Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Kho CL, Tan WS, Tey BT, Yusoff K
    J Gen Virol, 2003 Aug;84(Pt 8):2163-2168.
    PMID: 12867648 DOI: 10.1099/vir.0.19107-0
    The nucleocapsid protein (NP) of Newcastle disease virus expressed in E. coli assembled as ring- and herringbone-like particles. In order to identify the contiguous NP sequence essential for assembly of these particles, 11 N- or C-terminally deleted NP mutants were constructed and their ability to self-assemble was tested. The results indicate that a large part of the NP N-terminal end, encompassing amino acids 1 to 375, is required for proper folding to form a herringbone-like structure. In contrast, the C-terminal end covering amino acids 376 to 489 was dispensable for the formation of herringbone-like particles. A region located between amino acids 375 to 439 may play a role in regulating the length of the herringbone-like particles. Mutants with amino acid deletions further from the C-terminal end (84, 98, 109 and 114 amino acids) tended to form longer particles compared to mutants with shorter deletions (25 and 49 amino acids).
  2. Guo J, Kitamura T, Ebihara H, Sugimoto C, Kunitake T, Takehisa J, et al.
    J Gen Virol, 1996 May;77 ( Pt 5):919-27.
    PMID: 8609488
    The JC polyomavirus (JCV) is ubiquitous in humans infecting children asymptomatically, then persisting in renal tissue. Since JCV DNA can be readily isolated from urine, it should be a useful tool with which to study the evolution of DNA viruses in humans. We showed that JCV DNA from the urine of Japanese, Taiwanese, Dutch and German patients can be classified into A and B types, based upon restriction fragment length polymorphisms (RFLPs). This work was extended in the present study. We established multiple JCV DNA clones from the UK, Spain, Italy, Sweden, South Korea, People's Republic of China, Malaysia, Indonesia, Mongolia, India, Sri Lanka, Saudi Arabia, Ethiopia, Kenya, Zambia, South Africa and Ghana. Using type-specific RFLPs, most clones except the four clones from Ghana were classified as either type A or B. We constructed a molecular phylogenetic tree for the Ghanaian clones and several representative type A and B clones. According to the phylogenetic tree, the Ghanaian clones constituted a major new group, tentatively named type C. From the findings presented here and elsewhere, the following conclusions were drawn: (i) type A is prevalent only in Europe; (ii) type B is found mainly in Asia and Africa; and (iii) type C is localized to part of Africa. Our findings should help to clarify how JCV evolved in humans.
  3. Okamura T, Tsujimura Y, Soma S, Takahashi I, Matsuo K, Yasutomi Y
    J Gen Virol, 2016 Dec;97(12):3413-3426.
    PMID: 27902330 DOI: 10.1099/jgv.0.000641
    Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.
  4. Shirako Y, Yamaguchi Y
    J Gen Virol, 2000 May;81(Pt 5):1353-60.
    PMID: 10769079
    Sagiyama virus (SAG) is a member of the genus Alphavirus in the family Togaviridae, isolated in Japan from mosquitoes in 1956. We determined the complete nucleotide sequence of the SAG genomic RNA from the original stock virus which formed a mixture of plaques with different sizes, and that from a full-length cDNA clone, pSAG2, infectious RNA transcripts from which formed uniform large plaques on BHK-21 cells. The SAG genome was 11698 nt in length exclusive of the 3' poly(A) tail. Between the complete nucleotide sequences of the full-length cDNA clone, pSAG2, and the consensus sequence from the original stock virus, there were nine amino acid differences; two each in nsP1, nsP2 and E1, and three in E2, some of which may be responsible for plaque phenotypic variants in the original virus stock. SAG was most closely related to Ross River virus among other alphaviruses fully sequenced, with amino acid sequence identities of 86% in the nonstructural proteins and of 83% in the structural proteins. The 3' terminal 280 nt region of SAG was 82% identical to that of Barmah Forest virus, which was otherwise not closely related to SAG. Comparison of the nucleotide sequence of SAG with partial nucleotide sequences of Getah virus (GET), which was originally isolated in Malaysia in 1955 and is closely related to SAG in serology and in biology, showed near identity between the two viruses, suggesting that SAG is a strain of GET.
