Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Fan Z, Dahal G, Dasgupta I, Hay J, Hull R
    J Gen Virol, 1996 May;77 ( Pt 5):847-54.
    PMID: 8609480
    The DNA genomes of isolates of rice tungro bacilliform virus from Bangladesh, India, Indonesia, Malaysia and Thailand were cloned and compared with that of the type isolate from the Philippines. Restriction endonuclease maps revealed differences between the isolates and cross-hybridization showed that they fell into two groups, those from the Indian subcontinent and those from south-east Asian countries. The genomes of isolates from the Indian subcontinent contained a deletion of 64 bp when compared with those from south-east Asia. The implications of this variation are discussed.
  2. Okamura T, Tsujimura Y, Soma S, Takahashi I, Matsuo K, Yasutomi Y
    J Gen Virol, 2016 Dec;97(12):3413-3426.
    PMID: 27902330 DOI: 10.1099/jgv.0.000641
    Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.
  3. Cabauatan PQ, Melcher U, Ishikawa K, Omura T, Hibino H, Koganezawa H, et al.
    J Gen Virol, 1999 Aug;80 ( Pt 8):2229-37.
    PMID: 10466823
    The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.
  4. Lau JZH, Chua CL, Chan YF, Nadarajan VS, Lee CLL, Sam IC
    J Gen Virol, 2023 Apr;104(4).
    PMID: 37043371 DOI: 10.1099/jgv.0.001842
    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus, which causes epidemics of fever, joint pain and rash. There are three genotypes: West African, East/Central/South/Africa (ECSA) and Asian, with the latter two predominant globally. Genotype-specific differences in clinical presentations, virulence and immunopathology have been described. Macrophages are key cells in immune responses against CHIKV. Circulating blood monocytes enter tissue to differentiate into monocyte-derived macrophages (MDMs) in response to CHIKV infection at key replication sites such as lymphoid organs and joints. This study analyses differences in replication and induced immune mediators following infection of MDMs with Asian and ECSA CHIKV genotypes. Primary human MDMs were derived from residual blood donations. Replication of Asian (MY/06/37348) or ECSA (MY/08/065) genotype strains of CHIKV in MDMs was measured by plaque assay. Nineteen immune mediators were measured in infected cell supernatants using multiplexed immunoassay or ELISA. MY/08/065 showed significantly higher viral replication at 24 h post-infection (h p.i.) but induced significantly lower expression of proinflammatory cytokines (CCL-2, CCL-3, CCL-4, RANTES and CXCL-10) and the anti-inflammatory IL-1Ra compared to MY/06/37348. No differences were seen at later time points up to 72 h p.i. During early infection, MY/08/065 induced lower proinflammatory immune responses in MDMs. In vivo, this may lead to poorer initial control of viral infection, facilitating CHIKV replication and dissemination to other sites such as joints. This may explain the consistent past findings that the ECSA genotype is associated with greater viremia and severity of symptoms than the Asian genotype. Knowledge of CHIKV genotype-specific immunopathogenic mechanisms in human MDMs is important in understanding of clinical epidemiology, biomarkers and therapeutics in areas with co-circulation of different genotypes.
  5. Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL, Lee KS, et al.
    J Gen Virol, 2010 Apr;91(Pt 4):1067-76.
    PMID: 19955565 DOI: 10.1099/vir.0.015743-0
    Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.
  6. Goh ZH, Mohd NAS, Tan SG, Bhassu S, Tan WS
    J Gen Virol, 2014 Sep;95(Pt 9):1919-1928.
    PMID: 24878641 DOI: 10.1099/vir.0.064014-0
    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.
  7. Thong QX, Wong CL, Ooi MK, Kueh CL, Ho KL, Alitheen NB, et al.
    J Gen Virol, 2018 09;99(9):1227-1238.
    PMID: 30041713 DOI: 10.1099/jgv.0.001116
    Macrobrachium rosenbergii nodavirus (MrNv) causes white tail disease (WTD) in giant freshwater prawns, which leads to devastating economic losses in the aquaculture industry. Despite extensive research on MrNv, there is still no antiviral agent to treat WTD. Thus, the main aim of this study was to identify potential anti-MrNv molecules. A 12-mer phage-displayed peptide library was biopanned against the MrNv virus-like particle (VLP). After four rounds of biopanning, two dominant phages harbouring the amino acid sequences HTKQIPRHIYSA and VSRHQSWHPHDL were selected. An equilibrium binding assay in solution was performed to determine the relative dissociation constant (KDrel) of the interaction between the MrNv VLP and the selected fusion phages. Phage-HTKQIPRHIYSA has a KDrel value of 92.4±22.8 nM, and phage-VSRHQSWHPHDL has a KDrel value of 12.7±3.8 nM. An in-cell elisa was used to determine the inhibitory effect of the synthetic peptides towards the entry of MrNv VLP into Spodoptera frugiperda (Sf9) cells. Peptides HTKQIPRHIYSA and VSRHQSWHPHDL inhibited the entry of the MrNv VLP into Sf9 cells with IC50 values of 30.4±3.6 and 26.5±8.8 µM, respectively. Combination of both peptides showed a significantly higher inhibitory effect with an IC50 of 4.9±0.4 µM. An MTT assay revealed that the viability of MrNv-infected cells increased to about 97 % in the presence of both peptides. A real-time RT-PCR assay showed that simultaneous application of both peptides significantly reduced the number of MrNv per infected cell, from 97±9 to 11±4. These peptides are lead compounds which can be further developed into potent anti-MrNv agents.
