Displaying publications 1 - 20 of 147 in total

Abstract:
Sort:
  1. Naing C, Ni H, Aung HH, Pavlov CS
    Cochrane Database Syst Rev, 2024 Mar 22;3(3):CD014944.
    PMID: 38517086 DOI: 10.1002/14651858.CD014944.pub2
    BACKGROUND: The sphincter of Oddi comprises a muscular complex encircling the distal part of the common bile duct and the pancreatic duct regulating the outflow from these ducts. Sphincter of Oddi dysfunction refers to the abnormal opening and closing of the muscular valve, which impairs the circulation of bile and pancreatic juices.

    OBJECTIVES: To evaluate the benefits and harms of any type of endoscopic sphincterotomy compared with a placebo drug, sham operation, or any pharmaceutical treatment, administered orally or endoscopically, alone or in combination, or a different type of endoscopic sphincterotomy in adults with biliary sphincter of Oddi dysfunction.

    SEARCH METHODS: We used extensive Cochrane search methods. The latest search date was 16 May 2023.

    SELECTION CRITERIA: We included randomised clinical trials assessing any type of endoscopic sphincterotomy versus placebo drug, sham operation, or any pharmaceutical treatment, alone or in combination, or a different type of endoscopic sphincterotomy in adults diagnosed with sphincter of Oddi dysfunction, irrespective of year, language of publication, format, or outcomes reported.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods and Review Manager to prepare the review. Our primary outcomes were: proportion of participants without successful treatment; proportion of participants with one or more serious adverse events; and health-related quality of life. Our secondary outcomes were: all-cause mortality; proportion of participants with one or more non-serious adverse events; length of hospital stay; and proportion of participants without improvement in liver function tests. We used the outcome data at the longest follow-up and the random-effects model for our primary analyses. We assessed the risk of bias of the included trials using RoB 2 and the certainty of evidence using GRADE. We planned to present the results of time-to-event outcomes as hazard ratios (HR). We presented dichotomous outcomes as risk ratios (RR) and continuous outcomes as mean difference (MD) with their 95% confidence intervals (CI).

    MAIN RESULTS: We included four randomised clinical trials, including 433 participants. Trials were published between 1989 and 2015. The trial participants had sphincter of Oddi dysfunction. Two trials were conducted in the USA, one in Australia, and one in Japan. One was a multicentre trial conducted in seven US centres, and the remaining three were single-centre trials. One trial used a two-stage randomisation, resulting in two comparisons. The number of participants in the four trials ranged from 47 to 214 (median 86), with a median age of 45 years, and the mean proportion of males was 49%. The follow-up duration ranged from one year to four years after the end of treatment. All trials assessed one or more outcomes of interest to our review. The trials provided data for the comparisons and outcomes below, in conformity with our review protocol. The certainty of evidence for all the outcomes was very low. Endoscopic sphincterotomy versus sham Endoscopic sphincterotomy versus sham may have little to no effect on treatment success (RR 1.05, 95% CI 0.66 to 1.66; 3 trials, 340 participants; follow-up range 1 to 4 years); serious adverse events (RR 0.71, 95% CI 0.34 to 1.46; 1 trial, 214 participants; follow-up 1 year), health-related quality of life (Physical scale) (MD -1.00, 95% CI -3.84 to 1.84; 1 trial, 214 participants; follow-up 1 year), health-related quality of life (Mental scale) (MD -1.00, 95% CI -4.16 to 2.16; 1 trial, 214 participants; follow-up 1 year), and no improvement in liver function test (RR 0.89, 95% CI 0.35 to 2.26; 1 trial, 47 participants; follow-up 1 year), but the evidence is very uncertain. Endoscopic sphincterotomy versus endoscopic papillary balloon dilation Endoscopic sphincterotomy versus endoscopic papillary balloon dilationmay have little to no effect on serious adverse events (RR 0.34, 95% CI 0.04 to 3.15; 1 trial, 91 participants; follow-up 1 year), but the evidence is very uncertain. Endoscopic sphincterotomy versus dual endoscopic sphincterotomy Endoscopic sphincterotomy versus dual endoscopic sphincterotomy may have little to no effect on treatment success (RR 0.65, 95% CI 0.32 to 1.31; 1 trial, 99 participants; follow-up 1 year), but the evidence is very uncertain. Funding One trial did not provide any information on sponsorship; one trial was funded by a foundation (the National Institutes of Diabetes and Digestive and Kidney Diseases, NIDDK), and two trials seemed to be funded by the local health institutes or universities where the investigators worked. We did not identify any ongoing randomised clinical trials.

    AUTHORS' CONCLUSIONS: Based on very low-certainty evidence from the trials included in this review, we do not know if endoscopic sphincterotomy versus sham or versus dual endoscopic sphincterotomy increases, reduces, or makes no difference to the number of people with treatment success; if endoscopic sphincterotomy versus sham or versus endoscopic papillary balloon dilation increases, reduces, or makes no difference to serious adverse events; or if endoscopic sphincterotomy versus sham improves, worsens, or makes no difference to health-related quality of life and liver function tests in adults with biliary sphincter of Oddi dysfunction. Evidence on the effect of endoscopic sphincterotomy compared with sham, endoscopic papillary balloon dilation,or dual endoscopic sphincterotomyon all-cause mortality, non-serious adverse events, and length of hospital stay is lacking. We found no trials comparing endoscopic sphincterotomy versus a placebo drug or versus any other pharmaceutical treatment, alone or in combination. All four trials were underpowered and lacked trial data on clinically important outcomes. We lack randomised clinical trials assessing clinically and patient-relevant outcomes to demonstrate the effects of endoscopic sphincterotomy in adults with biliary sphincter of Oddi dysfunction.

  2. Korula P, Alexander H, John JS, Kirubakaran R, Singh B, Tharyan P, et al.
    Cochrane Database Syst Rev, 2024 Feb 05;2(2):CD015219.
    PMID: 38314855 DOI: 10.1002/14651858.CD015219.pub2
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the health workforce and societies worldwide. Favipiravir was suggested by some experts to be effective and safe to use in COVID-19. Although this drug has been evaluated in randomized controlled trials (RCTs), it is still unclear if it has a definite role in the treatment of COVID-19.

    OBJECTIVES: To assess the effects of favipiravir compared to no treatment, supportive treatment, or other experimental antiviral treatment in people with acute COVID-19.

    SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease, and three other databases, up to 18 July 2023.

    SELECTION CRITERIA: We searched for RCTs evaluating the efficacy of favipiravir in treating people with COVID-19.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures for data collection and analysis. We used the GRADE approach to assess the certainty of evidence for each outcome.

    MAIN RESULTS: We included 25 trials that randomized 5750 adults (most under 60 years of age). The trials were conducted in Bahrain, Brazil, China, India, Iran, Kuwait, Malaysia, Mexico, Russia, Saudi Arabia, Thailand, the UK, and the USA. Most participants were hospitalized with mild to moderate disease (89%). Twenty-two of the 25 trials investigated the role of favipiravir compared to placebo or standard of care, whilst lopinavir/ritonavir was the comparator in two trials, and umifenovir in one trial. Most trials (24 of 25) initiated favipiravir at 1600 mg or 1800 mg twice daily for the first day, followed by 600 mg to 800 mg twice a day. The duration of treatment varied from five to 14 days. We do not know whether favipiravir reduces all-cause mortality at 28 to 30 days, or in-hospital (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.49 to 1.46; 11 trials, 3459 participants; very low-certainty evidence). We do not know if favipiravir reduces the progression to invasive mechanical ventilation (RR 0.86, 95% CI 0.68 to 1.09; 8 trials, 1383 participants; very low-certainty evidence). Favipiravir may make little to no difference in the need for admission to hospital (if ambulatory) (RR 1.04, 95% CI 0.44 to 2.46; 4 trials, 670 participants; low-certainty evidence). We do not know if favipiravir reduces the time to clinical improvement (defined as time to a 2-point reduction in patients' admission status on the WHO's ordinal scale) (hazard ratio (HR) 1.13, 95% CI 0.69 to 1.83; 4 trials, 721 participants; very low-certainty evidence). Favipiravir may make little to no difference to the progression to oxygen therapy (RR 1.20, 95% CI 0.83 to 1.75; 2 trials, 543 participants; low-certainty evidence). Favipiravir may lead to an overall increased incidence of adverse events (RR 1.27, 95% CI 1.05 to 1.54; 18 trials, 4699 participants; low-certainty evidence), but may result in little to no difference inserious adverse eventsattributable to the drug (RR 1.04, 95% CI 0.76 to 1.42; 12 trials, 3317 participants; low-certainty evidence).

    AUTHORS' CONCLUSIONS: The low- to very low-certainty evidence means that we do not know whether favipiravir is efficacious in people with COVID-19 illness, irrespective of severity or admission status. Treatment with favipiravir may result in an overall increase in the incidence of adverse events but may not result in serious adverse events.

  3. Stafford IG, Lai NM, Tan K
    Cochrane Database Syst Rev, 2023 Nov 30;11(11):CD013294.
    PMID: 38032241 DOI: 10.1002/14651858.CD013294.pub2
    BACKGROUND: Many preterm infants require respiratory support to maintain an optimal level of oxygenation, as oxygen levels both below and above the optimal range are associated with adverse outcomes. Optimal titration of oxygen therapy for these infants presents a major challenge, especially in neonatal intensive care units (NICUs) with suboptimal staffing. Devices that offer automated oxygen delivery during respiratory support of neonates have been developed since the 1970s, and individual trials have evaluated their effectiveness.

    OBJECTIVES: To assess the benefits and harms of automated oxygen delivery systems, embedded within a ventilator or oxygen delivery device, for preterm infants with respiratory dysfunction who require respiratory support or supplemental oxygen therapy.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, CINAHL, and clinical trials databases without language or publication date restrictions on 23 January 2023. We also checked the reference lists of retrieved articles for other potentially eligible trials.

    SELECTION CRITERIA: We included randomised controlled trials and randomised cross-over trials that compared automated oxygen delivery versus manual oxygen delivery, or that compared different automated oxygen delivery systems head-to-head, in preterm infants (born before 37 weeks' gestation).

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our main outcomes were time (%) in desired oxygen saturation (SpO2) range, all-cause in-hospital mortality by 36 weeks' postmenstrual age, severe retinopathy of prematurity (ROP), and neurodevelopmental outcomes at approximately two years' corrected age. We expressed our results using mean difference (MD), standardised mean difference (SMD), and risk ratio (RR) with 95% confidence intervals (CIs). We used GRADE to assess the certainty of evidence.

    MAIN RESULTS: We included 18 studies (27 reports, 457 infants), of which 13 (339 infants) contributed data to meta-analyses. We identified 13 ongoing studies. We evaluated three comparisons: automated oxygen delivery versus routine manual oxygen delivery (16 studies), automated oxygen delivery versus enhanced manual oxygen delivery with increased staffing (three studies), and one automated system versus another (two studies). Most studies were at low risk of bias for blinding of personnel and outcome assessment, incomplete outcome data, and selective outcome reporting; and half of studies were at low risk of bias for random sequence generation and allocation concealment. However, most were at high risk of bias in an important domain specific to cross-over trials, as only two of 16 cross-over trials provided separate outcome data for each period of the intervention (before and after cross-over). Automated oxygen delivery versus routine manual oxygen delivery Automated delivery compared with routine manual oxygen delivery probably increases time (%) in the desired SpO2 range (MD 13.54%, 95% CI 11.69 to 15.39; I2 = 80%; 11 studies, 284 infants; moderate-certainty evidence). No studies assessed in-hospital mortality. Automated oxygen delivery compared to routine manual oxygen delivery may have little or no effect on risk of severe ROP (RR 0.24, 95% CI 0.03 to 1.94; 1 study, 39 infants; low-certainty evidence). No studies assessed neurodevelopmental outcomes. Automated oxygen delivery versus enhanced manual oxygen delivery There may be no clear difference in time (%) in the desired SpO2 range between infants who receive automated oxygen delivery and infants who receive manual oxygen delivery (MD 7.28%, 95% CI -1.63 to 16.19; I2 = 0%; 2 studies, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. Revised closed-loop automatic control algorithm (CLACfast) versus original closed-loop automatic control algorithm (CLACslow) CLACfast allowed up to 120 automated adjustments per hour, whereas CLACslow allowed up to 20 automated adjustments per hour. CLACfast may result in little or no difference in time (%) in the desired SpO2 range compared to CLACslow (MD 3.00%, 95% CI -3.99 to 9.99; 1 study, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. OxyGenie compared to CLiO2 Data from a single small study were presented as medians and interquartile ranges and were not suitable for meta-analysis.

