Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

  2. Song JH, Chang HH, Suh JY, Ko KS, Jung SI, Oh WS, et al.
    J Antimicrob Chemother, 2004 Mar;53(3):457-63.
    PMID: 14963068
    To characterize mechanisms of macrolide resistance among Streptococcus pneumoniae from 10 Asian countries during 1998-2001.
  3. Shin J, Baek JY, Kim SH, Song JH, Ko KS
    J Antimicrob Chemother, 2011 May;66(5):1001-4.
    PMID: 21393143 DOI: 10.1093/jac/dkr048
    BACKGROUND: After 7-valent pneumococcal conjugate vaccine (PCV7) introduction, non-vaccine serotypes such as 19A are increasing among Streptococcus pneumoniae. However, only limited data on 19A S. pneumoniae are available in Asian countries.
    METHODS: Out of 1637 S. pneumoniae clinical pneumonia isolates collected during 2008 and 2009 from 10 Asian countries (Korea, Malaysia, Taiwan, Thailand, Saudi Arabia, Hong Kong, India, Japan, the Philippines and Vietnam), 91 serotype 19A S. pneumoniae isolates were identified. Capsular swelling reaction identified serotype 19A isolates. Antimicrobial susceptibility testing was performed on the serotype 19A isolates using the broth microdilution method, and the genotypes of the isolates were assessed using multilocus sequence typing.
    RESULTS: Thirty different sequence types (STs) were identified. The most prevalent clone was ST320 (46 isolates, 51.1%). ST320 was found in Hong Kong, India, Korea, Malaysia, Saudi Arabia and Taiwan. ST320 isolates were mostly multidrug resistant (MDR) and showed significantly higher resistance rates than other STs for cefuroxime, clindamycin, and trimethoprim/sulfamethoxazole.
    CONCLUSIONS: Although diverse clones were identified among 19A S. pneumoniae isolates, MDR ST320 was the predominant clone in Asian countries. Its predominance, even in countries with no or low coverage of PCV7, may indicate that its emergence and dissemination was due to more than just vaccine selection pressure in Asian countries. A longitudinal investigation of the change of serotypes and genotypes since the introduction of PCV7 is required to understand the emergence and dissemination mechanisms of a certain clone of 19A S. pneumoniae isolates.
  4. Reuter SE, Upton RN, Evans AM, Navaratnam V, Olliaro PL
    J Antimicrob Chemother, 2015 Mar;70(3):868-76.
    PMID: 25377567 DOI: 10.1093/jac/dku430
    BACKGROUND: The determination of dosing regimens for the treatment of malaria is largely empirical and thus a better understanding of the pharmacokinetic/pharmacodynamic properties of antimalarial agents is required to assess the adequacy of current treatment regimens and identify sources of suboptimal dosing that could select for drug-resistant parasites. Mefloquine is a widely used antimalarial, commonly given in combination with artesunate.

    PATIENTS AND METHODS: Mefloquine pharmacokinetics was assessed in 24 healthy adults and 43 patients with Plasmodium falciparum malaria administered mefloquine in combination with artesunate. Population pharmacokinetic modelling was conducted using NONMEM.

    RESULTS: A two-compartment model with a single transit compartment and first-order elimination from the central compartment most adequately described mefloquine concentration-time data. The model incorporated population parameter variability for clearance (CL/F), central volume of distribution (VC/F) and absorption rate constant (KA) and identified, in addition to body weight, malaria infection as a covariate for VC/F (but not CL/F). Monte Carlo simulations predict that falciparum malaria infection is associated with a shorter elimination half-life (407 versus 566 h) and T>MIC (766 versus 893 h).

    CONCLUSIONS: This is the first known population pharmacokinetic study to show falciparum malaria to influence mefloquine disposition. Protein binding, anaemia and other factors may contribute to differences between healthy individuals and patients. As VC/F is related to the earlier portion of the concentration-time profiles, which occurs during acute malaria, and CL/F is more related to the terminal phase during convalescence after treatment, this may explain why malaria was found to be a covariate for VC/F but not CL/F.

