Displaying publications 1 - 20 of 1482 in total

Abstract:
Sort:
  1. Lim L, Ab Majid AH
    Sci Rep, 2021 Apr 19;11(1):8465.
    PMID: 33875727 DOI: 10.1038/s41598-021-87946-w
    With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well-studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood-fed and starved tropical bed bugs were analysed and characterized by amplifying the v3-v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha-proteobacterium Wolbachia and gamma-proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood-fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood-fed bed bugs.
  2. Lim L, Ab Majid AH
    Sci Rep, 2023 Jan 27;13(1):1506.
    PMID: 36707655 DOI: 10.1038/s41598-023-28774-y
    Tropical bed bugs, Cimex hemipterus, which commonly feeds on human blood, may be useful in forensic applications. However, unlike the common bed bug, Cimex lectularius, there is no information regarding tropical bed bug, C. hemipterus, being studied for its applications in forensics. Thus, in this study, lab-reared post-feeding tropical bed bugs were subjected to Short Tandem Repeat (STR) and Single Nucleotide Polymorphism (SNP) analyses to establish the usage of tropical bed bugs in forensics. Several post-feeding times (0, 5, 14, 30, and 45 days) were tested to determine when a complete human DNA profile could still be obtained after the bugs had taken the blood meal. The results showed that complete STR and SNP profiles could only be obtained from the D0 sample. The profile completeness decreased over time, and partial STR and SNP profiles could be obtained up to 45 days post-blood meal. The generated SNP profiles, complete or partial, were also viable for HIrisPlex-S phenotype prediction. In addition, field-collected bed bugs were also used to examine the viability of the tested STR markers, and the STR markers detected mixed profiles. The findings of this study established that the post-blood meal of tropical bed bugs is a suitable source of human DNA for forensic STR and SNP profiling. Human DNA recovered from bed bugs can be used to identify spatial and temporal relations of events.
  3. Eshraghi A, Osman NA, Gholizadeh H, Ahmadian J, Rahmati B, Abas WA
    Sci Rep, 2013;3:2270.
    PMID: 23881340 DOI: 10.1038/srep02270
    Individuals with lower limb amputation need a secure suspension system for their prosthetic devices. A new coupling system was developed that is capable of suspending the prosthesis. The system's safety is ensured through an acoustic alarm system. This article explains how the system works and provides an in vivo evaluation of the device with regard to pistoning during walking. The system was designed to be used with silicone liners and is based on the requirements of prosthetic suspension systems. Mechanical testing was performed using a universal testing machine. The pistoning during walking was measured using a motion analysis system. The new coupling device produced significantly less pistoning compared to a common suspension system (pin/lock). The safety alarm system would buzz if the suspension was going to fail. The new coupling system could securely suspend the prostheses in transtibial amputees and produced less vertical movement than the pin/lock system.
  4. Aziz NAM, Yunus R, Hamid HA, Ghassan AAK, Omar R, Rashid U, et al.
    Sci Rep, 2020 11 12;10(1):19652.
    PMID: 33184363 DOI: 10.1038/s41598-020-76775-y
    Microwave-assisted synthesis is known to accelerate the transesterification process and address the issues associated with the conventional thermal process, such as the processing time and the energy input requirement. Herein, the effect of microwave irradiation on the transesterification of palm oil methyl ester (PME) with trimethylolpropane (TMP) was evaluated. The reaction system was investigated through five process parameters, which were reaction temperature, catalyst, time, molar ratio of TMP to PME and vacuum pressure. The yield of TMP triester at 66.9 wt.% and undesirable fatty soap at 17.4% were obtained at 130 °C, 10 mbar, sodium methoxide solution at 0.6 wt.%, 10 min reaction time and molar ratio of TMP to PME at 1:4. The transesterification of palm oil-based methyl ester to trimethylolpropane ester was 3.1 folds faster in the presence of microwave irradiation. The total energy requirement was markedly reduced as compared to the conventional heating method. The findings indicate that microwave-assisted transesterification could probably be an answer to the quest for a cheaper biodegradable biolubricant.