    AUTHORS' CONCLUSIONS: Automated oxygen delivery compared to routine manual oxygen delivery probably increases time in desired SpO2 ranges in preterm infants on respiratory support. However, it is unclear whether this translates into important clinical benefits. The evidence on clinical outcomes such as severe retinopathy of prematurity are of low certainty, with little or no differences between groups. There is insufficient evidence to reach any firm conclusions on the effectiveness of automated oxygen delivery compared to enhanced manual oxygen delivery or CLACfast compared to CLACslow. Future studies should include important short- and long-term clinical outcomes such as mortality, severe ROP, bronchopulmonary dysplasia/chronic lung disease, intraventricular haemorrhage, periventricular leukomalacia, patent ductus arteriosus, necrotising enterocolitis, and long-term neurodevelopmental outcomes. The ideal study design for this evaluation is a parallel-group randomised controlled trial. Studies should clearly describe staffing levels, especially in the manual arm, to enable an assessment of reproducibility according to resources in various settings. The data of the 13 ongoing studies, when made available, may change our conclusions, including the implications for practice and research.

  4. Eilertsen H, Menon CS, Law ZK, Chen C, Bath PM, Steiner T, et al.
    Cochrane Database Syst Rev, 2023 Oct 23;10(10):CD005951.
    PMID: 37870112 DOI: 10.1002/14651858.CD005951.pub5
    BACKGROUND: Outcome after acute spontaneous (non-traumatic) intracerebral haemorrhage (ICH) is influenced by haematoma volume. ICH expansion occurs in about 20% of people with acute ICH. Early haemostatic therapy might improve outcome by limiting ICH expansion. This is an update of a Cochrane Review first published in 2006, and last updated in 2018.

    OBJECTIVES: To examine 1. the effects of individual classes of haemostatic therapies, compared with placebo or open control, in adults with acute spontaneous ICH, and 2. the effects of each class of haemostatic therapy according to the use and type of antithrombotic drug before ICH onset.

    SEARCH METHODS: We searched the Cochrane Stroke Trials Register, CENTRAL (2022, Issue 8), MEDLINE Ovid, and Embase Ovid on 12 September 2022. To identify further published, ongoing, and unpublished randomised controlled trials (RCTs), we scanned bibliographies of relevant articles and searched international registers of RCTs in September 2022.

    SELECTION CRITERIA: We included RCTs of any haemostatic intervention (i.e. procoagulant treatments such as clotting factor concentrates, antifibrinolytic drugs, platelet transfusion, or agents to reverse the action of antithrombotic drugs) for acute spontaneous ICH, compared with placebo, open control, or an active comparator.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcome was death/dependence (modified Rankin Scale (mRS) 4 to 6) by day 90. Secondary outcomes were ICH expansion on brain imaging after 24 hours, all serious adverse events, thromboembolic adverse events, death from any cause, quality of life, mood, cognitive function, Barthel Index score, and death or dependence measured on the Extended Glasgow Outcome Scale by day 90.

    MAIN RESULTS: We included 20 RCTs involving 4652 participants: nine RCTs of recombinant activated factor VII (rFVIIa) versus placebo/open control (1549 participants), eight RCTs of antifibrinolytic drugs versus placebo/open control (2866 participants), one RCT of platelet transfusion versus open control (190 participants), and two RCTs of prothrombin complex concentrates (PCC) versus fresh frozen plasma (FFP) (47 participants). Four (20%) RCTs were at low risk of bias in all criteria. For rFVIIa versus placebo/open control for spontaneous ICH with or without surgery there was little to no difference in death/dependence by day 90 (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.74 to 1.05; 7 RCTs, 1454 participants; low-certainty evidence). We found little to no difference in ICH expansion between groups (RR 0.81, 95% CI 0.56 to 1.16; 4 RCTs, 220 participants; low-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 0.81, 95% CI 0.30 to 2.22; 2 RCTs, 87 participants; very low-certainty evidence; death from any cause: RR 0.78, 95% CI 0.56 to 1.08; 8 RCTs, 1544 participants; moderate-certainty evidence). For antifibrinolytic drugs versus placebo/open control for spontaneous ICH, there was no difference in death/dependence by day 90 (RR 1.00, 95% CI 0.93 to 1.07; 5 RCTs, 2683 participants; high-certainty evidence). We found a slight reduction in ICH expansion with antifibrinolytic drugs for spontaneous ICH compared to placebo/open control (RR 0.86, 95% CI 0.76 to 0.96; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.02, 95% CI 0.75 to 1.39; 4 RCTs, 2599 participants; high-certainty evidence; death from any cause: RR 1.02, 95% CI 0.89 to 1.18; 8 RCTs, 2866 participants; high-certainty evidence). There was little to no difference in quality of life, mood, or cognitive function (quality of life: mean difference (MD) 0, 95% CI -0.03 to 0.03; 2 RCTs, 2349 participants; mood: MD 0.30, 95% CI -1.98 to 2.57; 2 RCTs, 2349 participants; cognitive function: MD -0.37, 95% CI -1.40 to 0.66; 1 RCTs, 2325 participants; all high-certainty evidence). Platelet transfusion likely increases death/dependence by day 90 compared to open control for antiplatelet-associated ICH (RR 1.29, 95% CI 1.04 to 1.61; 1 RCT, 190 participants; moderate-certainty evidence). We found little to no difference in ICH expansion between groups (RR 1.32, 95% CI 0.91 to 1.92; 1 RCT, 153 participants; moderate-certainty evidence). There was little to no difference in all serious adverse events and death from any cause between groups (all serious adverse events: RR 1.46, 95% CI 0.98 to 2.16; 1 RCT, 190 participants; death from any cause: RR 1.42, 95% CI 0.88 to 2.28; 1 RCT, 190 participants; both moderate-certainty evidence). For PCC versus FFP for anticoagulant-associated ICH, the evidence was very uncertain about the effect on death/dependence by day 90, ICH expansion, all serious adverse events, and death from any cause between groups (death/dependence by day 90: RR 1.21, 95% CI 0.76 to 1.90; 1 RCT, 37 participants; ICH expansion: RR 0.54, 95% CI 0.23 to 1.22; 1 RCT, 36 participants; all serious adverse events: RR 0.27, 95% CI 0.02 to 3.74; 1 RCT, 5 participants; death from any cause: RR 0.49, 95% CI 0.16 to 1.56; 2 RCTs, 42 participants; all very low-certainty evidence).

    AUTHORS' CONCLUSIONS: In this updated Cochrane Review including 20 RCTs involving 4652 participants, rFVIIa likely results in little to no difference in reducing death or dependence after spontaneous ICH with or without surgery; antifibrinolytic drugs result in little to no difference in reducing death or dependence after spontaneous ICH, but result in a slight reduction in ICH expansion within 24 hours; platelet transfusion likely increases death or dependence after antiplatelet-associated ICH; and the evidence is very uncertain about the effect of PCC compared to FFP on death or dependence after anticoagulant-associated ICH. Thirteen RCTs are ongoing and are likely to increase the certainty of the estimates of treatment effect.

  5. Ho JJ, Zakarija-Grkovic I, Lok JW, Lim E, Subramaniam P, Leong JJ
    Cochrane Database Syst Rev, 2023 Jul 18;7(7):CD013660.
    PMID: 37481707 DOI: 10.1002/14651858.CD013660.pub2
    BACKGROUND: Apnoea of prematurity (AoP) is defined as a pause in breathing for 20 seconds or longer, or for less than 20 seconds when accompanied by bradycardia and hypoxaemia, in a preterm infant. An association between the severity of apnoea and neurodevelopmental delay has been reported. Continuous positive airway pressure (CPAP) is a form of non-invasive ventilatory assistance that has been shown to be relatively safe and effective in preventing and treating respiratory distress among preterm infants. It is less clear whether CPAP treatment is safe and effective in the prevention and treatment of AoP.

    OBJECTIVES: 1. To assess the effects of CPAP on AoP in preterm infants (this may be compared to supportive care or mechanical ventilation). 2. To assess the effects of different CPAP delivery systems on AoP in preterm infants.

    SEARCH METHODS: Searches were conducted in September 2022 in the following databases: Cochrane Library, MEDLINE, Embase, and CINAHL. We also searched clinical trial registries and the reference lists of studies selected for inclusion.

    SELECTION CRITERIA: We included all randomised and quasi-randomised controlled trials (RCTs) in which researchers determined that CPAP was necessary for AoP in preterm infants (born before 37 weeks). Cross-over studies were also included, provided sufficient data were available for analysis.

    DATA COLLECTION AND ANALYSIS: We used the standard methods of Cochrane and Cochrane Neonatal, including independent assessment of risk of bias and extraction of data by at least two review authors. Discrepancies were resolved by involvement of a third author. We used the GRADE approach to assess the certainty of evidence for the following outcomes: 1) failed CPAP; 2) apnoea; 3) adverse effects of CPAP.

    MAIN RESULTS: We included four single-centre trials conducted in Malaysia, Spain, Germany, and North America, involving 138 infants with a mean/median gestation of 26 to 28 weeks. Two studies were parallel-group RCTs and two were cross-over trials. None of the studies compared CPAP with supportive care. All trials compared one form of CPAP with another. Two compared a variable flow device with ventilator CPAP, one compared two different variable flow devices, and one compared a variable flow device with bubble CPAP. Interventions were administered for periods ranging between six and 48 hours, with pressures between 4 and 6 cm H2O. We assessed all trials as having a high risk of bias for blinding of participants and personnel, and two studies for blinding of outcome assessors. We found a high risk of a carry-over effect in two studies where the washout period was not adequately described, and a high risk of bias in a study that appeared to use an analysis method not generally accepted for cross-over studies. Comparison 1. CPAP and supportive care compared to supportive care alone We did not identify any study for inclusion in this comparison. Comparison 2. CPAP delivered by different types of devices 2a. Variable flow compared to ventilator CPAP Two studies were included in this comparison. We are very uncertain whether there is any difference in the incidence of failed CPAP, defined as the need for mechanical ventilation (risk ratio (RR) 0.16, 95% confidence interval (CI) 0.01 to 2.90; 1 study, 26 participants; very low-certainty). We are very uncertain whether there is any difference in the frequency of apnoea events (mean difference (MD) per four-hour interval -0.10, 95% CI -1.30 to 1.10; 1 study, 26 participants; very low-certainty). We are uncertain whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. 2b. Variable flow compared to bubble CPAP We included one study in this comparison, but it did not report our pre-specified outcomes. 2c. Infant Flow variable flow CPAP compared to Medijet variable flow CPAP We are very uncertain whether there is any difference in the incidence of failed CPAP (RR 2.62, 95% CI 0.91 to 7.53; 1 study, 80 participants; very low-certainty). The frequency of apnoea was not reported, and we do not know whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. Comparison 3. CPAP compared to mechanical ventilation We did not identify any studies for inclusion in this comparison.

    AUTHORS' CONCLUSIONS: Due to the limited available evidence, we are very uncertain whether any CPAP device is more effective than other forms of supportive care, other CPAP devices, or mechanical ventilation for the prevention and treatment of AoP. The devices used in these studies included two types of variable flow CPAP device: bubble CPAP and ventilator CPAP. For each comparison, data were only available from a single study. There are theoretical reasons why these devices might have different effects on AoP, therefore further trials are indicated.

  6. Lee SWH, Chen WS, Sellappans R, Md Sharif SB, Metzendorf MI, Lai NM
    Cochrane Database Syst Rev, 2023 Jul 12;7(7):CD013178.
    PMID: 37435938 DOI: 10.1002/14651858.CD013178.pub2
    BACKGROUND: Fasting during Ramadan is obligatory for adult Muslims, except those who have a medical illness. Many Muslims with type 2 diabetes (T2DM) choose to fast, which may increase their risks of hypoglycaemia and dehydration.

    OBJECTIVES: To assess the effects of interventions for people with type 2 diabetes fasting during Ramadan.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, PsycINFO, CINAHL, WHO ICTRP and ClinicalTrials.gov (29 June 2022) without language restrictions.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) conducted during Ramadan that evaluated all pharmacological or behavioural interventions in Muslims with T2DM.

    DATA COLLECTION AND ANALYSIS: Two authors screened and selected records, assessed risk of bias and extracted data independently. Discrepancies were resolved by a third author. For meta-analyses we used a random-effects model, with risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes with their associated 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach.

