Displaying publications 1 - 20 of 706 in total

Abstract:
Sort:
  1. Alqasaimeh MS, Heng LY, Ahmad M
    Sensors (Basel), 2007 Oct 11;7(10):2251-2262.
    PMID: 28903225 DOI: 10.3390/s7102251
    An optical urea biosensor was fabricated by stacking several layers of sol-gelfilms. The stacking of the sol-gel films allowed the immobilization of a Nile Bluechromoionophore (ETH 5294) and urease enzyme separately without the need of anychemical attachment procedure. The absorbance response of the biosensor was monitoredat 550 nm, i.e. the deprotonation of the chromoionophore. This multi-layer sol-gel filmformat enabled higher enzyme loading in the biosensor to be achieved. The urea opticalbiosensor constructed from three layers of sol-gel films that contained urease demonstrateda much wider linear response range of up to 100 mM urea when compared with biosensorsthat constructed from 1-2 layers of films. Analysis of urea in urine samples with thisoptical urea biosensor yielded results similar to that determined by a spectrophotometricmethod using the reagent p-dimethylaminobenzaldehyde (R² = 0.982, n = 6). The averagerecovery of urea from urine samples using this urea biosensor is approximately 103%.
  2. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Sensors (Basel), 2007 Oct 11;7(10):2238-2250.
    PMID: 28903224 DOI: 10.3390/s7102238
    The fabrication of an optical biosensor by using stacked films where 3-methyl-2-benzothiazolinone hydrazone (MBTH) was immobilized in a hybrid nafion/sol-gelsilicate film and laccase in a chitosan film for the detection of phenolic compounds wasdescribed. Quinone and/or phenoxy radical product from the enzymatic oxidation ofphenolic compounds was allowed to couple with MBTH to form a colored azo-dye productfor spectrophometric detection. The biosensor demonstrated a linear response to catecholconcentration range of 0.5-8.0 mM with detection limit of 0.33 mM and response time of10 min. The reproducibility of the fabricated biosensor was good with RSD value of 5.3 %(n = 8) and stable for at least 2 months. The use of the hybrid materials of nafion/sol-gelsilicate to immobilize laccase has altered the selectivity of the enzyme to various phenoliccompounds such as catechol, guaicol, o-cresol and m-cresol when compared to the non-immobilized enzyme. When immobilized in this hybrid film, the biosensor response onlyto catechol and not other phenolic compounds investigated. Immobilization in this hybridmaterial has enable the biosensor to be more selective to catechol compared with the non-immobilized enzyme. This shows that by a careful selection of different immobilizationmatrices, the selectivity of an enzyme can be modified to yield a biosensor with goodselectivity towards certain targeted analytes.
  3. Rahim RA, Thiam CK, Rahiman MH
    Sensors (Basel), 2008 Mar 27;8(4):2082-2103.
    PMID: 27879811
    The use of a personal computer together with a Data Acquisition System (DAQ) as the processing tool in optical tomography systems has been the norm ever since the beginning of process tomography. However, advancements in silicon fabrication technology allow nowadays the fabrication of powerful Digital Signal Processors (DSP) at a reasonable cost. This allows this technology to be used in an optical tomography system since data acquisition and processing can be performed within the DSP. Thus, the dependency on a personal computer and a DAQ to sample and process the external signals can be reduced or even eliminated. The DSP system was customized to control the data acquisition process of 16x16 optical sensor array, arranged in parallel beam projection. The data collected was used to reconstruct the cross sectional image of the pipeline conveyor. For image display purposes, the reconstructed image was sent to a personal computer via serial communication. This allows the use of a laptop to display the tomogram image besides performing any other offline analysis.
  4. Rahim RA, Rahiman MH, Chen LL, San CK, Fea PJ
    Sensors (Basel), 2008 May 23;8(5):3406-3428.
    PMID: 27879885
    The main objective of this project is to implement the multiple fan beam projection technique using optical fibre sensors with the aim to achieve a high data acquisition rate. Multiple fan beam projection technique here is defined as allowing more than one emitter to transmit light at the same time using the switch-mode fan beam method. For the thirty-two pairs of sensors used, the 2-projection technique and 4- projection technique are being investigated. Sixteen sets of projections will complete one frame of light emission for the 2-projection technique while eight sets of projection will complete one frame of light emission for the 4-projection technique. In order to facilitate data acquisition process, PIC microcontroller and the sample and hold circuit are being used. This paper summarizes the hardware configuration and design for this project.
  5. Chang CC, Saad B, Surif M, Ahmad MN, Md Shakaff AY
    Sensors (Basel), 2008 Jun 01;8(6):3665-3677.