  5. Shanmugam S, Jenkins SN, Mickan BS, Jaafar NM, Mathes F, Solaiman ZM, et al.
    Sci Rep, 2021 01 13;11(1):955.
    PMID: 33441591 DOI: 10.1038/s41598-020-78843-9
    Co-application of biochar and biosolids to soil has potential to mitigate N leaching due to physical and chemical properties of biochar. Changes in N cycling pathways in soil induced by co-application of biological amendments could further mitigate N loss, but this is largely unexplored. The aim of this study was to determine whether co-application of a biochar and a modified biosolids product to three pasture soils differing in texture could alter the relative abundance of N cycling genes in soil sown with subterranean clover. The biosolids product contained lime and clay and increased subterranean clover shoot biomass in parallel with increases in soil pH and soil nitrate. Its co-application with biochar similarly increased plant growth and soil pH with a marked reduction in nitrate in two coarse textured soils but not in a clayey soil. While application of the biosolids product altered in silico predicted N cycling functional genes, there was no additional change when applied to soil in combination with biochar. This supports the conclusion that co-application of the biochar and biosolids product used here has potential to mitigate loss of N in coarse textured soils due to N adsoption by the biochar and independently of microbial N pathways.
  6. Kamarundzaman A, Abu Bakar AS, Azman A, Omar AZ, Talik NA, Supangat A, et al.
    Sci Rep, 2021 May 06;11(1):9724.
    PMID: 33958689 DOI: 10.1038/s41598-021-89201-8
    We demonstrated high-quality single crystalline a-plane undoped-gallium nitride grown on a nonpatterned r-plane sapphire substrate via metal-organic chemical vapor deposition. The effect of four different numbers of sandwiched strain-periodic AlN/GaN multilayers on the strain state, crystal quality, optical and electrical properties was investigated. Field emission scanning electron microscopy and atomic force microscopy showed that the surface morphology was improved upon insertion of 120 pairs of AlN/GaN thin layers with a root-mean-square roughness of 2.15 nm. On-axis X-ray ω-scan rocking curves showed enhanced crystalline quality: the full width at half maximum decreased from 1224 to 756 arcsec along the [0001] direction and from 2628 to 1360 arcsec along the [1-100] direction for a-GaN grown with 120 pairs of AlN/GaN compared to a-GaN without AlN/GaN pairs. Reciprocal space mapping showed that a-plane GaN with a high number of AlN/GaN pairs exhibits near-relaxation strain states. Room-temperature photoluminescence spectra showed that the sample with the highest number of AlN/GaN pairs exhibited the lowest-intensity yellow and blue luminescence bands, indicating a reduction in defects and dislocations. The a-plane InGaN/GaN LEDs with 120 pairs of SSPM-L AlN/GaN exhibited a significant increase (~ 250%) in light output power compared to that of LEDs without SSPM-L AlN/GaN pairs.
  7. Abdul Rani KN, Abdulmalek M, A Rahim H, Siew Chin N, Abd Wahab A
    Sci Rep, 2017 Apr 20;7:46521.
    PMID: 28425443 DOI: 10.1038/srep46521
    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.
  8. Salleh MSM, Ibrahim MF, Roslan AM, Abd-Aziz S
    Sci Rep, 2019 05 15;9(1):7443.
    PMID: 31092836 DOI: 10.1038/s41598-019-43718-1
    Simultaneous saccharification and fermentation (SSF) with delayed yeast extract feeding (DYEF) was conducted in a 2-L bioreactor equipped with in-situ recovery using a gas stripping in order to enhance biobutanol production from lignocellulosic biomass of oil palm empty fruit bunch (OPEFB). This study showed that 2.88 g/L of biobutanol has been produced from SSF with a similar yield of 0.23 g/g as compared to separate hydrolysis and fermentation (SHF). An increase of 42% of biobutanol concentration was observed when DYEF was introduced in the SSF at 39 h of fermentation operation. Biobutanol production was further enhanced up to 11% with a total improvement of 72% when in-situ recovery using a gas stripping was implemented to reduce the solvents inhibition in the bioreactor. In overall, DYEF and in-situ recovery were able to enhance biobutanol production in SSF.