    MAIN RESULTS: We included 17 RCTs with 5359 participants, with a four-week study duration and at least four weeks of follow-up. All studies had at least one high-risk domain in the risk of bias assessment. Four trials compared dipeptidyl-peptidase-4 (DPP-4) inhibitors with sulphonylurea. DPP-4 inhibitors may reduce hypoglycaemia compared to sulphonylureas (85/1237 versus 165/1258, RR 0.53, 95% CI 0.41 to 0.68; low-certainty evidence). Serious hypoglycaemia was similar between groups (no events were reported in two trials; 6/279 in the DPP-4 versus 4/278 in the sulphonylurea group was reported in one trial, RR 1.49, 95% CI 0.43 to 5.24; very low-certainty evidence). The evidence was very uncertain about the effects of DPP-4 inhibitors on adverse events other than hypoglycaemia (141/1207 versus 157/1219, RR 0.90, 95% CI 0.52 to 1.54) and HbA1c changes (MD -0.11%, 95% CI -0.57 to 0.36) (very low-certainty evidence for both outcomes). No deaths were reported (moderate-certainty evidence). Health-related quality of life (HRQoL) and treatment satisfaction were not evaluated. Two trials compared meglitinides with sulphonylurea. The evidence is very uncertain about the effect on hypoglycaemia (14/133 versus 21/140, RR 0.72, 95% CI 0.40 to 1.28) and HbA1c changes (MD 0.38%, 95% CI 0.35% to 0.41%) (very low-certainty evidence for both outcomes). Death, serious hypoglycaemic events, adverse events, treatment satisfaction and HRQoL were not evaluated. One trial compared sodium-glucose co-transporter-2 (SGLT-2) inhibitors with sulphonylurea. SGLT-2 may reduce hypoglycaemia compared to sulphonylurea (4/58 versus 13/52, RR 0.28, 95% CI 0.10 to 0.79; low-certainty evidence). The evidence was very uncertain for serious hypoglycaemia (one event reported in both groups, RR 0.90, 95% CI 0.06 to 13.97) and adverse events other than hypoglycaemia (20/58 versus 18/52, RR 1.00, 95% CI 0.60 to 1.67) (very low-certainty evidence for both outcomes). SGLT-2 inhibitors result in little or no difference in HbA1c (MD 0.27%, 95% CI -0.04 to 0.58; 1 trial, 110 participants; low-certainty evidence). Death, treatment satisfaction and HRQoL were not evaluated. Three trials compared glucagon-like peptide 1 (GLP-1) analogues with sulphonylurea. GLP-1 analogues may reduce hypoglycaemia compared to sulphonylurea (20/291 versus 48/305, RR 0.45, 95% CI 0.28 to 0.74; low-certainty evidence). The evidence was very uncertain for serious hypoglycaemia (0/91 versus 1/91, RR 0.33, 95% CI 0.01 to 7.99; very low-certainty evidence). The evidence suggests that GLP-1 analogues result in little to no difference in adverse events other than hypoglycaemia (78/244 versus 55/255, RR 1.50, 95% CI 0.86 to 2.61; very low-certainty evidence), treatment satisfaction (MD -0.18, 95% CI -3.18 to 2.82; very low-certainty evidence) or change in HbA1c (MD -0.04%, 95% CI -0.45% to 0.36%; 2 trials, 246 participants; low-certainty evidence). Death and HRQoL were not evaluated. Two trials compared insulin analogues with biphasic insulin. The evidence was very uncertain about the effects of insulin analogues on hypoglycaemia (47/256 versus 81/244, RR 0.43, 95% CI 0.13 to 1.40) and serious hypoglycaemia (4/131 versus 3/132, RR 1.34, 95% CI 0.31 to 5.89) (very low-certainty evidence for both outcomes). The evidence was very uncertain for the effect of insulin analogues on adverse effects other than hypoglycaemia (109/256 versus 114/244, RR 0.83, 95% CI 0.44 to 1.56; very low-certainty evidence), all-cause mortality (1/131 versus 0/132, RR 3.02, 95% CI 0.12 to 73.53; very low-certainty evidence) and HbA1c changes (MD 0.03%, 95% CI -0.17% to 0.23%; 1 trial, 245 participants; very low-certainty evidence). Treatment satisfaction and HRQoL were not evaluated. Two trials compared telemedicine with usual care. The evidence was very uncertain about the effect of telemedicine on hypoglycaemia compared with usual care (9/63 versus 23/58, RR 0.42, 95% CI 0.24 to 0.74; very low-certainty evidence), HRQoL (MD 0.06, 95% CI -0.03 to 0.15; very low-certainty evidence) and HbA1c change (MD -0.84%, 95% CI -1.51% to -0.17%; very low-certainty evidence). Death, serious hypoglycaemia, AEs other than hypoglycaemia and treatment satisfaction were not evaluated. Two trials compared Ramadan-focused patient education with usual care. The evidence was very uncertain about the effect of Ramadan-focused patient education on hypoglycaemia (49/213 versus 42/209, RR 1.17, 95% CI 0.82 to 1.66; very low-certainty evidence) and HbA1c change (MD -0.40%, 95% CI -0.73% to -0.06%; very low-certainty evidence). Death, serious hypoglycaemia, adverse events other than hypoglycaemia, treatment satisfaction and HRQoL were not evaluated. One trial compared drug dosage reduction with usual care. The evidence is very uncertain about the effect of drug dosage reduction on hypoglycaemia (19/452 versus 52/226, RR 0.18, 95% CI 0.11 to 0.30; very low-certainty evidence). No participants experienced adverse events other than hypoglycaemia during the study (very low-certainty evidence). Death, serious hypoglycaemia, treatment satisfaction, HbA1c change and HRQoL were not evaluated.

    AUTHORS' CONCLUSIONS: There is no clear evidence of the benefits or harms of interventions for individuals with T2DM who fast during Ramadan. All results should be interpreted with caution due to concerns about risk of bias, imprecision and inconsistency between studies, which give rise to low- to very low-certainty evidence. Major outcomes, such as mortality, health-related quality of life and severe hypoglycaemia, were rarely evaluated. Sufficiently powered studies that examine the effects of various interventions on these outcomes are needed.

  7. Sasongko TH, Kademane K, Chai Soon Hou S, Jocelyn TXY, Zabidi-Hussin Z
    Cochrane Database Syst Rev, 2023 Jul 11;7(7):CD011272.
    PMID: 37432030 DOI: 10.1002/14651858.CD011272.pub3
    BACKGROUND: Potential benefits of rapamycin or rapalogs for treating people with tuberous sclerosis complex (TSC) have been shown. Currently everolimus (a rapalog) is only approved for TSC-associated renal angiomyolipoma and subependymal giant cell astrocytoma (SEGA), but not other manifestations of TSC. A systematic review needs to establish evidence for rapamycin or rapalogs for various manifestations in TSC. This is an updated review.

    OBJECTIVES: To determine the effectiveness of rapamycin or rapalogs in people with TSC for decreasing tumour size and other manifestations and to assess the safety of rapamycin or rapalogs in relation to their adverse effects.

    SEARCH METHODS: We identified relevant studies from the Cochrane-Central-Register-of-Controlled-Trials (CENTRAL), Ovid MEDLINE and ongoing trials registries with no language restrictions. We searched conference proceedings and abstract books of conferences. Date of the last searches: 15 July 2022.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) or quasi-RCTs of rapamycin or rapalogs in people with TSC.

    DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed the risk of bias of each study; a third review author verified the extracted data and risk of bias decisions. We assessed the certainty of the evidence using GRADE.

    MAIN RESULTS: The current update added seven RCTs, bringing the total number to 10 RCTs (with 1008 participants aged 3 months to 65 years; 484 males). All TSC diagnoses were by consensus criteria as a minimum. In parallel studies, 645 participants received active interventions and 340 placebo. Evidence is low-to-high certainty and study quality is mixed; mostly a low risk of bias across domains, but one study had a high risk of performance bias (lack of blinding) and three studies had a high risk of attrition bias. Manufacturers of the investigational products supported eight studies. Systemic administration Six studies (703 participants) administered everolimus (rapalog) orally. More participants in the intervention arm reduced renal angiomyolipoma size by 50% (risk ratio (RR) 24.69, 95% confidence interval (CI) 3.51 to 173.41; P = 0.001; 2 studies, 162 participants, high-certainty evidence). In the intervention arm, more participants in the intervention arm reduced SEGA tumour size by 50% (RR 27.85, 95% CI 1.74 to 444.82; P = 0.02; 1 study; 117 participants; moderate-certainty evidence) ,and reported more skin responses (RR 5.78, 95% CI 2.30 to 14.52; P = 0.0002; 2 studies; 224 participants; high-certainty evidence). In one 18-week study (366 participants), the intervention led to 25% fewer seizures (RR 1.63, 95% CI 1.27 to 2.09; P = 0.0001) or 50% fewer seizures (RR 2.28, 95% CI 1.44 to 3.60; P = 0.0004); but there was no difference in numbers being seizure-free (RR 5.30, 95% CI 0.69 to 40.57; P = 0.11) (moderate-certainty evidence). One study (42 participants) showed no difference in neurocognitive, neuropsychiatry, behavioural, sensory and motor development (low-certainty evidence). Total adverse events (AEs) did not differ between groups (RR 1.09, 95% CI 0.97 to 1.22; P = 0.16; 5 studies; 680 participants; high-certainty evidence). However, the intervention group experienced more AEs resulting in withdrawal, interruption of treatment, or reduced dose (RR 2.61, 95% CI 1.58 to 4.33; P = 0.0002; 4 studies; 633 participants; high-certainty evidence and also reported more severe AEs (RR 2.35, 95% CI 0.99 to 5.58; P = 0.05; 2 studies; 413 participants; high-certainty evidence). Topical (skin) administration Four studies (305 participants) administered rapamycin topically. More participants in the intervention arm showed a response to skin lesions (RR 2.72, 95% CI 1.76 to 4.18; P < 0.00001; 2 studies; 187 participants; high-certainty evidence) and more participants in the placebo arm reported a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; 1 study; 164 participants; high-certainty evidence). More participants in the intervention arm responded to facial angiofibroma at one to three months (RR 28.74, 95% CI 1.78 to 463.19; P = 0.02) and three to six months (RR 39.39, 95% CI 2.48 to 626.00; P = 0.009; low-certainty evidence). Similar results were noted for cephalic plaques at one to three months (RR 10.93, 95% CI 0.64 to 186.08; P = 0.10) and three to six months (RR 7.38, 95% CI 1.01 to 53.83; P = 0.05; low-certainty evidence). More participants on placebo showed a deterioration of skin lesions (RR 0.27, 95% CI 0.15 to 0.49; P < 0.0001; 1 study; 164 participants; moderate-certainty evidence). The intervention arm reported a higher general improvement score (MD -1.01, 95% CI -1.68 to -0.34; P < 0.0001), but no difference specifically in the adult subgroup (MD -0.75, 95% CI -1.58 to 0.08; P = 0.08; 1 study; 36 participants; moderate-certainty evidence). Participants in the intervention arm reported higher satisfaction than with placebo (MD -0.92, 95% CI -1.79 to -0.05; P = 0.04; 1 study; 36 participants; low-certainty evidence), although again with no difference among adults (MD -0.25, 95% CI -1.52 to 1.02; P = 0.70; 1 study; 18 participants; low-certainty evidence). Groups did not differ in change in quality of life at six months (MD 0.30, 95% CI -1.01 to 1.61; P = 0.65; 1 study; 62 participants; low-certainty evidence). Treatment led to a higher risk of any AE compared to placebo (RR 1.72, 95% CI 1.10, 2.67; P = 0.02; 3 studies; 277 participants; moderate-certainty evidence); but no difference between groups in severe AEs (RR 0.78, 95% CI 0.19 to 3.15; P = 0.73; 1 study; 179 participants; moderate-certainty evidence).

    AUTHORS' CONCLUSIONS: Oral everolimus reduces the size of SEGA and renal angiomyolipoma by 50%, reduces seizure frequency by 25% and 50% and implements beneficial effects on skin lesions with no difference in the total number of AEs compared to placebo; however, more participants in the treatment group required a dose reduction, interruption or withdrawal and marginally more experienced serious AEs compared to placebo. Topical rapamycin increases the response to skin lesions and facial angiofibroma, an improvement score, satisfaction and the risk of any AE, but not severe adverse events. With caution regarding the risk of severe AEs, this review supports oral everolimus for renal angiomyolipoma, SEGA, seizure, and skin lesions, and topical rapamycin for facial angiofibroma.

  8. Chekima K, Yan SW, Lee SWH, Wong TZ, Noor MI, Ooi YB, et al.
    Cochrane Database Syst Rev, 2023 Jun 22;6(6):CD005105.
    PMID: 37345841 DOI: 10.1002/14651858.CD005105.pub3
    BACKGROUND: The prevalence of obesity is increasing worldwide, yet nutritional management remains contentious. It has been suggested that low glycaemic index (GI) or low glycaemic load (GL) diets may stimulate greater weight loss than higher GI/GL diets or other weight reduction diets. The previous version of this review, published in 2007, found mainly short-term intervention studies. Since then, randomised controlled trials (RCTs) with longer-term follow-up have become available, warranting an update of this review.