  5. Ram M R, Teh X, Rajakumar T, Goh KL, Leow AHR, Poh BH, et al.
    J Antimicrob Chemother, 2019 01 01;74(1):11-16.
    PMID: 30403784 DOI: 10.1093/jac/dky401
    Objectives: Eradication of Helicobacter pylori is influenced by susceptibility to antimicrobial agents, elevated bacterial load and degree of acid inhibition, which can be affected by genotypes of drug-metabolizing enzymes [cytochrome P450 (CYP) 2C19 polymorphism]. Theoretically, the choice and dose of proton pump inhibitor may also influence the suppression of H. pylori infection. The CYP2C19 genotype has recently been found to have an impact on peptic ulcer healing, H. pylori eradication and therapeutic efficacy of proton pump inhibitors.

    Methods: Here, we investigated the impact of the CYP2C19 genotype polymorphism and the success of triple therapy (fluoroquinolones/metronidazole/clarithromycin) on antibiotic-resistant strains in eradicating H. pylori in human subjects with non-ulcer dyspepsia (NUD), in human subjects with peptic ulcer disease (PUD) and in asymptomatic human subjects (positive and negative for H. pylori infection).

    Results: Based on the CYP2C19 genotypes, determined by Droplet Digital PCR (ddPCR) analysis, we found 11.2%, 62.5% and 26.3% corresponding to rapid metabolizers, intermediate metabolizers and poor metabolizers, respectively. However, we did not find any significant effect for homozygous ABCB1 or CYP2C19*2 and CYP2C19*3 alleles. We detected several participants heterozygous for both ABCB1 and CYP2C19*2, CYP2C19*3 and CYP2C19*17 loci. The participants heterozygous for both ABCB1 and CYP2C19*2 and *3 loci should be defined as intermediate and poor metabolizers according to the haplotype analysis in the NUD, PUD and asymptomatic subjects.

    Conclusions: Consequently, fluoroquinolones/metronidazole/clarithromycin-based triple therapies can be used to eradicate H. pylori infection, if one does not know the CYP2C19 genotype of the patient.

  6. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

  7. Mohamed AF, Kristoffersson AN, Karvanen M, Nielsen EI, Cars O, Friberg LE
    J Antimicrob Chemother, 2016 May;71(5):1279-90.
    PMID: 26850719 DOI: 10.1093/jac/dkv488
    Combination therapy can be a strategy to ensure effective bacterial killing when treating Pseudomonas aeruginosa, a Gram-negative bacterium with high potential for developing resistance. The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model that describes the in vitro bacterial time-kill curves of colistin and meropenem alone and in combination for one WT and one meropenem-resistant strain of P. aeruginosa.
  8. Mendes RE, Hogan PA, Jones RN, Sader HS, Flamm RK
    J Antimicrob Chemother, 2016 Jul;71(7):1860-5.
    PMID: 27013481 DOI: 10.1093/jac/dkw052
    OBJECTIVES: The objective of this study was to report the linezolid in vitro activity observed during the Zyvox(®) Annual Appraisal of Potency and Spectrum (ZAAPS) programme for 2014.

    METHODS: In total, 7541 organisms causing documented infections were consecutively collected in 66 centres in 33 countries, excluding the USA. Susceptibility testing was performed by broth microdilution. Isolates displaying linezolid MIC results of ≥4 mg/L were molecularly characterized.

    RESULTS: Linezolid inhibited all Staphylococcus aureus at ≤2 mg/L, with MIC50 results of 1 mg/L, regardless of methicillin resistance. A similar linezolid MIC50 result (i.e. 0.5 mg/L) was observed against CoNS, with the vast majority of isolates (99.4%) also inhibited at ≤2 mg/L. Six CoNS that exhibited elevated linezolid MIC values were found to contain alterations in the 23S rRNA and/or L3 ribosomal protein. Linezolid exhibited consistent modal MIC and MIC50 results (1 mg/L) against enterococci, regardless of species or vancomycin resistance. Three Enterococcus faecalis from Galway and Dublin (Ireland) and Kelantan (Malaysia) showed MIC results of 4 to 8 mg/L and carried optrA. All Streptococcus pneumoniae, viridans-group streptococci and β-haemolytic streptococci were inhibited by linezolid at ≤2, ≤2 and ≤1 mg/L, respectively, with equivalent MIC90 results (1 mg/L for all groups).

