Displaying publications 1 - 20 of 708 in total

Abstract:
Sort:
  1. Jilnai MT, Wen WP, Cheong LY, ur Rehman MZ
    Sensors (Basel), 2016;16(1).
    PMID: 26805828 DOI: 10.3390/s16010052
    The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC) of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D) period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement.
  2. Khor JH, Sidorov M, Zulqarnain SAB
    Sensors (Basel), 2023 Mar 24;23(7).
    PMID: 37050490 DOI: 10.3390/s23073433
    Scalability prevents public blockchains from being widely adopted for Internet of Things (IoT) applications such as supply chain management. Several existing solutions focus on increasing the transaction count, but none of them address scalability challenges introduced by resource-constrained IoT device integration with these blockchains, especially for the purpose of supply chain ownership management. Thus, this paper solves the issue by proposing a scalable public blockchain-based protocol for the interoperable ownership transfer of tagged goods, suitable for use with resource-constrained IoT devices such as widely used Radio Frequency Identification (RFID) tags. The use of a public blockchain is crucial for the proposed solution as it is essential to enable transparent ownership data transfer, guarantee data integrity, and provide on-chain data required for the protocol. A decentralized web application developed using the Ethereum blockchain and an InterPlanetary File System is used to prove the validity of the proposed lightweight protocol. A detailed security analysis is conducted to verify that the proposed lightweight protocol is secure from key disclosure, replay, man-in-the-middle, de-synchronization, and tracking attacks. The proposed scalable protocol is proven to support secure data transfer among resource-constrained RFID tags while being cost-effective at the same time.
  3. Qazi HH, Mohammad AB, Ahmad H, Zulkifli MZ
    Sensors (Basel), 2016 Sep 15;16(9).
    PMID: 27649195 DOI: 10.3390/s16091505
    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.
  4. Suriani NS, Hussain A, Zulkifley MA
    Sensors (Basel), 2013 Aug 05;13(8):9966-98.
    PMID: 23921828 DOI: 10.3390/s130809966
    Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.
  5. Umar IA, Mohd Hanapi Z, Sali A, Zulkarnain ZA
    Sensors (Basel), 2016 Jun 22;16(6).
    PMID: 27338411 DOI: 10.3390/s16060943
    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.
  6. Abdullah RM, Zukarnain ZA
    Sensors (Basel), 2017 Jul 14;17(7).
    PMID: 28708067 DOI: 10.3390/s17071626
    Transferring a huge amount of data between different network locations over the network links depends on the network's traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model.
  7. Horiguchi T, Masui Y, Zan MSD
    Sensors (Basel), 2019 Mar 27;19(7).
    PMID: 30934806 DOI: 10.3390/s19071497
    Distributed strain and temperature can be measured by using local Brillouin backscatter in optical fibers based on the strain and temperature dependence of the Brillouin frequency shift. The technique of analyzing the local Brillion backscatter in the time domain is called Brillouin optical time domain reflectometry (BOTDR). Although the best spatial resolution of classic BOTDR remains at around 1 m, some recent BOTDR techniques have attained as high as cm-scale spatial resolution. Our laboratory has proposed and demonstrated a high-spatial-resolution BOTDR called phase-shift pulse BOTDR (PSP-BOTDR), using a pair of probe pulses modulated with binary phase-shift keying. PSP-BOTDR is based on the cross-correlation of Brillouin backscatter and on the subtraction of cross-correlations obtained from the Brillouin scatterings evoked by each phase-modulated probe pulse. Although PSP-BOTDR has attained 20-cm spatial resolution, the spectral analysis method of PSP-BOTDR has not been discussed in detail. This article gives in-depth analysis of the Brillouin backscatter and the correlations of the backscatters of the PSP-BOTDR. Based on the analysis, we propose new spectral analysis methods for PSP-BOTDR. The analysis and experiments show that the proposed methods give better frequency resolution than before.
  8. Loh KS, Lee YH, Musa A, Salmah AA, Zamri I
    Sensors (Basel), 2008 Sep 18;8(9):5775-5791.