    PMID: 27879900
    A disposable screen-printed e-tongue based on sensor array and pattern recognition that is suitable for the assessment of water quality in fish tanks is described. The characteristics of sensors fabricated using two kinds of sensing materials, namely (i) lipids (referred to as Type 1), and (ii) alternative electroactive materials comprising liquid ion-exchangers and macrocyclic compounds (Type 2) were evaluated for their performance stability, sensitivity and reproducibility. The Type 2 e-tongue was found to have better sensing performance in terms of sensitivity and reproducibility and was thus used for application studies. By using a pattern recognition tool i.e. principal component analysis (PCA), the e-tongue was able to discriminate the changes in the water quality in tilapia and catfish tanks monitored over eight days. E-tongues coupled with partial least squares (PLS) was used for the quantitative analysis of nitrate and ammonium ions in catfish tank water and good agreement were found with the ion-chromatography method (relative error, ±1.04- 4.10 %).
  6. Loh KS, Lee YH, Musa A, Salmah AA, Zamri I
    Sensors (Basel), 2008 Sep 18;8(9):5775-5791.
    PMID: 27873839
    Magnetic nanoparticles of Fe₃O₄ were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe₃O₄ nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe₃O₄ nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe₃O₄ nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe₃O₄ nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.
  7. Sharina AH, Lee YH, Musa A
    Sensors (Basel), 2008 Oct 16;8(10):6407-6416.
    PMID: 27873876
    The role of incorporation of gold nanoparticles (50-130 nm in diameter) into a series of photocurable methacrylic-acrylic based biosensor membranes containing tyrosinase on the response for phenol detection was investigated. Membranes with different hydrophilicities were prepared from 2-hydroxyethyl methacrylate and n-butyl acrylate via direct photocuring. A range of gold nanoparticles concentrations from 0.01 to 0.5 % (w/w) was incorporated into these membranes during the photocuring process. The addition of gold nanoparticles to the biosensor membrane led to improvement in the response time by a reduction of approximately 5 folds to give response times of 5-10 s. The linear response range of the phenol biosensor was also extended from 24 to 90 mM of phenol. The hydrophilicities of the membrane matrices demonstrated strong influence on the biosensor response and appeared to control the effect of the gold nanoparticles. For less hydrophilic methacrylic-acrylic membranes, the addition of gold nanoparticles led to a poorer sensitivity and detection limit of the biosensor towards phenol. Therefore, for the application of gold nanoparticles in the enhancement of a phenol biosensor response, the nanoparticles should be immobilized in a hydrophilic matrix rather than a hydrophobic material.
  8. Hamzah AA, Yunas J, Majlis BY, Ahmad I
    Sensors (Basel), 2008 Nov 19;8(11):7438-7452.
    PMID: 27873938
    This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG) as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP) as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.
  9. Chong KK, Wong CW, Siaw FL, Yew TK, Ng SS, Liang MS, et al.
    Sensors (Basel), 2009;9(10):7849-65.
    PMID: 22408483 DOI: 10.3390/s91007849
    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m(2) prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad.
  10. Lee HW, Azid IH
    Sensors (Basel), 2009;9(9):7481-97.
    PMID: 22400004 DOI: 10.3390/s90907481
    In this study, a hybridized neuro-genetic optimization methodology realized by embedding numerical simulations trained artificial neural networks (ANN) into a genetic algorithm (GA) is used to optimize the flow rectification efficiency of the diffuser element for a valveless diaphragm micropump application. A higher efficiency ratio of the diffuser element consequently yields a higher flow rate for the micropump. For that purpose, optimization of the diffuser element is essential to determine the maximum pumping rate that the micropump is able to generate. Numerical simulations are initially carried out using CoventorWare® to analyze the effects of varying parameters such as diffuser angle, Reynolds number and aspect ratio on the volumetric flow rate of the micropump. A limited range of simulation results will then be used to train the neural network via back-propagation algorithm and optimization process commence subsequently by embedding the trained ANN results as a fitness function into GA. The objective of the optimization is to maximize the efficiency ratio of the diffuser element for the range of parameters investigated. The optimized efficiency ratio obtained from the neuro-genetic optimization is 1.38, which is higher than any of the maximum efficiency ratio attained from the overall parametric studies, establishing the superiority of the optimization method.
  11. Rahmat MF, Isa MD, Rahim RA, Hussin TA
    Sensors (Basel), 2009;9(12):10291-308.