  8. Pérez-Ramírez E, Llorente F, Del Amo J, Fall G, Sall AA, Lubisi A, et al.
    J Gen Virol, 2017 Apr;98(4):662-670.
    PMID: 28475031 DOI: 10.1099/jgv.0.000743
    Rodent models have been used extensively to study West Nile virus (WNV) infection because they develop severe neurological symptoms similar to those observed in human WNV neuroinvasive disease. Most of this research has focused on old lineage (L) 1 strains, while information about pathogenicity is lacking for the most recent L1 and L2 strains, as well as for newly defined lineages. In this study, 4-week-old Swiss mice were inoculated with a collection of 12 WNV isolates, comprising 10 old and recent L1 and L2 strains, the putative L6 strain from Malaysia and the proposed L7 strain Koutango (KOU). The intraperitoneal inoculation of 10-fold dilutions of each strain allowed the characterization of the isolates in terms of LD50, median survival times, ID50, replication in neural and extraneural tissues and antibody production. Based on these results, we classified the isolates in three groups: high virulence (all L1a strains, recent L2 strains and KOU), moderate virulence (B956 strain) and low virulence (Kunjin and Malaysian isolates). We determined that the inoculation of a single dose of 1000 p.f.u. would be sufficient to classify WNV strains by pathotype. We confirmed the enhanced virulence of the KOU strain with a high capacity to cause rapid systemic infection. We also corroborated that differences in pathogenicity among strains do not correlate with phylogenetic lineage or geographic origin, and confirmed that recent European and African WNV strains belonging to L1 and L2 are highly virulent and do not differ in their pathotype profile compared to the prototype NY99 strain.
  9. Morita K, Igarashi A
    J Gen Virol, 1984 Nov;65 ( Pt 11):1899-908.
    PMID: 6094708
    Eighteen strains of Getah virus isolated from mosquitoes, swine and horses in Japan (1956 to 1981), and one strain isolated in Malaysia (1955), were analysed by RNase T1-resistant oligonucleotide fingerprinting. All fingerprints showed a poly(A) tract. The fingerprint pattern of the Malaysian strain was quite different from those of the Japanese strains. Although most of the recent Japanese isolates shared many large oligonucleotide spots in common, the patterns were not identical even among the strains obtained in one locality in the same year. These results suggest that the Getah virus genome undergoes mutation rather frequently. However, there is a tendency for the isolates of the same year to show greater similarity. The fingerprint patterns of certain host-dependent temperature-sensitive (ts) mutants differed from that of the parental strain. Also, there were some differences in large oligonucleotide spots between strain JaNAr12380M isolated in suckling mouse brain (SMB) and strain JaNAr12380A isolated in C6/36 cells, despite the fact that both strains were derived from the same wild mosquito homogenate. In addition, many host-dependent ts mutants were present in strain JaNAr12380A, whereas no such mutants were observed in strain JaNAr12380M. It is concluded that there is considerable variation in the strains of Getah virus infecting mosquitoes in the wild, and also that the variants or mutants present in mosquitoes might be subject to selection during viral multiplication in the mammalian host.
  10. Kho CL, Tan WS, Tey BT, Yusoff K
    J Gen Virol, 2003 Aug;84(Pt 8):2163-2168.
    PMID: 12867648 DOI: 10.1099/vir.0.19107-0
    The nucleocapsid protein (NP) of Newcastle disease virus expressed in E. coli assembled as ring- and herringbone-like particles. In order to identify the contiguous NP sequence essential for assembly of these particles, 11 N- or C-terminally deleted NP mutants were constructed and their ability to self-assemble was tested. The results indicate that a large part of the NP N-terminal end, encompassing amino acids 1 to 375, is required for proper folding to form a herringbone-like structure. In contrast, the C-terminal end covering amino acids 376 to 489 was dispensable for the formation of herringbone-like particles. A region located between amino acids 375 to 439 may play a role in regulating the length of the herringbone-like particles. Mutants with amino acid deletions further from the C-terminal end (84, 98, 109 and 114 amino acids) tended to form longer particles compared to mutants with shorter deletions (25 and 49 amino acids).