    OBJECTIVES: To assess the effects of low glycaemic index or low glycaemic load diets on weight loss in people with overweight or obesity.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, one other database, and two clinical trials registers from their inception to 25 May 2022. We did not apply any language restrictions.

    SELECTION CRITERIA: We included RCTs with a minimum duration of eight weeks comparing low GI/GL diets to higher GI/GL diets or any other diets in people with overweight or obesity.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. We conducted two main comparisons: low GI/GL diets versus higher GI/GL diets and low GI/GL diets versus any other diet. Our main outcomes included change in body weight and body mass index, adverse events, health-related quality of life, and mortality. We used GRADE to assess the certainty of the evidence for each outcome.

    MAIN RESULTS: In this updated review, we included 10 studies (1210 participants); nine were newly-identified studies. We included only one study from the previous version of this review, following a revision of inclusion criteria. We listed five studies as 'awaiting classification' and one study as 'ongoing'. Of the 10 included studies, seven compared low GI/GL diets (233 participants) with higher GI/GL diets (222 participants) and three studies compared low GI/GL diets (379 participants) with any other diet (376 participants). One study included children (50 participants); one study included adults aged over 65 years (24 participants); the remaining studies included adults (1136 participants). The duration of the interventions varied from eight weeks to 18 months. All trials had an unclear or high risk of bias across several domains.  Low GI/GL diets versus higher GI/GL diets Low GI/GL diets probably result in little to no difference in change in body weight compared to higher GI/GL diets (mean difference (MD) -0.82 kg, 95% confidence interval (CI) -1.92 to 0.28; I2 = 52%; 7 studies, 403 participants; moderate-certainty evidence). Evidence from four studies reporting change in body mass index (BMI) indicated low GI/GL diets may result in little to no difference in change in BMI compared to higher GI/GL diets (MD -0.45 kg/m2, 95% CI -1.02 to 0.12; I2 = 22%; 186 participants; low-certainty evidence)at the end of the study periods. One study assessing participants' mood indicated that low GI/GL diets may improve mood compared to higher GI/GL diets, but the evidence is very uncertain (MD -3.5, 95% CI -9.33 to 2.33; 42 participants; very low-certainty evidence). Two studies assessing adverse events did not report any adverse events; we judged this outcome to have very low-certainty evidence. No studies reported on all-cause mortality.    For the secondary outcomes, low GI/GL diets may result in little to no difference in fat mass compared to higher GI/GL diets (MD -0.86 kg, 95% CI -1.52 to -0.20; I2 = 6%; 6 studies, 295 participants; low certainty-evidence). Similarly, low GI/GL diets may result in little to no difference in fasting blood glucose level compared to higher GI/GL diets (MD 0.12 mmol/L, 95% CI 0.03 to 0.21; I2 = 0%; 6 studies, 344 participants; low-certainty evidence).  Low GI/GL diets versus any other diet Low GI/GL diets probably result in little to no difference in change in body weight compared to other diets (MD -1.24 kg, 95% CI -2.82 to 0.34; I2 = 70%; 3 studies, 723 participants; moderate-certainty evidence). The evidence suggests that low GI/GL diets probably result in little to no difference in change in BMI compared to other diets (MD -0.30 kg in favour of low GI/GL diets, 95% CI -0.59 to -0.01; I2 = 0%; 2 studies, 650 participants; moderate-certainty evidence). Two adverse events were reported in one study: one was not related to the intervention, and the other, an eating disorder, may have been related to the intervention. Another study reported 11 adverse events, including hypoglycaemia following an oral glucose tolerance test. The same study reported seven serious adverse events, including kidney stones and diverticulitis. We judged this outcome to have low-certainty evidence. No studies reported on health-related quality of life or all-cause mortality. For the secondary outcomes, none of the studies reported on fat mass. Low GI/GL diets probably do not reduce fasting blood glucose level compared to other diets (MD 0.03 mmol/L, 95% CI -0.05 to 0.12; I2 = 0%; 3 studies, 732 participants; moderate-certainty evidence).  AUTHORS' CONCLUSIONS: The current evidence indicates there may be little to no difference for all main outcomes between low GI/GL diets versus higher GI/GL diets or any other diet. There is insufficient information to draw firm conclusions about the effect of low GI/GL diets on people with overweight or obesity. Most studies had a small sample size, with only a few participants in each comparison group. We rated the certainty of the evidence as moderate to very low. More well-designed and adequately-powered studies are needed. They should follow a standardised intervention protocol, adopt objective outcome measurement since blinding may be difficult to achieve, and make efforts to minimise loss to follow-up. Furthermore, studies in people from a wide range of ethnicities and with a wide range of dietary habits, as well as studies in low- and middle-income countries, are needed.

  9. McGee RG, Webster AC, Lewis SR, Welsford M
    Cochrane Database Syst Rev, 2023 Jun 05;6(6):CD009688.
    PMID: 37272501 DOI: 10.1002/14651858.CD009688.pub3
    BACKGROUND: Jellyfish envenomation is common in many coastal regions and varies in severity depending upon the species. Stings cause a variety of symptoms and signs including pain, dermatological reactions, and, in some species, Irukandji syndrome (which may include abdominal/back/chest pain, tachycardia, hypertension, cardiac phenomena, and, rarely, death). Many treatments have been suggested for these symptoms, but their effectiveness is unclear. This is an update of a Cochrane Review last published in 2013.

    OBJECTIVES: To determine the benefits and harms associated with the use of any intervention, in both adults and children, for the treatment of jellyfish stings, as assessed by randomised and quasi-randomised trials.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and Web of Science up to 27 October 2022. We searched clinical trials registers and the grey literature, and conducted forward-citation searching of relevant articles.  SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-RCTs of any intervention given to treat stings from any species of jellyfish stings. Interventions were compared to another active intervention, placebo, or no treatment. If co-interventions were used, we included the study only if the co-intervention was used in each group.  DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.  MAIN RESULTS: We included nine studies (six RCTs and three quasi-RCTs) involving a total of 574 participants. We found one ongoing study. Participants were either stung accidentally, or were healthy volunteers exposed to stings in a laboratory setting. Type of jellyfish could not be confirmed in beach settings and was determined by investigators using participant and local information. We categorised interventions into comparison groups: hot versus cold applications; topical applications. A third comparison of parenteral administration included no relevant outcome data: a single study (39 participants) evaluated intravenous magnesium sulfate after stings from jellyfish that cause Irukandji syndrome (Carukia). No studies assessed a fourth comparison group of pressure immobilisation bandages.  We downgraded the certainty of the evidence due to very serious risk of bias, serious and very serious imprecision, and serious inconsistency in some results.  Application of heat versus application of cold Four studies involved accidental stings treated on the beach or in hospital. Jellyfish were described as bluebottles (Physalia; location: Australia), and box jellyfish that do not cause Irukandji syndrome (Hawaiian box jellyfish (Carybdea alata) and major box jellyfish (Chironex fleckeri, location: Australia)). Treatments were applied with hot packs or hot water (showers, baths, buckets, or hoses), or ice packs or cold packs.  The evidence for all outcomes was of very low certainty, thus we are unsure whether heat compared to cold leads to at least a clinically significant reduction in pain within six hours of stings from Physalia (risk ratio (RR) 2.25, 95% confidence interval (CI) 1.42 to 3.56; 2 studies, 142 participants) or Carybdea alata and Chironex fleckeri (RR 1.66, 95% CI 0.56 to 4.94; 2 studies, 71 participants). We are unsure whether there is a difference in adverse events due to treatment (RR 0.50, 95% CI 0.05 to 5.19; 2 studies, 142 participants); these were minor adverse events reported for Physalia stings. We are also unsure whether either treatment leads to a clinically significant reduction in pain in the first hour (Physalia: RR 2.66, 95% CI 1.71 to 4.15; 1 study, 88 participants; Carybdea alata and Chironex fleckeri: RR 1.16, 95% CI 0.71 to 1.89; 1 study, 42 participants) or cessation of pain at the end of treatment (Physalia: RR 1.63, 95% CI 0.81 to 3.27; 1 study, 54 participants; Carybdea alata and Chironex fleckeri: RR 3.54, 95% CI 0.82 to 15.31; 1 study, 29 participants). Evidence for retreatment with the same intervention was only available for Physalia, with similar uncertain findings (RR 0.19, 95% CI 0.01 to 3.90; 1 study, 96 participants), as was the case for retreatment with the alternative hot or cold application after Physalia (RR 1.00, 95% CI 0.55 to 1.82; 1 study, 54 participants) and Chironex fleckeri stings (RR 0.48, 95% CI 0.02 to 11.17; 1 study, 42 participants). Evidence for dermatological signs (itchiness or rash) was available only at 24 hours for Physalia stings (RR 1.02, 95% CI 0.63 to 1.65; 2 studies, 98 participants).  Topical applications One study (62 participants) included accidental stings from Hawaiian box jellyfish (Carybdea alata) treated on the beach with fresh water, seawater, Sting Aid (a commercial product), or Adolph's (papain) meat tenderiser. In another study, healthy volunteers (97 participants) were stung with an Indonesian sea nettle (Chrysaora chinensis from Malaysia) in a laboratory setting and treated with isopropyl alcohol, ammonia, heated water, acetic acid, or sodium bicarbonate. Two other eligible studies (Carybdea alata and Physalia stings) did not measure the outcomes of this review.  The evidence for all outcomes was of very low certainty, thus we could not be certain whether or not topical applications provided at least a clinically significant reduction in pain (1 study, 62 participants with Carybdea alata stings, reported only as cessation of pain). For adverse events due to treatment, one study (Chrysaora chinensis stings) withdrew ammonia as a treatment following a first-degree burn in one participant. No studies evaluated clinically significant reduction in pain, retreatment with the same or the alternative treatment, or dermatological signs.

    AUTHORS' CONCLUSIONS: Few studies contributed data to this review, and those that did contribute varied in types of treatment, settings, and range of jellyfish species. We are unsure of the effectiveness of any of the treatments evaluated in this review given the very low certainty of all the evidence. This updated review includes two new studies (with 139 additional participants). The findings are consistent with the previous review.

  10. Bhardwaj A, Swe KMM, Sinha NK
    Cochrane Database Syst Rev, 2023 May 09;5(5):CD010429.
    PMID: 37159055 DOI: 10.1002/14651858.CD010429.pub3
    BACKGROUND: Osteoporosis is characterized by low bone mass and micro-architectural deterioration of bone tissue leading to increased bone fragility. In people with beta-thalassaemia, osteoporosis represents an important cause of morbidity and is due to a number of factors. First, ineffective erythropoiesis causes bone marrow expansion, leading to reduced trabecular bone tissue with cortical thinning. Second, excessive iron loading causes endocrine dysfunction, leading to increased bone turnover. Lastly, disease complications can result in physical inactivity, with a subsequent reduction in optimal bone mineralization. Treatments for osteoporosis in people with beta-thalassaemia include bisphosphonates (e.g. clodronate, pamidronate, alendronate; with or without hormone replacement therapy (HRT)), calcitonin, calcium, zinc supplementation, hydroxyurea, and HRT alone (for preventing hypogonadism). Denosumab, a fully human monoclonal antibody, inhibits bone resorption and increases bone mineral density (BMD). Finally, strontium ranelate simultaneously promotes bone formation and inhibits bone resorption, thus contributing to a net gain in BMD, increased bone strength, and reduced fracture risk. This is an update of a previously published Cochrane Review.

    OBJECTIVES: To review the evidence on the efficacy and safety of treatment for osteoporosis in people with beta-thalassaemia.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, which includes references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also searched online trial registries. Date of most recent search: 4 August 2022.

    SELECTION CRITERIA: Randomized controlled trials (RCTs) in people with beta-thalassaemia with: a BMD Z score below -2 standard deviations (SDs) for children aged under 15 years, adult males (aged 15 to 50 years) and premenopausal females aged over 15 years; or a BMD T score below -2.5 SDs for postmenopausal females and males aged over 50 years.

    DATA COLLECTION AND ANALYSIS: Two review authors assessed the eligibility and risk of bias of the included RCTs, and extracted and analysed data. We assessed the certainty of the evidence using GRADE.