    PMID: 27873839
    Magnetic nanoparticles of Fe₃O₄ were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe₃O₄ nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe₃O₄ nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe₃O₄ nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe₃O₄ nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.
  9. Soliman MM, Chowdhury MEH, Khandakar A, Islam MT, Qiblawey Y, Musharavati F, et al.
    Sensors (Basel), 2021 May 02;21(9).
    PMID: 34063296 DOI: 10.3390/s21093163
    Implantable antennas are mandatory to transfer data from implants to the external world wirelessly. Smart implants can be used to monitor and diagnose the medical conditions of the patient. The dispersion of the dielectric constant of the tissues and variability of organ structures of the human body absorb most of the antenna radiation. Consequently, implanting an antenna inside the human body is a very challenging task. The design of the antenna is required to fulfill several conditions, such as miniaturization of the antenna dimension, biocompatibility, the satisfaction of the Specific Absorption Rate (SAR), and efficient radiation characteristics. The asymmetric hostile human body environment makes implant antenna technology even more challenging. This paper aims to summarize the recent implantable antenna technologies for medical applications and highlight the major research challenges. Also, it highlights the required technology and the frequency band, and the factors that can affect the radio frequency propagation through human body tissue. It includes a demonstration of a parametric literature investigation of the implantable antennas developed. Furthermore, fabrication and implantation methods of the antenna inside the human body are summarized elaborately. This extensive summary of the medical implantable antenna technology will help in understanding the prospects and challenges of this technology.
  10. Ali A, Almaiah MA, Hajjej F, Pasha MF, Fang OH, Khan R, et al.
    Sensors (Basel), 2022 Jan 12;22(2).
    PMID: 35062530 DOI: 10.3390/s22020572
    The IoT refers to the interconnection of things to the physical network that is embedded with software, sensors, and other devices to exchange information from one device to the other. The interconnection of devices means there is the possibility of challenges such as security, trustworthiness, reliability, confidentiality, and so on. To address these issues, we have proposed a novel group theory (GT)-based binary spring search (BSS) algorithm which consists of a hybrid deep neural network approach. The proposed approach effectively detects the intrusion within the IoT network. Initially, the privacy-preserving technology was implemented using a blockchain-based methodology. Security of patient health records (PHR) is the most critical aspect of cryptography over the Internet due to its value and importance, preferably in the Internet of Medical Things (IoMT). Search keywords access mechanism is one of the typical approaches used to access PHR from a database, but it is susceptible to various security vulnerabilities. Although blockchain-enabled healthcare systems provide security, it may lead to some loopholes in the existing state of the art. In literature, blockchain-enabled frameworks have been presented to resolve those issues. However, these methods have primarily focused on data storage and blockchain is used as a database. In this paper, blockchain as a distributed database is proposed with a homomorphic encryption technique to ensure a secure search and keywords-based access to the database. Additionally, the proposed approach provides a secure key revocation mechanism and updates various policies accordingly. As a result, a secure patient healthcare data access scheme is devised, which integrates blockchain and trust chain to fulfill the efficiency and security issues in the current schemes for sharing both types of digital healthcare data. Hence, our proposed approach provides more security, efficiency, and transparency with cost-effectiveness. We performed our simulations based on the blockchain-based tool Hyperledger Fabric and OrigionLab for analysis and evaluation. We compared our proposed results with the benchmark models, respectively. Our comparative analysis justifies that our proposed framework provides better security and searchable mechanism for the healthcare system.
  11. Zulkifley MA, Behjati M, Nordin R, Zakaria MS
    Sensors (Basel), 2021 Apr 18;21(8).