  11. Abd-Aziz N, Stanbridge EJ, Shafee N
    J Gen Virol, 2016 Dec;97(12):3174-3182.
    PMID: 27902314 DOI: 10.1099/jgv.0.000623
    Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
  12. Wei Chiam C, Fun Chan Y, Chai Ong K, Thong Wong K, Sam IC
    J Gen Virol, 2015 Nov;96(11):3243-3254.
    PMID: 26276497 DOI: 10.1099/jgv.0.000263
    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.
  13. Majid NN, Omar AR, Mariatulqabtiah AR
    J Gen Virol, 2020 07;101(7):772-777.
    PMID: 32427095 DOI: 10.1099/jgv.0.001428
    In comparison to the extensive characterization of haemagglutinin antibodies of avian influenza virus (AIV), the role of neuraminidase (NA) as an immunogen is less well understood. This study describes the construction and cellular responses of recombinant fowlpox viruses (rFWPV) strain FP9, co-expressing NA N1 gene of AIV A/Chicken/Malaysia/5858/2004, and chicken IL-12 gene. Our data shows that the N1 and IL-12 proteins were successfully expressed from the recombinants with 48 kD and 70 kD molecular weights, respectively. Upon inoculation into specific-pathogen-free (SPF) chickens at 105 p.f.u. ml-1, levels of CD3+/CD4+ and CD3+/CD8+ populations were higher in the wild-type fowlpox virus FP9 strain, compared to those of rFWPV-N1 and rFWPV-N1-IL-12 at weeks 2 and 5 time points. Furthermore, rFWPV-N1-IL-12 showed a suppressive effect on chicken body weight within 4 weeks after inoculation. We suggest that co-expression of N1 with or without IL-12 offers undesirable quality as a potential AIV vaccine candidate.
  14. Ong ST, Yusoff K, Kho CL, Abdullah JO, Tan WS
    J Gen Virol, 2009 Feb;90(Pt 2):392-397.
    PMID: 19141448 DOI: 10.1099/vir.0.005710-0
    The nucleocapsid protein of Nipah virus produced in Escherichia coli assembled into herringbone-like particles. The amino- and carboxy-termini of the N protein were shortened progressively to define the minimum contiguous sequence involved in capsid assembly. The first 29 aa residues of the N protein are dispensable for capsid formation. The 128 carboxy-terminal residues do not play a role in the assembly of the herringbone-like particles. A region with amino acid residues 30-32 plays a crucial role in the formation of the capsid particle. Deletion of any of the four conserved hydrophobic regions in the N protein impaired capsid formation. Replacement of the central conserved regions with the respective sequences from the Newcastle disease virus restored capsid formation.
  15. Mok L, Wynne JW, Grimley S, Shiell B, Green D, Monaghan P, et al.
    J Gen Virol, 2015 Jul;96(Pt 7):1787-94.
    PMID: 25748429 DOI: 10.1099/vir.0.000112
    In recent years, bats have been identified as a natural reservoir for a diverse range of viruses. Nelson Bay orthoreovirus (NBV) was first isolated from the heart blood of a fruit bat (Pteropus poliocephalus) in 1968. While the pathogenesis of NBV remains unknown, other related members of this group have caused acute respiratory disease in humans. Thus the potential for NBV to impact human health appears plausible. Here, to increase our knowledge of NBV, we examined the replication and infectivity of NBV using different mammalian cell lines derived from bat, human, mouse and monkey. All cell lines supported the replication of NBV; however, L929 cells showed a greater than 2 log reduction in virus titre compared with the other cell lines. Furthermore, NBV did not induce major cytopathic effects in the L929 cells, as was observed in other cell lines. Interestingly, the related Pteropine orthoreoviruses, Pulau virus (PulV) and Melaka virus (MelV) were able to replicate to high titres in L929 cells but infection resulted in reduced cytopathic effect. Our study demonstrates a unique virus-host interaction between NBV and L929 cells, where cells effectively control viral infection/replication and limit the formation of syncytia. By elucidating the molecular mechanisms that control this unique relationship, important insights will be made into the biology of this fusogenic virus.
  16. Lanciotti RS, Lewis JG, Gubler DJ, Trent DW
    J Gen Virol, 1994 Jan;75 ( Pt 1):65-75.