    MAIN RESULTS: We included six RCTs (298 participants). Active interventions included bisphosphonates (3 trials, 169 participants), zinc supplementation (1 trial, 42 participants), denosumab (1 trial, 63 participants), and strontium ranelate (1 trial, 24 participants). The certainty of the evidence ranged from moderate to very low and was downgraded mainly due to concerns surrounding imprecision (low participant numbers), but also risk of bias issues related to randomization, allocation concealment, and blinding. Bisphosphonates versus placebo or no treatment Two RCTs compared bisphosphonates to placebo or no treatment. After two years, one trial (25 participants) found that alendronate and clodronate may increase BMD Z score compared to placebo at the femoral neck (mean difference (MD) 0.40, 95% confidence interval (CI) 0.22 to 0.58) and the lumbar spine (MD 0.14, 95% CI 0.05 to 0.23). One trial (118 participants) reported that neridronate compared to no treatment may increase BMD at the lumbar spine and total hip at six and 12 months; for the femoral neck, the study found increased BMD in the neridronate group at 12 months only. All results were of very low-certainty. There were no major adverse effects of treatment. Participants in the neridronate group reported less back pain; we considered this representative of improved quality of life (QoL), though the certainty of the evidence was very low. One participant in the neridronate trial (116 participants) sustained multiple fractures as a result of a traffic accident. No trials reported BMD at the wrist or mobility. Different doses of bisphosphonate compared One 12-month trial (26 participants) assessed different doses of pamidronate (60 mg versus 30 mg) and found a difference in BMD Z score favouring the 60 mg dose at the lumbar spine (MD 0.43, 95% CI 0.10 to 0.76) and forearm (MD 0.87, 95% CI 0.23 to 1.51), but no difference at the femoral neck (very low-certainty evidence). This trial did not report fracture incidence, mobility, QoL, or adverse effects of treatment. Zinc versus placebo One trial (42 participants) showed zinc supplementation probably increased BMD Z score compared to placebo at the lumbar spine after 12 months (MD 0.15, 95% CI 0.10 to 0.20; 37 participants) and 18 months (MD 0.34, 95% CI 0.28 to 0.40; 32 participants); the same was true for BMD at the hip after 12 months (MD 0.15, 95% CI 0.11 to 0.19; 37 participants) and 18 months (MD 0.26, 95% CI 0.21 to 0.31; 32 participants). The evidence for these results was of moderate certainty. The trial did not report BMD at the wrist, fracture incidence, mobility, QoL, or adverse effects of treatment. Denosumab versus placebo Based on one trial (63 participants), we are unsure about the effect of denosumab on BMD Z score at the lumbar spine, femoral neck, and wrist joint after 12 months compared to placebo (low-certainty evidence). This trial did not report fracture incidence, mobility, QoL, or adverse effects of treatment, but the investigators reported a reduction in bone pain measured on a visual analogue scale in the denosumab group after 12 months of treatment compared to placebo (MD -2.40 cm, 95% CI -3.80 to -1.00). Strontium ranelate One trial (24 participants) only narratively reported an increase in BMD Z score at the lumbar spine in the intervention group and no corresponding change in the control group (very low-certainty evidence). This trial also found a reduction in back pain measured on a visual analogue scale after 24 months in the strontium ranelate group compared to the placebo group (MD -0.70 cm (95% CI -1.30 to -0.10); we considered this measure representative of improved quality of life.

    AUTHORS' CONCLUSIONS: Bisphosphonates may increase BMD at the femoral neck, lumbar spine, and forearm compared to placebo after two years' therapy. Zinc supplementation probably increases BMD at the lumbar spine and hip after 12 months. Denosumab may make little or no difference to BMD, and we are uncertain about the effect of strontium on BMD. We recommend further long-term RCTs on different bisphosphonates and zinc supplementation therapies in people with beta-thalassaemia-associated osteoporosis.

  11. Muhd Helmi MA, Lai NM, Van Rostenberghe H, Ayub I, Mading E
    Cochrane Database Syst Rev, 2023 May 04;5(5):CD013841.
    PMID: 37142550 DOI: 10.1002/14651858.CD013841.pub2
    BACKGROUND: Central venous catheters (CVC) are associated with potentially dangerous complications such as thromboses, pericardial effusions, extravasation, and infections in neonates. Indwelling catheters are amongst the main risk factors for nosocomial infections. The use of skin antiseptics during the preparation for central catheter insertion may prevent catheter-related bloodstream infections (CRBSI) and central line-associated bloodstream infections (CLABSI). However, it is still not clear which antiseptic solution is the best to prevent infection with minimal side effects.

    OBJECTIVES: To systematically evaluate the safety and efficacy of different antiseptic solutions in preventing CRBSI and other related outcomes in neonates with CVC.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and trial registries up to 22 April 2022. We checked reference lists of included trials and systematic reviews that related to the intervention or population examined in this Cochrane Review.  SELECTION CRITERIA: Randomised controlled trials (RCTs) or cluster-RCTs were eligible for inclusion in this review if they were performed in the neonatal intensive care unit (NICU), and were comparing any antiseptic solution (single or in combination) against any other type of antiseptic solution or no antiseptic solution or placebo in preparation for central catheter insertion. We excluded cross-over trials and quasi-RCTs.

    DATA COLLECTION AND ANALYSIS: We used the standard methods from Cochrane Neonatal. We used the GRADE approach to assess the certainty of the evidence.

    MAIN RESULTS: We included three trials that had two different comparisons: 2% chlorhexidine in 70% isopropyl alcohol (CHG-IPA) versus 10% povidone-iodine (PI) (two trials); and CHG-IPA versus 2% chlorhexidine in aqueous solution (CHG-A) (one trial). A total of 466 neonates from level III NICUs were evaluated. All included trials were at high risk of bias. The certainty of the evidence for the primary and some important secondary outcomes ranged from very low to moderate. There were no included trials that compared antiseptic skin solutions with no antiseptic solution or placebo. CHG-IPA versus 10% PI Compared to PI, CHG-IPA may result in little to no difference in CRBSI (risk ratio (RR) 1.32, 95% confidence interval (CI) 0.53 to 3.25; risk difference (RD) 0.01, 95% CI -0.03 to 0.06; 352 infants, 2 trials, low-certainty evidence) and all-cause mortality (RR 0.88, 95% CI 0.46 to 1.68; RD -0.01, 95% CI -0.08 to 0.06; 304 infants, 1 trial, low-certainty evidence). The evidence is very uncertain about the effect of CHG-IPA on CLABSI (RR 1.00, 95% CI 0.07 to 15.08; RD 0.00, 95% CI -0.11 to 0.11; 48 infants, 1 trial; very low-certainty evidence) and chemical burns (RR 1.04, 95% CI 0.24 to 4.48; RD 0.00, 95% CI -0.03 to 0.03; 352 infants, 2 trials, very low-certainty evidence), compared to PI. Based on a single trial, infants receiving CHG-IPA appeared less likely to develop thyroid dysfunction compared to PI (RR 0.05, 95% CI 0.00 to 0.85; RD -0.06, 95% CI -0.10 to -0.02; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 10 to 50; 304 infants). Neither of the two included trials assessed the outcome of premature central line removal or the proportion of infants or catheters with exit-site infection. CHG-IPA versus CHG-A The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI when applied on the skin of neonates prior to central line insertion (RR 0.80, 95% CI 0.34 to 1.87; RD -0.05, 95% CI -0.22 to 0.13; 106 infants, 1 trial, low-certainty evidence) and CLABSI (RR 1.14, 95% CI 0.34 to 3.84; RD 0.02, 95% CI -0.12 to 0.15; 106 infants, 1 trial, low-certainty evidence), compared to CHG-A. Compared to CHG-A, CHG-IPA probably results in little to no difference in premature catheter removal (RR 0.91, 95% CI 0.26 to 3.19; RD -0.01, 95% CI -0.15 to 0.13; 106 infants, 1 trial, moderate-certainty evidence) and chemical burns (RR 0.98, 95% CI 0.47 to 2.03; RD -0.01, 95% CI -0.20 to 0.18; 114 infants, 1 trial, moderate-certainty evidence). No trial assessed the outcome of all-cause mortality and the proportion of infants or catheters with exit-site infection.

    AUTHORS' CONCLUSIONS: Based on current evidence, compared to PI, CHG-IPA may result in little to no difference in CRBSI and mortality. The evidence is very uncertain about the effect of CHG-IPA on CLABSI and chemical burns. One trial showed a statistically significant increase in thyroid dysfunction with the use of PI compared to CHG-IPA. The evidence suggests CHG-IPA may result in little to no difference in the rate of proven CRBSI and CLABSI when applied on the skin of neonates prior to central line insertion. Compared to CHG-A, CHG-IPA probably results in little to no difference in chemical burns and premature catheter removal. Further trials that compare different antiseptic solutions are required, especially in low- and middle-income countries, before stronger conclusions can be made.

  12. Lourijsen E, Avdeeva K, Gan KL, Pundir V, Fokkens W
    Cochrane Database Syst Rev, 2023 Feb 21;2(2):CD012843.
    PMID: 36808096 DOI: 10.1002/14651858.CD012843.pub2
    BACKGROUND: Chronic rhinosinusitis, with or without nasal polyps, can have a major impact on a person's quality of life. Treatment is usually conservative and may include nasal saline, intranasal corticosteroids, antibiotics or systemic corticosteroids. If these treatments fail endoscopic sinus surgery can be considered. During surgery, visibility of the surgical field is important for the identification of important anatomic landmarks and structures that contribute to safety. Impaired visualisation can lead to complications during surgery, inability to complete the operation or a longer duration of surgery. Different methods are used to decrease intraoperative bleeding, including induced hypotension, topical or systemic vasoconstrictors or total intravenous anaesthesia. Another option is tranexamic acid, an antifibrinolytic agent, which can be administered topically or intravenously.

    OBJECTIVES: To assess the effects of peri-operative tranexamic acid versus no therapy or placebo on operative parameters in patients with chronic rhinosinusitis (with or without nasal polyps) who are undergoing functional endoscopic sinus surgery (FESS).

    SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Trials Register; Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 10 February 2022.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing intravenous, oral or topical tranexamic acid with no therapy or placebo in the treatment of patients (adults and children) with chronic rhinosinusitis, with or without nasal polyps, undergoing FESS.

    DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Primary outcome measures were surgical field bleeding score (e.g. Wormald or Boezaart grading system), intraoperative blood loss and significant adverse effects (seizures or thromboembolism within 12 weeks of surgery). Secondary outcomes were duration of surgery, incomplete surgery, surgical complications and postoperative bleeding (placing of packing or revision surgery) in the first two weeks after surgery. We performed subgroup analyses for methods of administration, different dosages, different forms of anaesthesia, use of thromboembolic prophylaxis and children versus adults. We evaluated each included study for risk of bias and used GRADE to assess the certainty of the evidence.

    MAIN RESULTS: We included 14 studies in the review, with a total of 942 participants. Sample sizes in the included studies ranged from 10 to 170. All but two studies included adult patients (≥ 18 years). Two studies included children. Most studies had more male patients (range 46.6% to 80%). All studies were placebo-controlled and four studies had three treatment arms. Three studies investigated topical tranexamic acid; the other studies reported the use of intravenous tranexamic acid. For our primary outcome, surgical field bleeding score measured with the Boezaart or Wormald grading score, we pooled data from 13 studies. The pooled result demonstrated that tranexamic acid probably reduces the surgical field bleeding score, with a standardised mean difference (SMD) of -0.87 (95% confidence interval (CI) -1.23 to -0.51; 13 studies, 772 participants; moderate-certainty evidence). A SMD below -0.70 represents a large effect (in either direction). Tranexamic acid may result in a slight reduction in blood loss during surgery compared to placebo with a mean difference (MD) of -70.32 mL (95% CI -92.28 to -48.35 mL; 12 studies, 802 participants; low-certainty evidence). Tranexamic acid probably has little to no effect on the development of significant adverse events (seizures or thromboembolism) within 24 hours of surgery, with no events in either group and a risk difference (RD) of 0.00 (95% CI -0.02 to 0.02; 8 studies, 664 participants; moderate-certainty evidence). However, there were no studies reporting significant adverse event data with a longer duration of follow-up. Tranexamic acid probably results in little difference in the duration of surgery with a MD of -13.04 minutes (95% CI -19.27 to -6.81; 10 studies, 666 participants; moderate-certainty evidence). Tranexamic acid probably results in little to no difference in the incidence of incomplete surgery, with no events in either group and a RD of 0.00 (95% CI -0.09 to 0.09; 2 studies, 58 participants; moderate-certainty evidence) and likely results in little to no difference in surgical complications, again with no events in either group and a RD of 0.00 (95% CI -0.09 to 0.09; 2 studies, 58 participants; moderate-certainty evidence), although these numbers are too small to draw robust conclusions. Tranexamic acid may result in little to no difference in the likelihood of postoperative bleeding (placement of packing or revision surgery within three days of surgery) (RD -0.01, 95% CI -0.04 to 0.02; 6 studies, 404 participants; low-certainty evidence). There were no studies with longer follow-up.

