Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Zhang R, Suwanarusk R, Malleret B, Cooke BM, Nosten F, Lau YL, et al.
    J Infect Dis, 2016 Jan 1;213(1):100-4.
    PMID: 26136472 DOI: 10.1093/infdis/jiv358
    Recent clinical trials revealed a surprisingly rapid clearance of red blood cells (RBCs) infected with malaria parasites by the spiroindolone KAE609. Here, we show that ring-stage parasite-infected RBCs exposed to KAE609 become spherical and rigid, probably through osmotic dysregulation consequent to the disruption of the parasite's sodium efflux pump (adenosine triphosphate 4). We also show that this peculiar drug effect is likely to cause accelerated splenic clearance of the rheologically impaired Plasmodium vivax- and Plasmodium falciparum-infected RBCs.
  2. Prasad AN, Agans KN, Sivasubramani SK, Geisbert JB, Borisevich V, Mire CE, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S431-S435.
    PMID: 31665351 DOI: 10.1093/infdis/jiz469
    The high case-fatality rates and potential for use as a biological weapon make Nipah virus (NiV) a significant public health concern. Previous studies assessing the pathogenic potential of NiV delivered by the aerosol route in African green monkeys (AGMs) used the Malaysia strain (NiVM), which has caused lower instances of respiratory illness and person-to-person transmission during human outbreaks than the Bangladesh strain (NiVB). Accordingly, we developed a small particle aerosol model of NiVB infection in AGMs. Consistent with other mucosal AGM models of NiVB infection, we achieved uniform lethality and disease pathogenesis reflective of that observed in humans.
  3. Mounts AW, Kaur H, Parashar UD, Ksiazek TG, Cannon D, Arokiasamy JT, et al.
    J Infect Dis, 2001 Mar 1;183(5):810-3.
    PMID: 11181159 DOI: 10.1086/318822
    During 1998-1999, an outbreak of Nipah virus encephalitis occurred in Malaysia. To assess the possibility of nosocomial transmission, 338 health care workers (HCWs) exposed and 288 HCWs unexposed to outbreak-related patients were surveyed, and their serum samples were tested for anti-Nipah virus antibody. Needlestick injuries were reported by 12 (3%) HCWs, mucosal surface exposure to body fluids by 39 (11%), and skin exposure to body fluids by 89 (25%). No encephalitis occurred in either group. Three exposed and no unexposed HCWs tested positive by EIA for IgG antibodies. It is likely that these 3 were false positives; no IgM response occurred, and the serum samples were negative for anti-Nipah virus neutralizing antibodies. The risk of nosocomial transmission of Nipah virus appears to be low; however, given the high case-fatality rate and the presence of virus in respiratory secretions and urine of some patients, standard and droplet infection-control practices should be maintained with these patients.
  4. Paton NI, Gurumurthy M, Lu Q, Leek F, Kwan P, Koh HWL, et al.
    J Infect Dis, 2024 Mar 25.
    PMID: 38527849 DOI: 10.1093/infdis/jiae104
    BACKGROUND: Interleukin-4 (IL-4), increased in tuberculosis infection, may impair bacterial killing. Blocking IL-4 confers benefit in animal models. We evaluated safety and efficacy of pascolizumab (humanised anti-IL-4 monoclonal antibody) as adjunctive tuberculosis treatment.

    METHODS: Participants with rifampicin-susceptible pulmonary tuberculosis received a single intravenous infusion of pascolizumab or placebo; and standard 6-month tuberculosis treatment. Pascolizumab dose increased in successive cohorts: [1] non-randomised 0.05 mg/kg (n = 4); [2] non-randomised 0.5 mg/kg (n = 4); [3] randomised 2.5 mg/kg (n = 9) or placebo (n = 3); [4] randomised 10 mg/kg (n = 9) or placebo (n = 3). Co-primary safety outcome was study-drug-related grade 4 or serious adverse event (G4/SAE); in all cohorts (1-4). Co-primary efficacy outcome was week-8 sputum culture time-to-positivity (TTP); in randomised cohorts (3-4) combined.