  5. Nor Rashid N, Yusof R, Watson RJ
    J Gen Virol, 2011 Nov;92(Pt 11):2620-2627.
    PMID: 21813705 DOI: 10.1099/vir.0.035352-0
    Human papillomaviruses (HPVs) with tropism for mucosal epithelia are the major aetiological factors in cervical cancer. Most cancers are associated with so-called high-risk HPV types, in particular HPV16, and constitutive expression of the HPV16 E6 and E7 oncoproteins is critical for malignant transformation in infected keratinocytes. E6 and E7 bind to and inactivate the cellular tumour suppressors p53 and Rb, respectively, thus delaying differentiation and inducing proliferation in suprabasal keratinocytes to enable HPV replication. One member of the Rb family, p130, appears to be a particularly important target for E7 in promoting S-phase entry. Recent evidence indicates that p130 regulates cell-cycle progression as part of a large protein complex termed DREAM. The composition of DREAM is cell cycle-regulated, associating with E2F4 and p130 in G0/G1 and with the B-myb transcription factor in S/G2. In this study, we addressed whether p130-DREAM is disrupted in HPV16-transformed cervical cancer cells and whether this is a critical function for E6/E7. We found that p130-DREAM was greatly diminished in HPV16-transformed cervical carcinoma cells (CaSki and SiHa) compared with control cell lines; however, when E6/E7 expression was targeted by specific small hairpin RNAs, p130-DREAM was reformed and the cell cycle was arrested. We further demonstrated that the profound G1 arrest in E7-depleted CaSki cells was dependent on p130-DREAM reformation by also targeting the expression of the DREAM component Lin-54 and p130. The results show that continued HPV16 E6/E7 expression is necessary in cervical cancer cells to prevent cell-cycle arrest by a repressive p130-DREAM complex.
  6. Voon K, Chua KB, Yu M, Crameri G, Barr JA, Malik Y, et al.
    J Gen Virol, 2011 Dec;92(Pt 12):2930-2936.
    PMID: 21849518 DOI: 10.1099/vir.0.033498-0
    We previously described three new Malaysian orthoreoviruses designated Pulau virus, Melaka virus and Kampar virus. Melaka and Kampar viruses were shown to cause respiratory disease in humans. These viruses, together with Nelson Bay virus, isolated from Australian bats, are tentatively classified as different strains within the species Pteropine orthoreovirus (PRV), formerly known as Nelson Bay orthoreovirus, based on the small (S) genome segments. Here we report the sequences of the large (L) and medium (M) segments, thus completing the whole-genome characterization of the four PRVs. All L and M segments were highly conserved in size and sequence. Conserved functional motifs previously identified in other orthoreovirus gene products were also found in the deduced proteins encoded by the cognate segments of these viruses. Detailed sequence analysis identified two genetic lineages divided into the Australian and Malaysian PRVs, and potential genetic reassortment among the M and S segments of the three Malaysian viruses.
  7. Chan YP, Koh CL, Lam SK, Wang LF
    J Gen Virol, 2004 Jun;85(Pt 6):1675-1684.
    PMID: 15166452 DOI: 10.1099/vir.0.19752-0
    Hendra virus (HeV) and Nipah virus (NiV) are members of a new genus, Henipavirus, in the family paramyxoviridae. Each virus encodes a phosphoprotein (P) that is significantly larger than its counterparts in other known paramyxoviruses. The interaction of this unusually large P with its nucleocapsid protein (N) was investigated in this study by using recombinant full-length and truncated proteins expressed in bacteria and a modified protein-blotting protein-overlay assay. Results from our group demonstrated that the N and P of both viruses were able to form not only homologous, but also heterologous, N-P complexes, i.e. HeV N was able to interact with NiV P and vice versa. Deletion analysis of the N and P revealed that there were at least two independent N-binding sites on P and they resided at the N and C termini, respectively. Similarly, more than one P-binding site was present on N and one of these was mapped to a 29 amino acid (aa) C-terminal region, which on its own was sufficient to interact with the extreme C-terminal 165 aa region of P.