    PMID: 8113741
    The nucleic acid sequences of the pre-membrane/membrane and envelope protein genes of 23 geographically and temporally distinct dengue (DEN)-3 viruses were determined. This was accomplished by reverse transcriptase-PCR amplification of the structural genes followed by automated DNA sequence analysis. Comparison of nucleic acid sequences revealed that similarity among the viruses was greater than 90%. The similarity among deduced amino acids was between 95% and 100%, and in many cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis allowed the generation of phylogenetic trees, demonstrating that geographically independent evolution of DEN-3 viruses had occurred. The DEN-3 viruses were separated into four genetically distinct subtypes. Subtype I consists of viruses from Indonesia, Malaysia, the Philippines and the South Pacific islands; subtype II consists of viruses from Thailand; subtype III consists of viruses from Sri Lanka, India, Africa and Samoa; subtype IV consists of viruses from Puerto Rico and the 1965 Tahiti virus. Phylogenetic analysis has also contributed to our understanding of the molecular epidemiology and worldwide distribution of DEN-3 viruses.
  17. Chan YP, Koh CL, Lam SK, Wang LF
    J Gen Virol, 2004 Jun;85(Pt 6):1675-1684.
    PMID: 15166452 DOI: 10.1099/vir.0.19752-0
    Hendra virus (HeV) and Nipah virus (NiV) are members of a new genus, Henipavirus, in the family paramyxoviridae. Each virus encodes a phosphoprotein (P) that is significantly larger than its counterparts in other known paramyxoviruses. The interaction of this unusually large P with its nucleocapsid protein (N) was investigated in this study by using recombinant full-length and truncated proteins expressed in bacteria and a modified protein-blotting protein-overlay assay. Results from our group demonstrated that the N and P of both viruses were able to form not only homologous, but also heterologous, N-P complexes, i.e. HeV N was able to interact with NiV P and vice versa. Deletion analysis of the N and P revealed that there were at least two independent N-binding sites on P and they resided at the N and C termini, respectively. Similarly, more than one P-binding site was present on N and one of these was mapped to a 29 amino acid (aa) C-terminal region, which on its own was sufficient to interact with the extreme C-terminal 165 aa region of P.
  18. Debnath NC, Tiernery R, Sil BK, Wills MR, Barrett AD
    J Gen Virol, 1991 Nov;72 ( Pt 11):2705-11.
    PMID: 1940867
    Defective interfering (DI) particles of the flavivirus West Nile (WN) were generated after as few as two high multiplicity serial passages in Vero and LLC-MK2 cells. Six cell lines (Vero, LLC-MK2, L929, HeLa, BHK-21 and SW13) were used to assay interference by DI particles in a yield reduction assay. Interference was found to vary depending on the cell type used. The highest levels of interference were obtained in LLC-MK2 cells, whereas no detectable effect was observed in BHK-21 and SW13 cells. The ability of DI virus to be propagated varied depending on the cell line used; no detectable propagation of DI virus was observed in SW13 cells. Optimum interference was obtained following co-infection of cells with DI virus and standard virus at a multiplicity of 5. Interference between DI and standard viruses occurred only when they were co-infected or when cells were infected with DI virus 1 h before standard virus. Investigation of heterotypic interference by DI particles of WN virus strains from Sarawak, India and Egypt revealed that interference was dependent on the strain of WN virus or flavivirus used as standard virus. A measure of the similarity between five strains of WN virus and other flaviviruses was made on the basis of interference by DI viruses, and was found to be similar to that based on haemagglutination inhibition tests using a panel of monoclonal antibodies.
  19. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
  20. Druka A, Burns T, Zhang S, Hull R
    J Gen Virol, 1996 Aug;77 ( Pt 8):1975-83.
    PMID: 8760450
    Rice tungro spherical virus (RTSV) has an RNA genome of more than 12 kb with various features which classify it as a plant picornavirus. The capsid comprises three coat protein (CP) species, CP1, CP2 and CP3, with predicted molecular masses of 22.5, 22.0 and 33 kDa, respectively, which are cleaved from a polyprotein. In order to obtain information on the properties of these proteins, each was expressed in E. coli, purified as a fusion to the maltose-binding protein and used for raising a polyclonal antiserum. CP1, CP2 and CP3 with the expected molecular masses were detected specifically in virus preparations. CP3 is probably the major antigenic determinant on the surface of RTSV particles, as was shown by ELISA, Western blotting and immunogold electron microscopy using antisera obtained against whole virus particles and to each CP separately. In some cases, especially in crude extracts, CP3 antiserum detected several other proteins (40-42 kDa), which could be products of CP3 post-translational modification. No serological differences were detected between the three CPs from isolates from the Philippines, Thailand, Malaysia and India. The CP3-related 40-42 kDa proteins of the Indian RTSV isolate have a slightly higher electrophoretic mobility (42-44 kDa) and a different response to cellulolytic enzyme preparations, which allows them to be differentiated from south-east Asian isolates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links