  9. Al-Ariki S, Yahya NAA, Al-A'nsi SA, Jumali MHH, Jannah AN, Abd-Shukor R
    Sci Rep, 2021 Jun 07;11(1):11948.
    PMID: 34099823 DOI: 10.1038/s41598-021-91439-1
    In this work we have tried to prepare Ni and Ag doped ZnO nanopowders using the sol gel technique. The influence of Ni and Ag (1, 3 and 5 mol.%) on the crystalline structure and optical properties of ZnO was investigated. The samples were characterized by XRD, FTIR and UV-visible spectrophotometer. XRD patterns confirmed the wurtzite formation of doped and undoped ZnO nanopowders. The average crystallite sizes of the prepared samples found from XRD were 19 nm for undoped ZnO, from 17 to 22 nm for Ni-ZnO and from 19 to 26 nm for Ag-ZnO. The average crystallite size of Ag-ZnO increased with increasing Ag contents. Different optical properties of Ni-ZnO and Ag-ZnO nanopowders were observed for different Ni and Ag content. The band gaps of Ni-ZnO and Ag-ZnO nanopowders were lower than that of the undoped ZnO (3.1 eV). The band gaps of Ag-ZnO were lower than that of Ni-ZnO. The optical properties of ZnO were enhanced by Ni (mol.%) in the UV region and by Ag (3 and 5 mol.%) in the visible region.
  10. Alwany AB, Youssef GM, Samir OM, Algradee MA, A Yahya NA, Swillam MA, et al.
    Sci Rep, 2023 Jun 26;13(1):10314.
    PMID: 37365289 DOI: 10.1038/s41598-023-37563-6
    ZnS quantum dots (QDs) were fabricated using the co-precipitation technique with no capping agent. The effects of different annealing temperatures (non-annealed, 240 °C and 340 °C for 2 h) on the structural and optical characteristics of ZnS QDs are reported. The samples were examined by XRD, TEM, PL, FTIR, and UV-Vis. An increase in annealing temperature led to an increase in the dot size and a lowering of the energy band gap (EG). The average crystallite size, D of ZnS was between 4.4 and 5.6 nm. The ZnS QDs showed a band gap of 3.75, 3.74 and 3.72 eV for non-annealed, 240 °C, and 340 °C annealed samples. The reflection spectra increased in the visible light and decreased in UV region with an increase in annealing temperature. This work showed that the band gap and size of ZnS QDs could be tuned by varying the annealing temperature.
  11. Ibrahim KA, Naz MY, Shukrullah S, Sulaiman SA, Ghaffar A, AbdEl-Salam NM
    Sci Rep, 2020 Apr 03;10(1):5927.
    PMID: 32246028 DOI: 10.1038/s41598-020-62793-3
    The world does not have too much time to ensure that the fast-growing population has enough land, food, water and energy. The rising food demand has brought a positive surge in fertilizers' demand and agriculture-based economy. The world is using 170 million tons of fertilizer every year for food, fuel, fiber, and feed. The nitrogenous fertilizers are being used to meet 48% of the total food demand of the world. High fertilizer inputs augment the reactive nitrogen levels in soil, air, and water. The unassimilated reactive nitrogen changes into a pollutant and harms the natural resources. The use of controlled-release fertilizers for slowing down the nutrients' leaching has recently been practiced by farmers. However, to date, monitoring of the complete discharge time and discharge rate of controlled released fertilizers is not completely understood by the researchers. In this work, corn starch was thermally processed into a week gel-like coating material by reacting with urea and borate. The granular urea was coated with native and processed starch in a fluidized bed reactor having bottom-up fluid delivery system. The processed starch exhibited better thermal and mechanical stability as compared to the native starch. Unlike the pure starch, the storage modulus of the processed starch dominated the loss modulus. The release time of urea, coated with processed starch, remained remarkably larger than the uncoated urea.