  8. Lanciotti RS, Lewis JG, Gubler DJ, Trent DW
    J Gen Virol, 1994 Jan;75 ( Pt 1):65-75.
    PMID: 8113741
    The nucleic acid sequences of the pre-membrane/membrane and envelope protein genes of 23 geographically and temporally distinct dengue (DEN)-3 viruses were determined. This was accomplished by reverse transcriptase-PCR amplification of the structural genes followed by automated DNA sequence analysis. Comparison of nucleic acid sequences revealed that similarity among the viruses was greater than 90%. The similarity among deduced amino acids was between 95% and 100%, and in many cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis allowed the generation of phylogenetic trees, demonstrating that geographically independent evolution of DEN-3 viruses had occurred. The DEN-3 viruses were separated into four genetically distinct subtypes. Subtype I consists of viruses from Indonesia, Malaysia, the Philippines and the South Pacific islands; subtype II consists of viruses from Thailand; subtype III consists of viruses from Sri Lanka, India, Africa and Samoa; subtype IV consists of viruses from Puerto Rico and the 1965 Tahiti virus. Phylogenetic analysis has also contributed to our understanding of the molecular epidemiology and worldwide distribution of DEN-3 viruses.
  9. Goh ZH, Mohd NAS, Tan SG, Bhassu S, Tan WS
    J Gen Virol, 2014 Sep;95(Pt 9):1919-1928.
    PMID: 24878641 DOI: 10.1099/vir.0.064014-0
    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.
  10. Ong ST, Yusoff K, Kho CL, Abdullah JO, Tan WS
    J Gen Virol, 2009 Feb;90(Pt 2):392-397.
    PMID: 19141448 DOI: 10.1099/vir.0.005710-0
    The nucleocapsid protein of Nipah virus produced in Escherichia coli assembled into herringbone-like particles. The amino- and carboxy-termini of the N protein were shortened progressively to define the minimum contiguous sequence involved in capsid assembly. The first 29 aa residues of the N protein are dispensable for capsid formation. The 128 carboxy-terminal residues do not play a role in the assembly of the herringbone-like particles. A region with amino acid residues 30-32 plays a crucial role in the formation of the capsid particle. Deletion of any of the four conserved hydrophobic regions in the N protein impaired capsid formation. Replacement of the central conserved regions with the respective sequences from the Newcastle disease virus restored capsid formation.
  11. Thong QX, Wong CL, Ooi MK, Kueh CL, Ho KL, Alitheen NB, et al.
    J Gen Virol, 2018 09;99(9):1227-1238.
    PMID: 30041713 DOI: 10.1099/jgv.0.001116
    Macrobrachium rosenbergii nodavirus (MrNv) causes white tail disease (WTD) in giant freshwater prawns, which leads to devastating economic losses in the aquaculture industry. Despite extensive research on MrNv, there is still no antiviral agent to treat WTD. Thus, the main aim of this study was to identify potential anti-MrNv molecules. A 12-mer phage-displayed peptide library was biopanned against the MrNv virus-like particle (VLP). After four rounds of biopanning, two dominant phages harbouring the amino acid sequences HTKQIPRHIYSA and VSRHQSWHPHDL were selected. An equilibrium binding assay in solution was performed to determine the relative dissociation constant (KDrel) of the interaction between the MrNv VLP and the selected fusion phages. Phage-HTKQIPRHIYSA has a KDrel value of 92.4±22.8 nM, and phage-VSRHQSWHPHDL has a KDrel value of 12.7±3.8 nM. An in-cell elisa was used to determine the inhibitory effect of the synthetic peptides towards the entry of MrNv VLP into Spodoptera frugiperda (Sf9) cells. Peptides HTKQIPRHIYSA and VSRHQSWHPHDL inhibited the entry of the MrNv VLP into Sf9 cells with IC50 values of 30.4±3.6 and 26.5±8.8 µM, respectively. Combination of both peptides showed a significantly higher inhibitory effect with an IC50 of 4.9±0.4 µM. An MTT assay revealed that the viability of MrNv-infected cells increased to about 97 % in the presence of both peptides. A real-time RT-PCR assay showed that simultaneous application of both peptides significantly reduced the number of MrNv per infected cell, from 97±9 to 11±4. These peptides are lead compounds which can be further developed into potent anti-MrNv agents.