    CONCLUSIONS: These results document the continued long-term and stable in vitro potency of linezolid and reveal a limited number of isolates with decreased susceptibility to linezolid (i.e. MIC ≥4 mg/L). The latter isolates primarily showed mutations in the 23S rRNA gene and/or L3 protein, but cfr was not detected. Moreover, this study shows that isolates carrying the newly described ABC transporter optrA are not restricted to China.

  9. Léger A, Lambraki I, Graells T, Cousins M, Henriksson PJG, Harbarth S, et al.
    J Antimicrob Chemother, 2021 01 01;76(1):1-21.
    PMID: 33057678 DOI: 10.1093/jac/dkaa394
    The global threat of antimicrobial resistance (AMR) requires coordinated actions by and across different sectors. Increasing attention at the global and national levels has led to different strategies to tackle the challenge. The diversity of possible actions to address AMR is currently not well understood from a One Health perspective. AMR-Intervene, an interdisciplinary social-ecological framework, describes interventions to tackle AMR in terms of six components: (i) core information about the publication; (ii) social system; (iii) bio-ecological system; (iv) triggers and goals; (v) implementation and governance; and (vi) assessment. AMR-Intervene provides a broadly applicable framework, which can inform the design, implementation, assessment and reporting of interventions to tackle AMR and, in turn, enable faster uptake of successful interventions to build societal resilience to AMR.
  10. Kim MJ, Bae IK, Jeong SH, Kim SH, Song JH, Choi JY, et al.
    J Antimicrob Chemother, 2013 Dec;68(12):2820-4.
    PMID: 23843299 DOI: 10.1093/jac/dkt269
    To investigate the epidemiological traits of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) clinical isolates collected by the Asian Network for Surveillance of Resistant Pathogens (ANSORP).
  11. Kengkla K, Kongpakwattana K, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N
    J Antimicrob Chemother, 2018 Jan 01;73(1):22-32.
    PMID: 29069421 DOI: 10.1093/jac/dkx368
    Objectives: To comprehensively compare and rank the efficacy and safety of available treatment options for patients with MDR and XDR Acinetobacter baumannii (AB) infection.

    Methods: We searched PubMed, Embase and the Cochrane register of trials systematically for studies that examined treatment options for patients with MDR- and XDR-AB infections until April 2016. Network meta-analysis (NMA) was performed to estimate the risk ratio (RR) and 95% CI from both direct and indirect evidence. Primary outcomes were clinical cure and microbiological cure. Secondary outcomes were all-cause mortality and nephrotoxic and non-nephrotoxic adverse events.

    Results: A total of 29 studies with 2529 patients (median age 60 years; 65% male; median APACHE II score 19.0) were included. Although there were no statistically significant differences between treatment options, triple therapy with colistin, sulbactam and tigecycline had the highest clinical cure rate. Colistin in combination with sulbactam was associated with a significantly higher microbiological cure rate compared with colistin in combination with tigecycline (RR 1.23; 95% CI 1.03-1.47) and colistin monotherapy (RR 1.21; 95% CI 1.06-1.38). No significant differences in all-cause mortality were noted between treatment options. Tigecycline-based therapy also appeared less effective for achieving a microbiological cure and is not appropriate for treating bloodstream MDR- and XDR-AB infections.

    Conclusions: Combination therapy of colistin with sulbactam demonstrates superiority in terms of microbiological cure with a safety profile similar to that of colistin monotherapy. Thus, our findings support the use of this combination as a treatment for MDR- and XDR-AB infections.