    RESULTS: Pascolizumab levels exceeded IL-4 50% neutralising dose for 8 weeks in 78-100% of participants in cohorts 3-4. There were no study-drug-related G4/SAEs. Median week-8 TTP was 42 days in pascolizumab and placebo groups (p = 0.185). Rate of TTP increase was greater with pascolizumab (difference from placebo 0.011 [95% Bayesian credible interval 0.006 to 0.015] log10TTP/day.

    CONCLUSIONS: There was no evidence to suggest blocking IL-4 was unsafe. Preliminary efficacy findings are consistent with animal models. This supports further investigation of adjunctive anti-IL-4 interventions for tuberculosis in larger phase 2 trials.

  5. Barber BE, Grigg MJ, Piera K, Amante FH, William T, Boyle MJ, et al.
    J Infect Dis, 2019 09 26;220(9):1435-1443.
    PMID: 31250022 DOI: 10.1093/infdis/jiz334
    BACKGROUND: Anemia is a major complication of vivax malaria. Antiphosphatidylserine (PS) antibodies generated during falciparum malaria mediate phagocytosis of uninfected red blood cells that expose PS and have been linked to late malarial anemia. However, their role in anemia from non-falciparum Plasmodium species is not known, nor their role in early anemia from falciparum malaria.

    METHODS: We measured PS immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in Malaysian patients with vivax, falciparum, knowlesi, and malariae malaria, and in healthy controls, and correlated antibody titres with hemoglobin. PS antibodies were also measured in volunteers experimentally infected with Plasmodium vivax and Plasmodium falciparum.

    RESULTS: PS IgM and IgG antibodies were elevated in patients with vivax, falciparum, knowlesi, and malariae malaria (P < .0001 for all comparisons with controls) and were highest in vivax malaria. In vivax and falciparum malaria, PS IgM and IgG on admission correlated inversely with admission and nadir hemoglobin, controlling for parasitemia and fever duration. PS IgM and IgG were also increased in volunteers infected with blood-stage P. vivax and P. falciparum, and were higher in P. vivax infection.

    CONCLUSIONS: PS antibodies are higher in vivax than falciparum malaria, correlate inversely with hemoglobin, and may contribute to the early loss of uninfected red blood cells found in malarial anemia from both species.

  6. Kua KP, Chongmelaxme B, Lee SWH
    J Infect Dis, 2023 Feb 14;227(4):471-482.
    PMID: 35512129 DOI: 10.1093/infdis/jiac179
    BACKGROUND: Tuberculosis is one of the leading causes of mortality worldwide from an infectious disease. This review aimed to investigate the association between prior cytomegalovirus infection and tuberculosis disease.

    METHODS: Six bibliographic databases were searched from their respective inception to 31 December 2021. Data were pooled using random-effects meta-analysis.

    RESULTS: Of 5476 identified articles, 15 satisfied the inclusion criteria with a total sample size of 38 618 patients. Pooled findings showed that individuals with cytomegalovirus infection had a higher risk of tuberculosis disease compared to those not infected with cytomegalovirus (odds ratio [OR], 3.20; 95% confidence interval [CI], 2.18-4.70). Age was the only covariate that exerted a significant effect on the result of the association. Meta-analysis of risk estimates reported in individual studies showed a marked and significant correlation of cytomegalovirus infection with active tuberculosis (adjusted hazard ratio, 2.92; 95% CI, 1.34-4.51; adjusted OR, 1.14; 95% CI, .71-1.57). A clear dose-response relation was inferred between the levels of cytomegalovirus antibodies and the risks of tuberculosis events (OR for high levels of cytomegalovirus antibodies, 4.07; OR for medium levels of cytomegalovirus antibodies, 3.58).

    CONCLUSIONS: The results suggest an elevated risk of tuberculosis disease among individuals with a prior cytomegalovirus infection.