  12. Ghouri ZK, Hughes DJ, Ahmed K, Elsaid K, Nasef MM, Badreldin A, et al.
    Sci Rep, 2023 Nov 27;13(1):20866.
    PMID: 38012177 DOI: 10.1038/s41598-023-46292-9
    Water electrolysis is considered one of the major sources of green hydrogen as the fuel of the future. However, due to limited freshwater resources, more interest has been geared toward seawater electrolysis for hydrogen production. The development of effective and selective electrocatalysts from earth-abundant elements for oxygen evolution reaction (OER) as the bottleneck for seawater electrolysis is highly desirable. This work introduces novel Pd-doped Co nanoparticles encapsulated in graphite carbon shell electrode (Pd-doped CoNPs@C shell) as a highly active OER electrocatalyst towards alkaline seawater oxidation, which outperforms the state-of-the-art catalyst, RuO2. Significantly, Pd-doped CoNPs@C shell electrode exhibiting low OER overpotential of ≈213, ≈372, and ≈ 429 mV at 10, 50, and 100 mA/cm2, respectively together with a small Tafel slope of ≈ 120 mV/dec than pure Co@C and Pd@C electrode in alkaline seawater media. The high catalytic activity at the aforementioned current density reveals decent selectivity, thus obviating the evolution of chloride reaction (CER), i.e., ∼490 mV, as competitive to the OER. Results indicated that Pd-doped Co nanoparticles encapsulated in graphite carbon shell (Pd-doped CoNPs@C electrode) could be a very promising candidate for seawater electrolysis.
  13. Sunardi S, Ariyani M, Agustian M, Withaningsih S, Parikesit P, Juahir H, et al.
    Sci Rep, 2020 07 06;10(1):11110.
    PMID: 32632183 DOI: 10.1038/s41598-020-68026-x
    Reservoirs play a strategic role in the context of sustainable energy supply. Unfortunately, the majority of the reservoirs are facing water-quality degradation due to complex pollutants originating from activities both in the catchment and inside the reservoir. This research was aimed at assessing the extent of the water degradation, in terms of corrosivity level, and at examining its impacts on hydropower capacity and operation. Water quality data (total dissolved solids, pH, calcium, bicarbonate, and temperature) were obtained from 20 sampling stations in the Cirata Reservoir from 2007 to 2016. The results show that the river water is already corrosive (Langelier Saturation Index, LSI = - 0.21 to - 1.08), and, the corrosiveness becoming greater when entering the reservoir (LSI = - 0.52 to - 1.49). The water corrosivity has caused damage to the hydro-mechanical equipment and lowering production capacity. The external environment of the catchment hosts complex human activities, such as agriculture, land conversion, urban and industrial discharge, which have all played a major role in the water corrosiveness. Meanwhile, the internal environment, such as floating net cage aquaculture, has intensified the problem. As the water corrosiveness has increased, the maintenance of the hydro-mechanical facilities has also increased. Strategies must be applied as current conditions are certainly a threat to the sustainability of the hydropower operation and, hence, the energy supply.
  14. Ramlee MH, Ammarullah MI, Mohd Sukri NS, Faidzul Hassan NS, Baharuddin MH, Abdul Kadir MR
    Sci Rep, 2024 Mar 21;14(1):6842.