    AUTHORS' CONCLUSIONS: There is moderate-certainty evidence to support the beneficial value of topical or intravenous tranexamic acid during endoscopic sinus surgery with respect to surgical field bleeding score. Low- to moderate-certainty evidence suggests a slight decrease in total blood loss during surgery and duration of surgery. Whilst there is moderate-certainty evidence that tranexamic acid does not lead to more immediate significant adverse events compared to placebo, there is no evidence regarding the risk of serious adverse events more than 24 hours after surgery. There is low-certainty evidence that tranexamic acid may not change postoperative bleeding. There is not enough evidence available to draw robust conclusions about incomplete surgery or surgical complications.

  13. Mulimani P, Abas AB, Karanth L, Colombatti R, Kulkarni P
    Cochrane Database Syst Rev, 2023 Feb 02;2(2):CD012969.
    PMID: 36732291 DOI: 10.1002/14651858.CD012969.pub3
    BACKGROUND: Thalassaemia is a quantitative abnormality of haemoglobin caused by mutations in genes controlling production of alpha or beta globins. Abnormally unpaired globin chains cause membrane damage and cell death within organ systems and destruction of erythroid precursors in the bone marrow, leading to haemolytic anaemia. The life-long management of the general health effects of thalassaemia is highly challenging, and failure to deal with dental and orthodontic complications exacerbates the public health, financial and personal burden of the condition. There is a lack of evidence-based guidelines to help care seekers and providers manage such dental and orthodontic complications. This review aimed to evaluate the available evidence on methods for treating dental and orthodontic complications in people with thalassaemia to inform future recommendations. This is an update of a Cochrane Review first published in 2019.

    OBJECTIVES: To assess different methods for treating dental and orthodontic complications in people with thalassaemia.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register in September 2022, and we searched nine online databases and trials registries in January 2022. We searched the reference lists of relevant articles and reviews and contacted haematologists, experts in fields of dentistry, organisations, pharmaceutical companies and researchers working in this field.

    SELECTION CRITERIA: We searched for published or unpublished randomised controlled trials (RCTs) that evaluated treatment of dental and orthodontic complications in individuals diagnosed with thalassaemia, irrespective of phenotype, severity, age, sex and ethnic origin.

    DATA COLLECTION AND ANALYSIS: Two review authors independently screened the 37,242 titles retrieved by the search. After deduplication, we identified two potentially relevant RCTs. On assessing their eligibility against our inclusion and exclusion criteria, we excluded one and included the other.

    MAIN RESULTS: We included one parallel-design RCT conducted in Saudi Arabia and involving 29 participants (19 males, 10 females) with thalassaemia. It aimed to assess the effectiveness of photodynamic therapy as an adjuvant to conventional full-mouth ultrasonic scaling for the treatment of gingivitis. The average age of participants was around 23 years. There is very low-certainty evidence from this trial that full-mouth ultrasonic scaling plus photodynamic therapy compared to full-mouth ultrasonic scaling alone may improve gingival index score and bleeding on probing after 12 weeks in people with thalassaemia. We found no studies that assessed other interventions for the various dental or orthodontic complications of thalassaemia.

    AUTHORS' CONCLUSIONS: Although the included study showed greater reduction in gingivitis in the group treated with full-mouth ultrasonic scaling plus photodynamic therapy, the evidence is of very low certainty. The study had unclear risk of bias, a short follow-up period and no data on safety or adverse effects. We cannot make definitive recommendations for clinical practice based on the limited evidence of a single trial. Future studies will very likely affect the conclusions of this review. This review highlights the need for high-quality RCTs that investigate the effectiveness of various treatment modalities for dental and orthodontic complications in people with thalassaemia. It is crucial that future trials assess adverse effects of interventions.

  14. Foong WC, Loh CK, Ho JJ, Lau DS
    Cochrane Database Syst Rev, 2023 Jan 13;1(1):CD013767.
    PMID: 36637054 DOI: 10.1002/14651858.CD013767.pub2
    BACKGROUND: Non-transfusion-dependent β-thalassaemia (NTDβT) is a subset of inherited haemoglobin disorders characterised by reduced production of the β-globin chain of haemoglobin leading to anaemia of varying severity. Although blood transfusion is not a necessity for survival, it may be required to prevent complications of chronic anaemia, such as impaired growth and hypercoagulability. People with NTDβT also experience iron overload due to increased iron absorption from food sources which becomes more pronounced in those requiring blood transfusion. People with a higher foetal haemoglobin (HbF) level have been found to require fewer blood transfusions, thus leading to the emergence of treatments that could increase its level. HbF inducers stimulate HbF production without altering any gene structures. Evidence for the possible benefits and harms of these inducers is important for making an informed decision on their use.

    OBJECTIVES: To compare the effectiveness and safety of the following for reducing blood transfusion for people with NTDβT: 1. HbF inducers versus usual care or placebo; 2. single HbF inducer with another HbF inducer, and single dose with another dose; and 3. combination of HbF inducers versus usual care or placebo, or single HbF inducer.

    SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 21 August 2022.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) or quasi-RCTs comparing single HbF inducer with placebo or usual care, with another single HbF inducer or with a combination of HbF inducers; or comparing different doses of the same HbF inducer.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were blood transfusion and haemoglobin levels. Our secondary outcomes were HbF levels, the long-term sequelae of NTDβT, quality of life and adverse events.

    MAIN RESULTS: We included seven RCTs involving 291 people with NTDβT, aged two to 49 years, from five countries. We reported 10 comparisons using eight different HbF inducers (four pharmacological and four natural): three RCTs compared a single HbF inducer to placebo and seven to another HbF inducer. The duration of the intervention lasted from 56 days to six months. Most studies did not adequately report the randomisation procedures or whether and how blinding was achieved. HbF inducer against placebo or usual care Three HbF inducers, HQK-1001, Radix Astragali or a 3-in-1 combined natural preparation (CNP), were compared with a placebo. None of the comparisons reported the frequency of blood transfusion. We are uncertain whether Radix Astragali and CNP increase haemoglobin at three months (mean difference (MD) 1.33 g/dL, 95% confidence interval (CI) 0.54 to 2.11; 1 study, 2 interventions, 35 participants; very low-certainty evidence). We are uncertain whether Radix Astragali and CNP have any effect on HbF (MD 12%, 95% CI -0.74% to 24.75%; 1 study, 2 interventions, 35 participants; very low-certainty evidence). Only medians on haemoglobin and HbF levels were reported for HQK-1001. Adverse effects reported for HQK-1001 were nausea, vomiting, dizziness and suprapubic pain. There were no prespecified adverse effects for Radix Astragali and CNP. HbF inducer versus another HbF inducer Four studies compared a single inducer with another over three to six months. Comparisons included hydroxyurea versus resveratrol, hydroxyurea versus thalidomide, hydroxyurea versus decitabine and Radix Astragali versus CNP. No study reported our prespecified outcomes on blood transfusion. Haemoglobin and HbF were reported for the comparison Radix Astragali versus CNP, but we are uncertain whether there were any differences (1 study, 24 participants; low-certainty evidence). Different doses of the same HbF inducer Two studies compared two different types of HbF inducers at different doses over two to six months. Comparisons included hydroxyurea 20 mg/kg/day versus 10 mg/kg/day and HQK-1001 10 mg/kg/day, 20 mg/kg/day, 30 mg/kg/day and 40 mg/kg/day. Blood transfusion, as prespecified, was not reported. In one study (61 participants) we are uncertain whether the lower levels of both haemoglobin and HbF at 24 weeks were due to the higher dose of hydroxyurea (haemoglobin: MD -2.39 g/dL, 95% CI -2.80 to -1.98; very low-certainty evidence; HbF: MD -10.20%, 95% CI -16.28% to -4.12%; very low-certainty evidence). The study of the four different doses of HQK-1001 did not report results for either haemoglobin or HbF. We are not certain if major adverse effects may be more common with higher hydroxyurea doses (neutropenia: risk ratio (RR) 9.93, 95% CI 1.34 to 73.97; thrombocytopenia: RR 3.68, 95% CI 1.12 to 12.07; very low-certainty evidence). Taking HQK-1001 20 mg/kg/day may result in the fewest adverse effects. A combination of HbF inducers versus a single HbF inducer Two studies compared three combinations of two inducers with a single inducer over six months: hydroxyurea plus resveratrol versus resveratrol or hydroxyurea alone, and hydroxyurea plus l-carnitine versus hydroxyurea alone. Blood transfusion was not reported. Hydroxyurea plus resveratrol may reduce haemoglobin compared with either resveratrol or hydroxyurea alone (MD -0.74 g/dL, 95% CI -1.45 to -0.03; 1 study, 54 participants; low-certainty evidence). We are not certain whether the gastrointestinal disturbances, headache and malaise more commonly reported with hydroxyurea plus resveratrol than resveratrol alone were due to the interventions. We are uncertain whether hydroxyurea plus l-carnitine compared with hydroxyurea alone may increase mean haemoglobin, and reduce pulmonary hypertension (1 study, 60 participants; very low-certainty evidence). Adverse events were reported but not in the intervention group. None of the comparisons reported the outcome of HbF.

    AUTHORS' CONCLUSIONS: We are uncertain whether any of the eight HbF inducers in this review have a beneficial effect on people with NTDβT. For each of these HbF inducers, we found only one or at the most two small studies. There is no information on whether any of these HbF inducers have an effect on our primary outcome, blood transfusion. For the second primary outcome, haemoglobin, there may be small differences between intervention groups, but these may not be clinically meaningful and are of low- to very low-certainty evidence. Data on adverse effects and optimal doses are limited. Five studies are awaiting classification, but none are ongoing.

  15. Jassim GA, Doherty S, Whitford DL, Khashan AS
    Cochrane Database Syst Rev, 2023 Jan 11;1(1):CD008729.
    PMID: 36628983 DOI: 10.1002/14651858.CD008729.pub3
    BACKGROUND: Breast cancer is the most common cancer affecting women worldwide. It is a distressing diagnosis and, as a result, considerable research has examined the psychological sequelae of being diagnosed and treated for breast cancer. Breast cancer is associated with increased rates of depression and anxiety and reduced quality of life. As a consequence, multiple studies have explored the impact of psychological interventions on the psychological distress experienced after a diagnosis of breast cancer. This review is an update of a Cochrane Review first published in 2015.

    OBJECTIVES: To assess the effect of psychological interventions on psychological morbidities and quality of life among women with non-metastatic breast cancer.  SEARCH METHODS: We searched the Cochrane Breast Cancer Group Specialised Register, CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov up to 16 March 2021. We also scanned the reference lists of relevant articles.

    SELECTION CRITERIA: Randomised controlled trials that assessed the effectiveness of psychological interventions for women with non-metastatic breast cancer.

    DATA COLLECTION AND ANALYSIS: Two review authors independently appraised, extracted data from eligible trials, and assessed risk of bias and certainty of the evidence using the GRADE approach. Any disagreement was resolved by discussion. Extracted data included information about participants, methods, the intervention and outcomes.

    MAIN RESULTS: We included 60 randomised controlled trials comprising 7998 participants. The most frequent reasons for exclusion were non-randomised trials and the inclusion of women with metastatic disease. The updated review included 7998 randomised women; the original review included 3940 women. A wide range of interventions was evaluated. Most interventions were cognitive- or mindfulness-based, supportive-expressive, and educational. The interventions were mainly delivered face-to-face (56 studies) and in groups (50 studies) rather than individually (10 studies). Most intervention sessions were delivered on a weekly basis with an average duration of 14 hours. Follow-up time ranged from two weeks to 24 months.  Pooled standardised mean differences (SMD) from baseline indicated that the intervention may reduce depression (SMD -0.27, 95% confidence interval (CI) -0.52 to -0.02; P = 0.04; 27 studies, 3321 participants, I2 = 91%, low-certainty evidence); anxiety (SMD -0.43, 95% CI -0.68 to -0.17; P = 0.0009; 22 studies, 2702 participants, I2 = 89%, low-certainty evidence); mood disturbance in the intervention group (SMD -0.18, 95% CI -0.31 to -0.04; P = 0.009; 13 studies, 2276 participants, I2 = 56%, low-certainty evidence); and stress (SMD -0.34, 95% (CI) -0.55 to -0.12; P = 0.002; 8 studies, 564 participants, I2 = 31%, low-certainty evidence). The intervention is likely to improve quality of life in the intervention group (SMD 0.78, 95% (CI) 0.32 to 1.24; P = 0.0008; 20 studies, 1747 participants, I2 = 95%, low-certainty evidence). Adverse events were not reported in any of the included studies.

    AUTHORS' CONCLUSIONS: Based on the available evidence, psychological intervention may have produced favourable effects on psychological outcomes, in particular depression, anxiety, mood disturbance and stress. There was also an improvement in quality of life in the psychological intervention group compared to control group. Overall, there was substantial variation across the studies in the range of psychological interventions used, control conditions, measures of the same outcome and timing of follow-up.