    PMID: 33919486 DOI: 10.3390/s21082848
    Conventional and license-free radio-controlled drone activities are limited to a line-of-sight (LoS) operational range. One of the alternatives to operate the drones beyond the visual line-of-sight (BVLoS) range is replacing the drone wireless communications system from the conventional industrial, scientific, and medical (ISM) radio band to a licensed cellular-connected system. The Long Term Evolution (LTE) technology that has been established for the terrestrial area allows command-and-control and payload communications between drone and ground station in real-time. However, with increasing height above the ground, the radio environment changes, and utilizing terrestrial cellular networks for drone communications may face new challenges. In this regard, this paper aims to develop an LTE-based control system prototype for low altitude small drones and investigate the feasibility and performance of drone cellular connectivity at different altitudes with measuring parameters such as latency, handover, and signal strength. The measurement results have shown that by increasing flight height from ground to 170 m the received signal power and the signal quality levels were reduced by 20 dBm and 10 dB respectively, the downlink data rate decreased to 70%, and latency increased up to 94 ms. It is concluded that although the existing LTE network can provide a minimum requirement for drone cellular connectivity, further improvements are still needed to enhance aerial coverage, eliminate interference, and reduce network latency.
  12. Kamarudin K, Mamduh SM, Shakaff AY, Zakaria A
    Sensors (Basel), 2014;14(12):23365-87.
    PMID: 25490595 DOI: 10.3390/s141223365
    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
  13. Ebrahimiasl S, Zakaria A
    Sensors (Basel), 2014;14(2):2549-60.
    PMID: 24509767 DOI: 10.3390/s140202549
    A nanocrystalline SnO2 thin film was synthesized by a chemical bath method. The parameters affecting the energy band gap and surface morphology of the deposited SnO2 thin film were optimized using a semi-empirical method. Four parameters, including deposition time, pH, bath temperature and tin chloride (SnCl2·2H2O) concentration were optimized by a factorial method. The factorial used a Taguchi OA (TOA) design method to estimate certain interactions and obtain the actual responses. Statistical evidences in analysis of variance including high F-value (4,112.2 and 20.27), very low P-value (<0.012 and 0.0478), non-significant lack of fit, the determination coefficient (R2 equal to 0.978 and 0.977) and the adequate precision (170.96 and 12.57) validated the suggested model. The optima of the suggested model were verified in the laboratory and results were quite close to the predicted values, indicating that the model successfully simulated the optimum conditions of SnO2 thin film synthesis.
  14. Subari N, Mohamad Saleh J, Md Shakaff AY, Zakaria A
    Sensors (Basel), 2012;12(10):14022-40.
    PMID: 23202033 DOI: 10.3390/s121014022
    This paper presents a comparison between data from single modality and fusion methods to classify Tualang honey as pure or adulterated using Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) statistical classification approaches. Ten different brands of certified pure Tualang honey were obtained throughout peninsular Malaysia and Sumatera, Indonesia. Various concentrations of two types of sugar solution (beet and cane sugar) were used in this investigation to create honey samples of 20%, 40%, 60% and 80% adulteration concentrations. Honey data extracted from an electronic nose (e-nose) and Fourier Transform Infrared Spectroscopy (FTIR) were gathered, analyzed and compared based on fusion methods. Visual observation of classification plots revealed that the PCA approach able to distinct pure and adulterated honey samples better than the LDA technique. Overall, the validated classification results based on FTIR data (88.0%) gave higher classification accuracy than e-nose data (76.5%) using the LDA technique. Honey classification based on normalized low-level and intermediate-level FTIR and e-nose fusion data scored classification accuracies of 92.2% and 88.7%, respectively using the Stepwise LDA method. The results suggested that pure and adulterated honey samples were better classified using FTIR and e-nose fusion data than single modality data.
  15. Saad SM, Andrew AM, Shakaff AY, Saad AR, Kamarudin AM, Zakaria A
    Sensors (Basel), 2015;15(5):11665-84.
    PMID: 26007724 DOI: 10.3390/s150511665
    Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN--a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room's conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.
  16. Ebrahimiasl S, Yunus WM, Kassim A, Zainal Z
    Sensors (Basel), 2011;11(10):9207-16.