  12. Abd-Aziz N, Stanbridge EJ, Shafee N
    J Gen Virol, 2016 Dec;97(12):3174-3182.
    PMID: 27902314 DOI: 10.1099/jgv.0.000623
    Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
  13. Osman O, Fong MY, Sekaran SD
    J Gen Virol, 2009 Mar;90(Pt 3):678-686.
    PMID: 19218214 DOI: 10.1099/vir.0.005306-0
    The full-length genomes of two DENV-1 viruses isolated during the 2005-2006 dengue incidents in Brunei were sequenced. Twenty five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the genome. The amplified PCR products were sent to a commercial laboratory for sequencing and the nucleotides and the deduced amino acids were determined. Sequence analysis of the envelope gene at the nucleotide and amino acid levels between the two isolates showed 92 and 96 % identity, respectively. Comparison of the envelope gene sequences with 68 other DENV-1 viruses of known genotypes placed the two isolates into two different genotypic groups. Isolate DS06/210505 belongs to genotype V together with some of the recent isolates from India (2003) and older isolates from Singapore (1990) and Burma (1976), while isolate DS212/110306 was clustered in genotype IV with the prototype Nauru strain (1974) and with some of the recent isolates from Indonesia (2004) and the Philippines (2002, 2001). In the full-length genome analysis at the nucleotide level, isolate DS06/210505 showed 94 % identity to the French Guyana strain (1989) in genotype V while isolate DS212/110306 had 96 % identity to the Nauru Island strain (1974) in genotype IV. This work constitutes the first complete genetic characterization of not only Brunei DENV-1 virus isolates, but also the first strain from Borneo Island. This study was the first to report the isolation of dengue virus in the country.
  14. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
  15. Wei Chiam C, Fun Chan Y, Chai Ong K, Thong Wong K, Sam IC
    J Gen Virol, 2015 Nov;96(11):3243-3254.
    PMID: 26276497 DOI: 10.1099/jgv.0.000263
    Chikungunya virus (CHIKV), an alphavirus of the family Togaviridae, causes fever, polyarthritis and rash. There are three genotypes: West African, Asian and East/Central/South African (ECSA). The latter two genotypes have caused global outbreaks in recent years. Recent ECSA CHIKV outbreaks have been associated with severe neurological disease, but it is not known if different CHIKV genotypes are associated with different neurovirulence. In this study, the neurovirulence of Asian (MY/06/37348) and ECSA (MY/08/065) strains of CHIKV isolated in Malaysia were compared. Intracerebral inoculation of either virus into suckling mice was followed by virus titration, histopathology and gene expression analysis of the harvested brains. Both strains of CHIKV replicated similarly, yet mice infected with MY/06/37348 showed higher mortality. Histopathology findings showed that both CHIKV strains spread within the brain (where CHIKV antigen was localized to astrocytes and neurons) and beyond to skeletal muscle. In MY/06/37348-infected mice, apoptosis, which is associated with neurovirulence in alphaviruses, was observed earlier in brains. Comparison of gene expression showed that a pro-apoptotic gene (eIF2αK2) was upregulated at higher levels in MY/06/37348-infected mice, while genes involved in anti-apoptosis (BIRC3), antiviral responses and central nervous system protection (including CD40, IL-10RA, MyD88 and PYCARD) were upregulated more highly in MY/08/065-infected mice. In conclusion, the higher mortality observed following MY/06/37348 infection in mice is due not to higher viral replication in the brain, but to differentially expressed genes involved in host immune responses. These findings may help to identify therapeutic strategies and biomarkers for neurological CHIKV infections.