    PMID: 38514731 DOI: 10.1038/s41598-024-57454-8
    Previous research has primarily focused on pre-processing parameters such as design, material selection, and printing techniques to improve the strength of 3D-printed prosthetic leg sockets. However, these methods fail to address the major challenges that arise post-printing, namely failures at the distal end of the socket and susceptibility to shear failure. Addressing this gap, the study aims to enhance the mechanical properties of 3D-printed prosthetic leg sockets through post-processing techniques. Fifteen PLA + prosthetic leg sockets are fabricated and reinforced with four materials: carbon fiber, carbon-Kevlar fiber, fiberglass, and cement. Mechanical and microstructural properties of the sockets are evaluated through axial compression testing and scanning electron microscopy (SEM). Results highlight superior attributes of cement-reinforced sockets, exhibiting significantly higher yield strength (up to 89.57% more than counterparts) and higher Young's modulus (up to 76.15% greater). SEM reveals correlations between microstructural properties and socket strength. These findings deepen the comprehension of 3D-printed prosthetic leg socket post-processing, presenting optimization prospects. Future research can focus on refining fabrication techniques, exploring alternative reinforcement materials, and investigating the long-term durability and functionality of post-processed 3D-printed prosthetic leg sockets.
  15. Arai T, Abdul Kadir SR
    Sci Rep, 2017 01 30;7:41649.
    PMID: 28134305 DOI: 10.1038/srep41649
    Information on the spawning migration, spawning ecology and life history of tropical eels in the Indo-Pacific region is very limited. The physiological and morphological characteristics of tropical freshwater eels, Anguilla bicolor bicolor and A. bengalensis bengalensis collected in Malaysia were examined in relation to their downstream migration patterns. A total of 455 eels were collected over monthly intervals between February 2014 and January 2016 and we examined both gonadosomatic index and gonad histology features. In both species, close positive relationships between advanced maturation stages and eye, fin, gonadosomatic indexes were found in males and females. A. bengalensis bengalensis was found to be larger and heavier than A. bicolor bicolor at the time of seaward migration. The final stage of maturation for seaward spawning migration occurred throughout the year in A. bicolor bicolor, although that of A. bengalensis bengalensis was estimated to six months due to the limited number of samples. These results suggest that year-round spawning in the open ocean occurs in the tropical eel. This non-seasonal spawning ecology is notably different from that of temperate eels, which are known to follow a well-defined spawning season, with spawning migrations generally taking place during autumn months.
  16. Arai T, Abdul Kadir SR
    Sci Rep, 2017 08 08;7(1):7593.
    PMID: 28790355 DOI: 10.1038/s41598-017-07837-x
    Along with the mysteries of their ecology, freshwater eels have fascinated biologists for centuries. However, information concerning species diversity, geographic distribution, and life histories of the tropical anguillid eels in the Indo-Pacific region are highly limited. Comprehensive research on the species composition, distribution and habitat use among tropical anguillid eels in the Peninsular Malaysia were conducted for four years. A total of 463 specimens were collected in the northwestern peninsular area. The dominant species was A. bicolor bicolor constituting of 88.1% of the total eels, the second one was A. bengalensis bengalensis at 11.7%, while A. marmorata was the least abundant at 0.2%. A. bicolor bicolor was widely distributed from upstream to downstream areas of the rivers. In comparison, A. bengalensis bengalensis preferred to reside from the upstream to midstream areas with no tidal zones, cooler water temperatures and higher elevation areas. The habitat preference might be different between sites due to inter-species interactions and intra-specific plasticity to local environmental conditions. These results suggest that habitat use in the tropical anguillid eels might be more influenced by ambient environmental factors, such as salinity, temperature, elevation, river size and carrying capacity, than ecological competition, such as interspecific competition.
  17. Raj T, Hashim FH, Huddin AB, Hussain A, Ibrahim MF, Abdul PM
    Sci Rep, 2021 09 15;11(1):18315.