  16. Myint KT, Sahoo S, Thein AW, Moe S, Ni H
    Cochrane Database Syst Rev, 2022 Dec 12;12(12):CD010790.
    PMID: 36508693 DOI: 10.1002/14651858.CD010790.pub3
    BACKGROUND: Sickle cell disease (SCD) includes a group of inherited haemoglobinopathies affecting multiple organs including the eyes. Some people with SCD develop ocular manifestations. Vision-threatening complications are mainly due to proliferative sickle retinopathy, which is characterised by proliferation of new blood vessels. Laser photocoagulation is widely applicable in proliferative retinopathies. It is important to evaluate the efficacy and safety of laser photocoagulation in the treatment of proliferative sickle retinopathy (PSR) to prevent sight-threatening complications.

    OBJECTIVES: To evaluate the effectiveness of various techniques of laser photocoagulation therapy in SCD-related proliferative retinopathy.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of last search: 4 July 2022. We also searched the following resources (26 June 2022): Latin American and Caribbean Health Science Literature Database (LILACS); WHO International Clinical Trials Registry Platforms (ICTRP); and ClinicalTrials.gov.

    SELECTION CRITERIA: Randomised controlled trials comparing laser photocoagulation to no treatment in children and adults with SCD.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed eligibility and risk of bias of the included trials; we extracted and analysed data, contacting trial authors for additional information. We assessed the certainty of the evidence using the GRADE criteria.

    MAIN RESULTS: We included three trials (414 eyes of 339 children and adults) comparing the efficacy and safety of laser photocoagulation to no therapy in people with PSR. There were 160 males and 179 females ranging in age from 13 to 67 years. The trials used different laser photocoagulation techniques; one single-centre trial employed sectoral scatter laser photocoagulation using an argon laser; a two-centre trial employed feeder vessel coagulation using argon laser in one centre and xenon arc in the second centre; while a third trial employed focal scatter laser photocoagulation using argon laser. The mean follow-up periods were 21 to 32 months in one trial, 42 to 47 months in a second, and 48 months in the third. Two trials had a high risk of allocation bias due to the randomisation method for participants with bilateral disease; the third trial had an unclear risk of selection bias. One trial was at risk of reporting bias. Given the unit of analysis is the eye rather than the individual, we chose to report the data narratively. Using sectoral scatter laser photocoagulation, one trial (174 eyes) reported no difference between groups for complete regression of PSR: 30.2% in the laser group and 22.4% in the control group. The same trial also reported no difference between groups in the development of new PSR: 34.3% of lasered eyes and 41.3% of control eyes (very low-certainty evidence). The two-centre trial using feeder vessel coagulation, only presented data at follow-up for one centre (mean period of nine years) and reported the development of new sea fan in 48.0% in the treated and 45.0% in the control group; no statistical significance (P = 0.64). A third trial reported regression in 55% of the laser group versus 28.6% of controls and progression of PSR in 10.5% of treated versus 25.7% of control eyes. We graded the evidence for these two primary outcomes as very low-certainty evidence. The sectoral scatter laser photocoagulation trial reported visual loss in 3.0% of treated eyes (mean follow-up 47 months) versus 12.0% of controlled eyes (mean follow-up 42 months) (P = 0.019). The feeder vessel coagulation trial reported visual loss in 1.14% of the laser group and 7.5% of the control group (mean follow-up 26 months at one site and 32 months in another) (P = 0.07). The focal scatter laser photocoagulation trial (mean follow-up of four years) reported that 72/73 eyes had the same visual acuity, while visual loss was seen in only one eye from the control group. We graded the certainty of the evidence as very low. The sectoral scatter laser trial detected vitreous haemorrhage in 12.0% of the laser group and 25.3% of control with a mean follow-up of 42 (control) to 47 months (treated) (P ≤ 0.5). The two-centre feeder vessel coagulation trial observed vitreous haemorrhage in 3.4% treated eyes (mean follow-up 26 months) versus 27.5% control eyes (mean follow-up 32 months); one centre (mean follow-up nine years) reported vitreous haemorrhage in 1/25 eyes (4.0%) in the treatment group and 9/20 eyes (45.0%) in the control group (P = 0.002). The scatter laser photocoagulation trial reported that vitreous haemorrhage was not seen in the treated group compared to 6/35 (17.1%) eyes in the control group and appeared only in the grades B and (PSR) stage III) (P < 0.05). We graded evidence for this outcome as low-certainty. Regarding adverse effects, only one occurrence of retinal tear was reported. All three trials reported on retinal detachment, with no significance across the treatment and control groups (low-certainty evidence). One trial reported on choroidal neovascularization, with treatment with xenon arc found to be associated with a significantly higher risk, but visual loss related to this complication is uncommon with long-term follow-up of three years or more. The included trials did not report on other adverse effects or quality of life.

    AUTHORS' CONCLUSIONS: Our conclusions are based on the data from three trials (two of which were conducted over 30 years ago). Given the limited evidence available, which we assessed to be of low- or very low-certainty, we are uncertain whether laser therapy for sickle cell retinopathy improves the outcomes measured in this review. This treatment does not appear to have an effect on clinical outcomes such as regression of PSR and development of new incidences. No evidence is available assessing efficacy in relation to patient-important outcomes (such as quality of life or the loss of a driving licence).  Further research is needed to examine the safety of laser treatment compared to other interventions such as intravitreal injection of anti-vascular endothelial growth factors (VEGFs) . Patient-important outcomes as well as cost-effectiveness should be addressed.

  17. Christelle K, Norhayati MN, Jaafar SH
    Cochrane Database Syst Rev, 2022 Aug 26;8(8):CD006034.
    PMID: 36017945 DOI: 10.1002/14651858.CD006034.pub3
    BACKGROUND: Heavy menstrual bleeding and pain are common reasons women discontinue intrauterine device (IUD) use. Copper IUD (Cu IUD) users tend to experience increased menstrual bleeding, whereas levonorgestrel IUD (LNG IUD) users tend to have irregular menstruation. Medical therapies used to reduce heavy menstrual bleeding or pain associated with Cu and LNG IUD use include non-steroidal anti-inflammatory drugs (NSAIDs), anti-fibrinolytics and paracetamol. We analysed treatment and prevention interventions separately because the expected outcomes for treatment and prevention interventions differ. We did not combine different drug classes in the analysis as they have different mechanisms of action. This is an update of a review originally on NSAIDs. The review scope has been widened to include all interventions for treatment or prevention of heavy menstrual bleeding or pain associated with IUD use.

    OBJECTIVES: To evaluate all randomized controlled trials (RCTs) that have assessed strategies for treatment and prevention of heavy menstrual bleeding or pain associated with IUD use, for example, pharmacotherapy and alternative therapies.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase and CINAHL to January 2021.

    SELECTION CRITERIA: We included RCTs in any language that tested strategies for treatment or prevention of heavy menstrual bleeding or pain associated with IUD (Cu IUD, LNG IUD or other IUD) use. The comparison could be no intervention, placebo or another active intervention.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and risk of bias, and extracted data. Primary outcomes were volume of menstrual blood loss, duration of menstruation and painful menstruation. We used a random-effects model in all meta-analyses. Review authors assessed the certainty of evidence using GRADE.

    MAIN RESULTS: This review includes 21 trials involving 3689 participants from middle- and high-income countries. Women were 18 to 45 years old and either already using an IUD or had just had one placed for contraception. The included trials examined NSAIDs and other interventions. Eleven were treatment trials, of these seven were on users of the Cu IUD, one on LNG IUD and three on an unknown type. Ten were prevention trials, six focused on Cu IUD users, and four on LNG IUD users. Sixteen trials had high risk of detection bias due to subjective assessment of pain and bleeding. Treatment of heavy menstrual bleeding Cu IUD Vitamin B1 resulted in fewer pads used per day (mean difference (MD) -7.00, 95% confidence interval (CI) -8.50 to -5.50) and fewer bleeding days (MD -2.00, 95% CI -2.38 to -1.62; 1 trial; 110 women; low-certainty evidence) compared to placebo. The evidence is very uncertain about the effect of naproxen on the volume of menstruation compared to placebo (odds ratio (OR) 0.09, 95% CI 0.00 to 1.78; 1 trial, 40 women; very low-certainty evidence). Treatment with mefenamic acid resulted in less volume of blood loss compared to tranexamic acid (MD -64.26, 95% CI -105.65 to -22.87; 1 trial, 94 women; low-certainty evidence). However, there was no difference in duration of bleeding with treatment of mefenamic acid or tranexamic acid (MD 0.08 days, 95% CI -0.27 to 0.42, 2 trials, 152 women; low-certainty evidence). LNG IUD The use of ulipristal acetate in LNG IUD may not reduce the number of bleeding days in 90 days in comparison to placebo (MD -9.30 days, 95% CI -26.76 to 8.16; 1 trial, 24 women; low-certainty evidence). Unknown IUD type Mefenamic acid may not reduce volume of bleeding compared to Vitex agnus measured by pictorial blood assessment chart (MD -2.40, 95% CI -13.77 to 8.97; 1 trial; 84 women; low-certainty evidence). Treatment of pain Cu IUD Treatment with tranexamic acid and sodium diclofenac may result in little or no difference in the occurrence of pain (OR 1.00, 95% CI 0.06 to 17.25; 1 trial, 38 women; very low-certainty evidence). Unknown IUD type Naproxen may reduce pain (MD 4.10, 95% CI 0.91 to 7.29; 1 trial, 33 women; low-certainty evidence). Prevention of heavy menstrual bleeding Cu IUD We found very low-certainty evidence that tolfenamic acid may prevent heavy bleeding compared to placebo (OR 0.54, 95% CI 0.34 to 0.85; 1 trial, 310 women). There was no difference between ibuprofen and placebo in blood volume reduction (MD -14.11, 95% CI -36.04 to 7.82) and duration of bleeding (MD -0.2 days, 95% CI -1.40 to 1.0; 1 trial, 28 women, low-certainty evidence). Aspirin may not prevent heavy bleeding in comparison to paracetamol (MD -0.30, 95% CI -26.16 to 25.56; 1 trial, 20 women; very low-certainty evidence). LNG IUD Ulipristal acetate may increase the percentage of bleeding days compared to placebo (MD 9.50, 95% CI 1.48 to 17.52; 1 trial, 118 women; low-certainty evidence). There were insufficient data for analysis in a single trial comparing mifepristone and vitamin B. There were insufficient data for analysis in the single trial comparing tranexamic acid and mefenamic acid and in another trial comparing naproxen with estradiol. Prevention of pain Cu IUD There was low-certainty evidence that tolfenamic acid may not be effective to prevent painful menstruation compared to placebo (OR 0.71, 95% CI 0.44 to 1.14; 1 trial, 310 women). Ibuprofen may not reduce menstrual cramps compared to placebo (OR 1.00, 95% CI 0.11 to 8.95; 1 trial, 20 women, low-certainty evidence).

    AUTHORS' CONCLUSIONS: Findings from this review should be interpreted with caution due to low- and very low-certainty evidence. Included trials were limited; the majority of the evidence was derived from single trials with few participants. Further research requires larger trials and improved trial reporting. The use of vitamin B1 and mefenamic acid to treat heavy menstruation and tolfenamic acid to prevent heavy menstruation associated with Cu IUD should be investigated. More trials are needed to generate evidence for the treatment and prevention of heavy and painful menstruation associated with LNG IUD.

  18. Kumbargere Nagraj S, Eachempati P, Paisi M, Nasser M, Sivaramakrishnan G, Francis T, et al.
    Cochrane Database Syst Rev, 2022 Aug 22;8(8):CD013826.
    PMID: 35994295 DOI: 10.1002/14651858.CD013826.pub2
    BACKGROUND: Aerosols and spatter are generated in a dental clinic during aerosol-generating procedures (AGPs) that use high-speed hand pieces. Dental healthcare providers can be at increased risk of transmission of diseases such as tuberculosis, measles and severe acute respiratory syndrome (SARS) through droplets on mucosae, inhalation of aerosols or through fomites on mucosae, which harbour micro-organisms. There are ways to mitigate and contain spatter and aerosols that may, in turn, reduce any risk of disease transmission. In addition to personal protective equipment (PPE) and aerosol-reducing devices such as high-volume suction, it has been hypothesised that the use of mouth rinse by patients before dental procedures could reduce the microbial load of aerosols that are generated during dental AGPs.

    OBJECTIVES: To assess the effects of preprocedural mouth rinses used in dental clinics to minimise incidence of infection in dental healthcare providers and reduce or neutralise contamination in aerosols.

    SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search date was 4 February 2022.