  12. Kamaruzzaman NF, Firdessa R, Good L
    J Antimicrob Chemother, 2016 May;71(5):1252-9.
    PMID: 26825118 DOI: 10.1093/jac/dkv474
    The treatment of skin infections caused by Staphylococcus aureus is limited by acquired antibiotic resistance and poor drug delivery into pathogen and host cells. Here, we investigated the antibacterial activities of six topically used antimicrobials and a cationic polymer, polyhexamethylene biguanide (PHMB), against intracellular MSSA strain RN4420 and MRSA strains EMRSA-15 and USA 300.
  13. Jiménez-Castellanos JC, Wan Ahmad Kamil WN, Cheung CH, Tobin MS, Brown J, Isaac SG, et al.
    J Antimicrob Chemother, 2016 Jul;71(7):1820-5.
    PMID: 27029850 DOI: 10.1093/jac/dkw088
    OBJECTIVES: In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae.

    METHODS: Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT-PCR.

    RESULTS: Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific.

    CONCLUSIONS: RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates.

  14. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T, Heesom KJ, et al.
    J Antimicrob Chemother, 2018 Jan 01;73(1):88-94.
    PMID: 29029194 DOI: 10.1093/jac/dkx345
    Objectives: In Klebsiella pneumoniae, overproduction of RamA results in reduced envelope permeability and reduced antimicrobial susceptibility but clinically relevant resistance is rarely observed. Here we have tested whether RamA overproduction can enhance acquired β-lactam resistance mechanisms in K. pneumoniae and have defined the envelope protein abundance changes upon RamA overproduction during growth in low and high osmolarity media.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. β-Lactam susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and transcript levels were quantified using real-time RT-PCR.

    Results: RamA overproduction enhanced β-lactamase-mediated β-lactam resistance, in some cases dramatically, without altering β-lactamase production. It increased production of efflux pumps and decreased OmpK35 porin production, though micF overexpression showed that OmpK35 reduction has little impact on envelope permeability. A survey of K. pneumoniae bloodstream isolates revealed ramA hyperexpression in 3 of 4 carbapenemase producers, 1 of 21 CTX-M producers and 2 of 19 strains not carrying CTX-M or carbapenemases.

    Conclusions: Whilst RamA is not a key mediator of antibiotic resistance in K. pneumoniae on its own, it is potentially important for enhancing the spectrum of acquired β-lactamase-mediated β-lactam resistance. LC-MS/MS proteomics analysis has revealed that this enhancement is achieved predominantly through activation of efflux pump production.

  15. Jeong W, Snell GI, Levvey BJ, Westall GP, Morrissey CO, Ivulich S, et al.
    J Antimicrob Chemother, 2017 Jul 01;72(7):2089-2092.
    PMID: 28369489 DOI: 10.1093/jac/dkx085
    Objectives: This study describes the clinical outcomes and therapeutic drug monitoring (TDM) following posaconazole suspension pre-emptive therapy in lung transplant (LTx) recipients.

    Methods: This was a single-centre, retrospective cohort study evaluating posaconazole suspension pre-emptive therapy in LTx recipients between January 2009 and December 2015.

    Results: Forty-two LTx recipients were prescribed posaconazole suspension pre-emptively. Aspergillus fumigatus was the most commonly isolated fungal organism. Of the patients receiving posaconazole suspension as the initial antifungal post-LTx, 93% had eradication of colonization at 6 months after commencing therapy. In contrast, only 61% had eradication of fungal colonization when posaconazole suspension was administered following initial therapy with voriconazole. Posaconazole suspension appeared to be well tolerated, although one case was curtailed following concern about abnormal liver function and another due to nausea/vomiting. TDM was performed in 37 patients. The initial median (IQR) trough plasma concentration ( C min ) following 400 mg twice-daily posaconazole suspension was 0.78 (0.46-1.19) mg/L. Doses beyond 800 mg daily did not appear to result in a higher median C min.

    Conclusions: Early initiation of posaconazole suspension pre-emptive therapy in LTx recipients appears to be well tolerated and may potentially afford favourable clinical outcomes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links