    PMID: 34526627 DOI: 10.1038/s41598-021-97857-5
    The oil yield, measured in oil extraction rate per hectare in the palm oil industry, is directly affected by the ripening levels of the oil palm fresh fruit bunches at the point of harvesting. A rapid, non-invasive and reliable method in assessing the maturity level of oil palm harvests will enable harvesting at an optimum time to increase oil yield. This study shows the potential of using Raman spectroscopy to assess the ripeness level of oil palm fruitlets. By characterizing the carotene components as useful ripeness features, an automated ripeness classification model has been created using machine learning. A total of 46 oil palm fruit spectra consisting of 3 ripeness categories; under ripe, ripe, and over ripe, were analyzed in this work. The extracted features were tested with 19 classification techniques to classify the oil palm fruits into the three ripeness categories. The Raman peak averaging at 1515 cm-1 is shown to be a significant molecular fingerprint for carotene levels, which can serve as a ripeness indicator in oil palm fruits. Further signal analysis on the Raman peak reveals 4 significant sub bands found to be lycopene (ν1a), β-carotene (ν1b), lutein (ν1c) and neoxanthin (ν1d) which originate from the C=C stretching vibration of carotenoid molecules found in the peel of the oil palm fruit. The fine KNN classifier is found to provide the highest overall accuracy of 100%. The classifier employs 6 features: peak intensities of bands ν1a to ν1d and peak positions of bands ν1c and ν1d as predictors. In conclusion, the Raman spectroscopy method has the potential to provide an accurate and effective way in determining the ripeness of oil palm fresh fruits.
  18. Mohammad Haniff MA, Muhammad Hafiz S, Wahid KA, Endut Z, Wah Lee H, Bien DC, et al.
    Sci Rep, 2015;5:14751.
    PMID: 26423893 DOI: 10.1038/srep14751
    In this work, the piezoresistive effects of defective graphene used on a flexible pressure sensor are demonstrated. The graphene used was deposited at substrate temperatures of 750, 850 and 1000 °C using the hot-filament thermal chemical vapor deposition method in which the resultant graphene had different defect densities. Incorporation of the graphene as the sensing materials in sensor device showed that a linear variation in the resistance change with the applied gas pressure was obtained in the range of 0 to 50 kPa. The deposition temperature of the graphene deposited on copper foil using this technique was shown to be capable of tuning the sensitivity of the flexible graphene-based pressure sensor. We found that the sensor performance is strongly dominated by the defect density in the graphene, where graphene with the highest defect density deposited at 750 °C exhibited an almost four-fold sensitivity as compared to that deposited at 1000 °C. This effect is believed to have been contributed by the scattering of charge carriers in the graphene networks through various forms such as from the defects in the graphene lattice itself, tunneling between graphene islands, and tunneling between defect-like structures.
  19. Zubair HT, Bradley DA, Khairina MD, Oresegun A, Basaif A, Othman J, et al.
    Sci Rep, 2023 Jul 24;13(1):11918.
    PMID: 37488183 DOI: 10.1038/s41598-023-39180-9
    We have developed a radioluminescence-based survey meter for use in industries in which there is involvement in naturally occurring radioactive material (NORM), also in support of those needing to detect other weak emitters of radiation. The functionality of the system confronts particular shortcomings of the handheld survey meters that are currently being made use of. The device couples a LYSO:Ce scintillator with a photodetector via a polymer optical fibre waveguide, allowing for "intrinsically safe" inspection within pipework, separators, valves and other such component pieces. The small-diameter optical fibre probe is electrically passive, immune to electromagnetic interference, and chemically inert. The readout circuit is entirely incorporated within a handheld casing housing a silicon photomultiplier (SiPM) detection circuit and a microprocessor circuit connected to an LCD display. A 15 m long flexible PMMA optical fibre waveguide is butt coupled to an ABS plastic probe that retains the LYSO:Ce scintillator. Initial tests have included the use of lab-based mixed gamma-ray sources, measurements being made in concert with a reference conventional GM survey-meter. Characterization, via NORM sources at a decontamination facility, has shown useful sensitivity, covering the dose-rate range 0.10- to 28 µSv h-1 (R-squared 0.966), extending to 80 µSv/h as demonstrated in use of a Cs-137 source. The system is shown to provide an effective tool for detection of radioactivity within hard to access locations, in particular for sources emitting at low radiation levels, down to values that approach background.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links