    PMID: 22163690 DOI: 10.3390/s111009207
    Nanocrystalline SnO(x) (x = 1-2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnO(x) thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnO(x) nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnO(x). Photosensitivity was detected in the positive region under illumination with white light.
  17. Albowarab MH, Zakaria NA, Zainal Abidin Z
    Sensors (Basel), 2021 May 12;21(10).
    PMID: 34065920 DOI: 10.3390/s21103356
    Various aspects of task execution load balancing of Internet of Things (IoTs) networks can be optimised using intelligent algorithms provided by software-defined networking (SDN). These load balancing aspects include makespan, energy consumption, and execution cost. While past studies have evaluated load balancing from one or two aspects, none has explored the possibility of simultaneously optimising all aspects, namely, reliability, energy, cost, and execution time. For the purposes of load balancing, implementing multi-objective optimisation (MOO) based on meta-heuristic searching algorithms requires assurances that the solution space will be thoroughly explored. Optimising load balancing provides not only decision makers with optimised solutions but a rich set of candidate solutions to choose from. Therefore, the purposes of this study were (1) to propose a joint mathematical formulation to solve load balancing challenges in cloud computing and (2) to propose two multi-objective particle swarm optimisation (MP) models; distance angle multi-objective particle swarm optimization (DAMP) and angle multi-objective particle swarm optimization (AMP). Unlike existing models that only use crowding distance as a criterion for solution selection, our MP models probabilistically combine both crowding distance and crowding angle. More specifically, we only selected solutions that had more than a 0.5 probability of higher crowding distance and higher angular distribution. In addition, binary variants of the approaches were generated based on transfer function, and they were denoted by binary DAMP (BDAMP) and binary AMP (BAMP). After using MOO mathematical functions to compare our models, BDAMP and BAMP, with state of the standard models, BMP, BDMP and BPSO, they were tested using the proposed load balancing model. Both tests proved that our DAMP and AMP models were far superior to the state of the art standard models, MP, crowding distance multi-objective particle swarm optimisation (DMP), and PSO. Therefore, this study enables the incorporation of meta-heuristic in the management layer of cloud networks.
  18. Shukla V, Hussin FA, Hamid NH, Zain Ali NB
    Sensors (Basel), 2017 Jul 27;17(8).
    PMID: 28749411 DOI: 10.3390/s17081719
    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips.
  19. Pius Owoh N, Mahinderjit Singh M, Zaaba ZF
    Sensors (Basel), 2018 Jul 03;18(7).
    PMID: 29970823 DOI: 10.3390/s18072134
    Automatic data annotation eliminates most of the challenges we faced due to the manual methods of annotating sensor data. It significantly improves users’ experience during sensing activities since their active involvement in the labeling process is reduced. An unsupervised learning technique such as clustering can be used to automatically annotate sensor data. However, the lingering issue with clustering is the validation of generated clusters. In this paper, we adopted the k-means clustering algorithm for annotating unlabeled sensor data for the purpose of detecting sensitive location information of mobile crowd sensing users. Furthermore, we proposed a cluster validation index for the k-means algorithm, which is based on Multiple Pair-Frequency. Thereafter, we trained three classifiers (Support Vector Machine, K-Nearest Neighbor, and Naïve Bayes) using cluster labels generated from the k-means clustering algorithm. The accuracy, precision, and recall of these classifiers were evaluated during the classification of “non-sensitive” and “sensitive” data from motion and location sensors. Very high accuracy scores were recorded from Support Vector Machine and K-Nearest Neighbor classifiers while a fairly high accuracy score was recorded from the Naïve Bayes classifier. With the hybridized machine learning (unsupervised and supervised) technique presented in this paper, unlabeled sensor data was automatically annotated and then classified.
  20. Abu Ismaiel A, Aroua MK, Yusoff R
    Sensors (Basel), 2014 Jul 21;14(7):13102-13.
    PMID: 25051034 DOI: 10.3390/s140713102
    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10(-9) to 1.0 × 10(-2) M, with a detection limit of 1 × 10(-10) M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (~5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3-9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links