    PMID: 22303174 DOI: 10.3390/s91210291
    Electrical charge tomography (EChT) is a non-invasive imaging technique that is aimed to reconstruct the image of materials being conveyed based on data measured by an electrodynamics sensor installed around the pipe. Image reconstruction in electrical charge tomography is vital and has not been widely studied before. Three methods have been introduced before, namely the linear back projection method, the filtered back projection method and the least square method. These methods normally face ill-posed problems and their solutions are unstable and inaccurate. In order to ensure the stability and accuracy, a special solution should be applied to obtain a meaningful image reconstruction result. In this paper, a new image reconstruction method - Least squares with regularization (LSR) will be introduced to reconstruct the image of material in a gravity mode conveyor pipeline for electrical charge tomography. Numerical analysis results based on simulation data indicated that this algorithm efficiently overcomes the numerical instability. The results show that the accuracy of the reconstruction images obtained using the proposed algorithm was enhanced and similar to the image captured by a CCD Camera. As a result, an efficient method for electrical charge tomography image reconstruction has been introduced.
  12. Shafie S, Kawahito S, Halin IA, Hasan WZ
    Sensors (Basel), 2009;9(12):9452-67.
    PMID: 22303133 DOI: 10.3390/s91209452
    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.
  13. Rahim RA, Chen LL, San CK, Rahiman MH, Fea PJ
    Sensors (Basel), 2009;9(11):8562-78.
    PMID: 22291523 DOI: 10.3390/s91108562
    This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image.
  14. Omar AF, Matjafri MZ
    Sensors (Basel), 2009;9(10):8311-35.
    PMID: 22408507 DOI: 10.3390/s91008311
    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.
  15. Bahraminejad B, Basri S, Isa M, Hambli Z
    Sensors (Basel), 2010;10(6):5359-77.
    PMID: 22219666 DOI: 10.3390/s100605359
    In this study, the ability of the Capillary-attached conductive gas sensor (CGS) in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG) identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates.
  16. Idroas M, Rahim RA, Green RG, Ibrahim MN, Rahiman MH
    Sensors (Basel), 2010;10(10):9512-28.
    PMID: 22163423 DOI: 10.3390/s101009512
    This research investigates the use of charge coupled device (abbreviated as CCD) linear image sensors in an optical tomographic instrumentation system used for sizing particles. The measurement system, consisting of four CCD linear image sensors are configured around an octagonal shaped flow pipe for a four projections system is explained. The four linear image sensors provide 2,048 pixel imaging with a pixel size of 14 micron × 14 micron, hence constituting a high-resolution system. Image reconstruction for a four-projection optical tomography system is also discussed, where a simple optical model is used to relate attenuation due to variations in optical density, [R], within the measurement section. Expressed in matrix form this represents the forward problem in tomography [S] [R] = [M]. In practice, measurements [M] are used to estimate the optical density distribution by solving the inverse problem [R] = [S](-1)[M]. Direct inversion of the sensitivity matrix, [S], is not possible and two approximations are considered and compared-the transpose and the pseudo inverse sensitivity matrices.
  17. Zakaria A, Shakaff AY, Adom AH, Ahmad MN, Masnan MJ, Aziz AH, et al.
    Sensors (Basel), 2010;10(10):8782-96.
    PMID: 22163381 DOI: 10.3390/s101008782
    An improved classification of Orthosiphon stamineus using a data fusion technique is presented. Five different commercial sources along with freshly prepared samples were discriminated using an electronic nose (e-nose) and an electronic tongue (e-tongue). Samples from the different commercial brands were evaluated by the e-tongue and then followed by the e-nose. Applying Principal Component Analysis (PCA) separately on the respective e-tongue and e-nose data, only five distinct groups were projected. However, by employing a low level data fusion technique, six distinct groupings were achieved. Hence, this technique can enhance the ability of PCA to analyze the complex samples of Orthosiphon stamineus. Linear Discriminant Analysis (LDA) was then used to further validate and classify the samples. It was found that the LDA performance was also improved when the responses from the e-nose and e-tongue were fused together.
  18. Hannan MA, Hussain A, Samad SA
    Sensors (Basel), 2010;10(2):1141-53.
    PMID: 22205861 DOI: 10.3390/s100201141
    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.
  19. Ling YP, Heng LY
    Sensors (Basel), 2010;10(11):9963-81.
    PMID: 22163450 DOI: 10.3390/s101109963
    A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor's analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3-316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R(2) = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor's performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.
  20. Abadi MH, Hamidon MN, Shaari AH, Abdullah N, Misron N, Wagiran R
    Sensors (Basel), 2010;10(5):5074-89.
    PMID: 22399925 DOI: 10.3390/s100505074
    Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO(3)(1-x)Y(2)O(3) nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8) thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH(4)) and butane (C(4)H(10)) at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links