    SELECTION CRITERIA: We included randomised controlled trials and excluded laboratory-based studies. Study participants were dental patients undergoing AGPs. Studies compared any preprocedural mouth rinse used to reduce contaminated aerosols versus placebo, no mouth rinse or another mouth rinse. Our primary outcome was incidence of infection of dental healthcare providers and secondary outcomes were reduction in the level of contamination of the dental operatory environment, cost, change in mouth microbiota, adverse events, and acceptability and feasibility of the intervention.

    DATA COLLECTION AND ANALYSIS: Two review authors screened search results, extracted data from included studies, assessed the risk of bias in the studies and judged the certainty of the available evidence. We used mean differences (MDs) and 95% confidence intervals (CIs) as the effect estimate for continuous outcomes, and random-effects meta-analysis to combine data  MAIN RESULTS:  We included 17 studies with 830 participants aged 18 to 70 years. We judged three trials at high risk of bias, two at low risk and 12 at unclear risk of bias.  None of the studies measured our primary outcome of the incidence of infection in dental healthcare providers.  The primary outcome in the studies was reduction in the level of bacterial contamination measured in colony-forming units (CFUs) at distances of less than 2 m (intended to capture larger droplets) and 2 m or more (to capture droplet nuclei from aerosols arising from the participant's oral cavity). It is unclear what size of CFU reduction represents a clinically significant amount. There is low- to very low-certainty evidence that chlorhexidine (CHX) may reduce bacterial contamination, as measured by CFUs, compared with no rinsing or rinsing with water. There were similar results when comparing cetylpyridinium chloride (CPC) with no rinsing and when comparing CPC, essential oils/herbal mouthwashes or boric acid with water. There is very low-certainty evidence that tempered mouth rinses may provide a greater reduction in CFUs than cold mouth rinses. There is low-certainty evidence that CHX may reduce CFUs more than essential oils/herbal mouthwashes. The evidence for other head-to-head comparisons was limited and inconsistent.  The studies did not provide any information on costs, change in micro-organisms in the patient's mouth or adverse events such as temporary discolouration, altered taste, allergic reaction or hypersensitivity. The studies did not assess acceptability of the intervention to patients or feasibility of implementation for dentists.  AUTHORS' CONCLUSIONS: None of the included studies measured the incidence of infection among dental healthcare providers. The studies measured only reduction in level of bacterial contamination in aerosols. None of the studies evaluated viral or fungal contamination. We have only low to very low certainty for all findings. We are unable to draw conclusions regarding whether there is a role for preprocedural mouth rinses in reducing infection risk or the possible superiority of one preprocedural rinse over another. Studies are needed that measure the effect of rinses on infectious disease risk among dental healthcare providers and on contaminated aerosols at larger distances with standardised outcome measurement.

  19. Arora A, Kumbargere Nagraj S, Khattri S, Ismail NM, Eachempati P
    Cochrane Database Syst Rev, 2022 Jul 27;7(7):CD012595.
    PMID: 35894680 DOI: 10.1002/14651858.CD012595.pub4
    BACKGROUND: In school dental screening, a dental health professional visually inspects children's oral cavities in a school setting and provides information for parents on their child's current oral health status and treatment needs. Screening at school aims to identify potential problems before symptomatic disease presentation, hence prompting preventive and therapeutic oral health care for the children. This review evaluates the effectiveness of school dental screening for improving oral health status. It is the second update of a review originally published in December 2017 and first updated in August 2019.

    OBJECTIVES: To assess the effectiveness of school dental screening programmes on overall oral health status and use of dental services.

    SEARCH METHODS: An information specialist searched four bibliographic databases up to 15 October 2021 and used additional search methods to identify published, unpublished and ongoing studies.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs; cluster- or individually randomised) that evaluated school dental screening compared with no intervention, or that compared two different types of screening.

    DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane.

    MAIN RESULTS: The previous version of this review included seven RCTs, and our updated search identified one additional trial. Therefore, this update included eight trials (six cluster-RCTs) with 21,290 children aged 4 to 15 years. Four trials were conducted in the UK, two in India, one in the USA and one in Saudi Arabia. We rated two trials at low risk of bias, three at high risk of bias and three at unclear risk of bias.  No trials had long-term follow-up to ascertain the lasting effects of school dental screening. The trials assessed outcomes at 3 to 11 months of follow-up. No trials reported the proportion of children with treated or untreated oral diseases other than caries. Neither did they report on cost-effectiveness or adverse events. Four trials evaluated traditional screening versus no screening. We performed a meta-analysis for the outcome 'dental attendance' and found an inconclusive result with high heterogeneity. The heterogeneity was partly due to study design (three cluster-RCTs and one individually randomised trial). Due to this inconsistency, and unclear risk of bias, we downgraded the evidence to very low certainty, and we are unable to draw conclusions about this comparison. Two cluster-RCTs (both four-arm trials) evaluated criteria-based screening versus no screening, suggesting a possible small benefit (pooled risk ratio (RR) 1.07, 95% confidence interval (CI) 0.99 to 1.16; low-certainty evidence). There was no evidence of a difference when comparing criteria-based screening to traditional screening (RR 1.01, 95% CI 0.94 to 1.08; very low-certainty evidence). One trial compared a specific (personalised) referral letter to a non-specific letter. Results favoured the specific referral letter for increasing attendance at general dentist services (RR 1.39, 95% CI 1.09 to 1.77; very low-certainty evidence) and attendance at specialist orthodontist services (RR 1.90, 95% CI 1.18 to 3.06; very low-certainty evidence). One trial compared screening supplemented with motivation to screening alone. Dental attendance was more likely after screening supplemented with motivation (RR 3.08, 95% CI 2.57 to 3.71; very low-certainty evidence). One trial compared referral to a specific dental treatment facility with advice to attend a dentist. There was no evidence of a difference in dental attendance between these two referrals (RR 0.91, 95% CI 0.34 to 2.47; very low-certainty evidence). Only one trial reported the proportion of children with treated dental caries. This trial evaluated a post-screening referral letter based on the common-sense model of self-regulation (a theoretical framework that explains how people understand and respond to threats to their health), with or without a dental information guide, compared to a standard referral letter. The findings were inconclusive. Due to high risk of bias, indirectness and imprecision, we assessed the evidence as very low certainty.

    AUTHORS' CONCLUSIONS: The evidence is insufficient to draw conclusions about whether there is a role for school dental screening in improving dental attendance.  We are uncertain whether traditional screening is better than no screening (very low-certainty evidence). Criteria-based screening may improve dental attendance when compared to no screening (low-certainty evidence). However, when compared to traditional screening, there is no evidence of a difference in dental attendance (very low-certainty evidence). For children requiring treatment, personalised or specific referral letters may improve dental attendance when compared to non-specific referral letters (very low-certainty evidence). Screening supplemented with motivation (oral health education and offer of free treatment) may improve dental attendance in comparison to screening alone (very low-certainty evidence). We are uncertain whether a referral letter based on the 'common-sense model of self-regulation' is better than a standard referral letter (very low-certainty evidence) or whether specific referral to a dental treatment facility is better than a generic advice letter to visit the dentist (very low-certainty evidence). The trials included in this review evaluated effects of school dental screening in the short term. None of them evaluated its effectiveness for improving oral health or addressed possible adverse effects or costs.

  20. Ni H, Aye SZ, Naing C
    Cochrane Database Syst Rev, 2022 May 26;5(5):CD013506.
    PMID: 35616126 DOI: 10.1002/14651858.CD013506.pub2
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic and progressive disease, often punctuated by recurrent flare-ups or exacerbations. Magnesium sulfate, having a bronchodilatory effect, may have a potential role as an adjunct treatment in COPD exacerbations. However, comprehensive evidence of its effects is required to facilitate clinical decision-making.

    OBJECTIVES: To assess the effects of magnesium sulfate for acute exacerbations of chronic obstructive pulmonary disease in adults.

    SEARCH METHODS: We searched the Cochrane Airways Trials Register, CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, the World Health Organization (WHO) trials portal, EU Clinical Trials Register and Iranian Registry of Clinical Trials. We also searched the proceedings of major respiratory conferences and reference lists of included studies up to 2 August 2021.

    SELECTION CRITERIA: We included single- or double-blind parallel-group randomised controlled trials (RCTs) assessing magnesium sulfate in adults with COPD exacerbations. We excluded cross-over trials.

    DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. Two review authors independently selected trials for inclusion, extracted data and assessed risk of bias. The primary outcomes were: hospital admissions (from the emergency room); need for non-invasive ventilation (NIV), assisted ventilation or admission to intensive-care unit (ICU); and serious adverse events. Secondary outcomes were: length of hospital stay, mortality, adverse events, dyspnoea score, lung function and blood gas measurements. We assessed confidence in the evidence using GRADE methodology. For missing data, we contacted the study investigators.

    MAIN RESULTS: We identified 11 RCTs (10 double-blind and 1 single-blind) with a total 762 participants. The mean age of participants ranged from 62 to 76 years. Trials were single- or two-centre trials conducted in Iran, New Zealand, Nepal, Turkey, the UK, Tunisia and the USA between 2004 and 2018. We judged studies to be at low or unclear risk of bias for most of the domains. Three studies were at high risk for blinding and other biases.  Intravenous magnesium sulfate versus placebo Seven studies (24 to 77 participants) were included. Fewer people may require hospital admission with magnesium infusion compared to placebo (odds ratio (OR) 0.45, 95% CI 0.23 to 0.88; number needed to treat for an additional beneficial outcome (NNTB) = 7; 3 studies, 170 participants; low-certainty evidence). Intravenous magnesium may result in little to no difference in the requirement for non-invasive ventilation (OR 0.74, 95% CI 0.31 to 1.75; very low-certainty evidence). There were no reported cases of endotracheal intubation (2 studies, 107 participants) or serious adverse events (1 study, 77 participants) in either group. Included studies did not report intensive care unit (ICU) admission or deaths. Magnesium infusion may reduce the length of hospital stay by a mean difference (MD) of 2.7 days (95% CI 4.73 days to 0.66 days; 2 studies, 54 participants; low-certainty evidence) and improve dyspnoea score by a standardised mean difference of -1.40 (95% CI -1.83 to -0.96; 2 studies, 101 participants; low-certainty evidence). We were uncertain about the effect of magnesium infusion on improving lung function or oxygen saturation. For all adverse events, the Peto OR was 0.14 (95% CI 0.02 to 1.00; 102 participants); however, the event rate was too low to reach a robust conclusion.  Nebulised magnesium sulfate versus placebo Three studies (20 to 172 participants) were included. Magnesium inhalation may have little to no impact on hospital admission (OR 0.77, 95% CI 0.21 to 2.82; very low-certainty evidence) or need for ventilatory support (NIV or mechanical ventilation) (OR 0.33, 95% CI 0.01 to 8.20; very low-certainty evidence). It may result in fewer ICU admissions compared to placebo (OR 0.39, 95% CI 0.15 to 1.00; very low-certainty evidence) and improvement in dyspnoea (MD -14.37, 95% CI -26.00 to -2.74; 1 study, 20 participants; very low-certainty evidence). There were no serious adverse events reported in either group. There was one reported death in the placebo arm in one trial, but the number of participants was too small for a conclusion. There was limited evidence about the effect of magnesium inhalation on length of hospital stay, lung function outcomes or oxygen saturation. Included studies did not report adverse events.  Magnesium sulfate versus ipratropium bromide  A single study with 124 participants assessed nebulised magnesium sulfate plus intravenous magnesium infusion versus nebulised ipratropium plus intravenous normal saline. There was little to no difference between these groups in terms of hospital admission (OR 1.62, 95% CI 0.78 to 3.37), endotracheal intubation (OR 1.69, 95% CI 0.61 to 4.71) and length of hospital stay (MD 1.10 days, 95% CI -0.22 to 2.42), all with very low-certainty evidence. There were no data available for non-invasive ventilation, ICU admission and serious adverse events. Adverse events were not reported.  AUTHORS' CONCLUSIONS: Intravenous magnesium sulfate may be associated with fewer hospital admissions, reduced length of hospital stay and improved dyspnoea scores compared to placebo. There is no evidence of a difference between magnesium infusion and placebo for NIV, lung function, oxygen saturation or adverse events. We found no evidence for ICU admission, endotracheal intubation, serious adverse events or mortality. For nebulised magnesium sulfate, we are unable to draw conclusions about its effects in COPD exacerbations for most of the outcomes. Studies reported possibly lower ICU admissions and a lesser degree of dyspnoea with magnesium inhalation compared to placebo; however, larger studies are required to yield a more precise estimate for these outcomes. Similarly, we could not identify any robust evidence for magnesium sulfate compared to ipratropium bromide. Future well-designed multicentre trials with larger samples are required, including subgroups according to severity of exacerbations and COPD phenotypes.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links