  16. Fu JYL, Chua CL, Vythilingam I, Sulaiman WYW, Wong HV, Chan YF, et al.
    J Gen Virol, 2019 11;100(11):1541-1553.
    PMID: 31613205 DOI: 10.1099/jgv.0.001338
    Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1 : 1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.
  17. Lau JZH, Chua CL, Chan YF, Nadarajan VS, Lee CLL, Sam IC
    J Gen Virol, 2023 Apr;104(4).
    PMID: 37043371 DOI: 10.1099/jgv.0.001842
    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus, which causes epidemics of fever, joint pain and rash. There are three genotypes: West African, East/Central/South/Africa (ECSA) and Asian, with the latter two predominant globally. Genotype-specific differences in clinical presentations, virulence and immunopathology have been described. Macrophages are key cells in immune responses against CHIKV. Circulating blood monocytes enter tissue to differentiate into monocyte-derived macrophages (MDMs) in response to CHIKV infection at key replication sites such as lymphoid organs and joints. This study analyses differences in replication and induced immune mediators following infection of MDMs with Asian and ECSA CHIKV genotypes. Primary human MDMs were derived from residual blood donations. Replication of Asian (MY/06/37348) or ECSA (MY/08/065) genotype strains of CHIKV in MDMs was measured by plaque assay. Nineteen immune mediators were measured in infected cell supernatants using multiplexed immunoassay or ELISA. MY/08/065 showed significantly higher viral replication at 24 h post-infection (h p.i.) but induced significantly lower expression of proinflammatory cytokines (CCL-2, CCL-3, CCL-4, RANTES and CXCL-10) and the anti-inflammatory IL-1Ra compared to MY/06/37348. No differences were seen at later time points up to 72 h p.i. During early infection, MY/08/065 induced lower proinflammatory immune responses in MDMs. In vivo, this may lead to poorer initial control of viral infection, facilitating CHIKV replication and dissemination to other sites such as joints. This may explain the consistent past findings that the ECSA genotype is associated with greater viremia and severity of symptoms than the Asian genotype. Knowledge of CHIKV genotype-specific immunopathogenic mechanisms in human MDMs is important in understanding of clinical epidemiology, biomarkers and therapeutics in areas with co-circulation of different genotypes.
  18. Escaffre O, Borisevich V, Vergara LA, Wen JW, Long D, Rockx B
    J Gen Virol, 2016 05;97(5):1077-1086.
    PMID: 26932515 DOI: 10.1099/jgv.0.000441
    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.
  19. Chen WR, Tesh RB, Rico-Hesse R
    J Gen Virol, 1990 Dec;71 ( Pt 12):2915-22.
    PMID: 2273391
    Forty-six strains of Japanese encephalitis (JE) virus from a variety of geographic areas in Asia were examined by primer-extension sequencing of the RNA template. A 240 nucleotide sequence from the pre-M gene region was selected for study because it provided sufficient information for determining genetic relationships among the virus isolates. Using 12% divergence as a cutoff point for virus relationships, the 46 isolates fell into three distinct genotypic groups. One genotypic group consisted of JE virus isolates from northern Thailand and Cambodia. A second group was composed of isolates from southern Thailand, Malaysia, Sarawak and Indonesia. The remainder of the isolates, from Japan, China, Taiwan, the Philippines, Sri Lanka, India and Nepal, made up a third group. The implications of these findings in relation to the epidemiology of JE are discussed. Results of this study demonstrate that the comparison of short nucleotide sequences can provide insight into JE virus evolution, transmission and, possibly, pathogenesis.
  20. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links