline in T cell production with a half-life of ∼16 years, which we use as the basis for a minimal mathematical model of disease incidence. Our model outperforms the power law model with the same number of fitting parameters in describing cancer incidence data across a wide spectrum of different cancers, and provides excellent fits to infectious disease data. This framework provides mechanistic insight into cancer emergence, suggesting that age-related decline in T cell output is a major risk factor.
  9. de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F, Zepeda Mendoza ML, et al.
    Proc Natl Acad Sci U S A, 2020 05 19;117(20):10927-10934.
    PMID: 32366643 DOI: 10.1073/pnas.1919423117
    Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.
  10. Reardon T, Timmer CP, Minten B
    Proc Natl Acad Sci U S A, 2012 Jul 31;109(31):12332-7.
    PMID: 21135250 DOI: 10.1073/pnas.1003160108
    A "supermarket revolution" has occurred in developing countries in the past 2 decades. We focus on three specific issues that reflect the impact of this revolution, particularly in Asia: continuity in transformation, innovation in transformation, and unique development strategies. First, the record shows that the rapid growth observed in the early 2000s in China, Indonesia, Malaysia, and Thailand has continued, and the "newcomers"--India and Vietnam--have grown even faster. Although foreign direct investment has been important, the roles of domestic conglomerates and even state investment have been significant and unique. Second, Asia's supermarket revolution has exhibited unique pathways of retail diffusion and procurement system change. There has been "precocious" penetration of rural towns by rural supermarkets and rural business hubs, emergence of penetration of fresh produce retail that took much longer to initiate in other regions, and emergence of Asian retail developing-country multinational chains. In procurement, a symbiosis between modern retail and the emerging and consolidating modern food processing and logistics sectors has arisen. Third, several approaches are being tried to link small farmers to supermarkets. Some are unique to Asia, for example assembling into a "hub" or "platform" or "park" the various companies and services that link farmers to modern markets. Other approaches relatively new to Asia are found elsewhere, especially in Latin America, including "bringing modern markets to farmers" by establishing collection centers and multipronged collection cum service provision arrangements, and forming market cooperatives and farmer companies to help small farmers access supermarkets.
  11. Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG
    Proc Natl Acad Sci U S A, 2017 12 26;114(52):13703-13707.
    PMID: 29203665 DOI: 10.1073/pnas.1713166114
    Cleavage of the alphavirus precursor glycoprotein p62 into the E2 and E3 glycoproteins before assembly with the nucleocapsid is the key to producing fusion-competent mature spikes on alphaviruses. Here we present a cryo-EM, 6.8-Å resolution structure of an "immature" Chikungunya virus in which the cleavage site has been mutated to inhibit proteolysis. The spikes in the immature virus have a larger radius and are less compact than in the mature virus. Furthermore, domains B on the E2 glycoproteins have less freedom of movement in the immature virus, keeping the fusion loops protected under domain B. In addition, the nucleocapsid of the immature virus is more compact than in the mature virus, protecting a conserved ribosome-binding site in the capsid protein from exposure. These differences suggest that the posttranslational processing of the spikes and nucleocapsid is necessary to produce infectious virus.
  12. Slik JW, Aiba S, Bastian M, Brearley FQ, Cannon CH, Eichhorn KA, et al.
    Proc Natl Acad Sci U S A, 2011 Jul 26;108(30):12343-7.
    PMID: 21746913 DOI: 10.1073/pnas.1103353108
    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
  13. Lim CH, Soga T, Parhar IS
    Proc Natl Acad Sci U S A, 2023 Jan 17;120(3):e2117547120.
    PMID: 36623187 DOI: 10.1073/pnas.2117547120
    Social disturbance in interpersonal relationships is the primary source of stress in humans. Spexin (SPX, SPX1a in cichlid), an evolutionarily conserved neuropeptide with diverse physiological functions, is up-regulated in the brain during chronic social defeat stress in teleost. On the other hand, repeated exposure to social stress can lead to dysregulation of the monoaminergic system and increase the vulnerability of developing depression. Since dysfunction of the serotonin (5-hydroxytryptamine, 5-HT) system is associated with social stress and the pathophysiology of depression, the present study investigated the regulatory relationship between the central 5-HT system and SPX1a in the male teleost, Nile tilapia (Oreochromis niloticus). To identify stress factors that regulate SPX1a gene expression, cortisol, dexamethasone (DEX), and 5-HT were used to treat tilapia brain primary cultures. Our study shows cortisol and DEX treatment had no effect on SPX1a gene expression, but SPX1a gene expression was down-regulated following 5-HT treatment. Anatomical localization showed a close association between 5-HT immunoreactive projections and SPX1a neurons in the semicircular torus. In addition, 5-HT receptors (5-HT2B) were expressed in SPX1a neurons. SPX1a immunoreactive neurons and SPX1a gene expression were significantly increased in socially defeated tilapia. On the other hand, citalopram (antidepressant, 5-HT antagonist) treatment to socially defeated tilapia normalized SPX1a gene expression to control levels. Taken together, the present study shows that 5-HT is an upstream regulator of SPX1a and that the inhibited 5-HT activates SPX1a during social defeat.
  14. Tao J, Chen J, Li J, Mathurin L, Zheng JC, Li Y, et al.
    Proc Natl Acad Sci U S A, 2017 09 12;114(37):9832-9837.
    PMID: 28855335 DOI: 10.1073/pnas.1709163114
    The optimal functionalities of materials often appear at phase transitions involving simultaneous changes in the electronic structure and the symmetry of the underlying lattice. It is experimentally challenging to disentangle which of the two effects--electronic or structural--is the driving force for the phase transition and to use the mechanism to control material properties. Here we report the concurrent pumping and probing of Cu2S nanoplates using an electron beam to directly manipulate the transition between two phases with distinctly different crystal symmetries and charge-carrier concentrations, and show that the transition is the result of charge generation for one phase and charge depletion for the other. We demonstrate that this manipulation is fully reversible and nonthermal in nature. Our observations reveal a phase-transition pathway in materials, where electron-induced changes in the electronic structure can lead to a macroscopic reconstruction of the crystal structure.
  15. Koh LP, Miettinen J, Liew SC, Ghazoul J
    Proc Natl Acad Sci U S A, 2011 Mar 22;108(12):5127-32.
    PMID: 21383161 DOI: 10.1073/pnas.1018776108
    Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ≈880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ≈140 million Mg of aboveground biomass carbon, and annual emissions of ≈4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ≈660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ≈20%, whereas oil-palm establishment would exacerbate species losses by up to ≈12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia.
  16. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
  17. van Panhuis WG, Choisy M, Xiong X, Chok NS, Akarasewi P, Iamsirithaworn S, et al.
    Proc Natl Acad Sci U S A, 2015 Oct 20;112(42):13069-74.
    PMID: 26438851 DOI: 10.1073/pnas.1501375112
    Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼ 10(7) km(2). We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997-1998, which was followed by a period of extremely low incidence in 2001-2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997-1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2-5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.
  18. Richards DR, Friess DA
    Proc Natl Acad Sci U S A, 2016 Jan 12;113(2):344-9.
    PMID: 26712025 DOI: 10.1073/pnas.1510272113
    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links