  7. Fornace KM, Nuin NA, Betson M, Grigg MJ, William T, Anstey NM, et al.
    J Infect Dis, 2016 Mar 01;213(5):784-7.
    PMID: 26433222 DOI: 10.1093/infdis/jiv475
    Although asymptomatic carriage of human malaria species has been widely reported, the extent of asymptomatic, submicroscopic Plasmodium knowlesi parasitemia is unknown. In this study, samples were obtained from individuals residing in households or villages of symptomatic malaria cases with the aim of detecting submicroscopic P. knowlesi in this population. Four published molecular assays were used to confirm the presence of P. knowlesi. Latent class analysis revealed that the estimated proportion of asymptomatic individuals was 6.9% (95% confidence interval, 5.6%-8.4%). This study confirms the presence of a substantial number of asymptomatic monoinfections across all age groups; further work is needed to estimate prevalence in the wider community.
  8. Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, et al.
    J Infect Dis, 2000 May;181(5):1755-9.
    PMID: 10823779
    An outbreak of encephalitis affecting 265 patients (105 fatally) occurred during 1998-1999 in Malaysia and was linked to a new paramyxovirus, Nipah, that infected pigs, humans, dogs, and cats. Most patients were pig farmers. Clinically undetected Nipah infection was noted in 10 (6%) of 166 community-farm controls (persons from farms without reported encephalitis patients) and 20 (11%) of 178 case-farm controls (persons from farms with encephalitis patients). Case patients (persons with Nipah infection) were more likely than community-farm controls to report increased numbers of sick/dying pigs on the farm (59% vs. 24%, P=.001) and were more likely than case-farm controls to perform activities requiring direct contact with pigs (86% vs. 50%, P=.005). Only 8% of case patients reported no contact with pigs. The outbreak stopped after pigs in the affected areas were slaughtered and buried. Direct, close contact with pigs was the primary source of human Nipah infection, but other sources, such as infected dogs and cats, cannot be excluded.
  9. Skowronski DM, De Serres G, Dickinson J, Petric M, Mak A, Fonseca K, et al.
    J Infect Dis, 2009 Jan 15;199(2):168-79.
    PMID: 19086914 DOI: 10.1086/595862
    Trivalent inactivated influenza vaccine (TIV) is reformulated annually to contain representative strains of 2 influenza A subtypes (H1N1 and H3N2) and 1 B lineage (Yamagata or Victoria). We describe a sentinel surveillance approach to link influenza variant detection with component-specific vaccine effectiveness (VE) estimation.
  10. Lubis IND, Wijaya H, Lubis M, Lubis CP, Divis PCS, Beshir KB, et al.
    J Infect Dis, 2017 Apr 01;215(7):1148-1155.
    PMID: 28201638 DOI: 10.1093/infdis/jix091
    Background: As Indonesia works toward the goal of malaria elimination, information is lacking on malaria epidemiology from some western provinces. As a basis for studies of antimalarial efficacy, we set out to survey parasite carriage in 3 communities in North Sumatera Province.

    Methods: A combination of active and passive detection of infection was carried out among communities in Batubara, Langkat, and South Nias regencies. Finger-prick blood samples from consenting individuals of all ages provided blood films for microscopic examination and blood spots on filter paper. Plasmodium species were identified using nested polymerase chain reaction (PCR) of ribosomal RNA genes and a novel assay that amplifies a conserved sequence specific for the sicavar gene family of Plasmodium knowlesi.

    Results: Of 3731 participants, 614 (16.5%) were positive for malaria parasites by microscopy. PCR detected parasite DNA in samples from 1169 individuals (31.3%). In total, 377 participants (11.8%) harbored P. knowlesi. Also present were Plasmodium vivax (14.3%), Plasmodium falciparum (10.5%) and Plasmodium malariae (3.4%).

    Conclusions: Amplification of sicavar is a specific and sensitive test for the presence of P. knowlesi DNA in humans. Subpatent and asymptomatic multispecies parasitemia is relatively common in North Sumatera, so PCR-based surveillance is required to support control and elimination activities.

  11. Elvert M, Sauerhering L, Maisner A
    J Infect Dis, 2020 05 11;221(Suppl 4):S395-S400.
    PMID: 31665348 DOI: 10.1093/infdis/jiz455
    During the Nipah virus (NiV) outbreak in Malaysia, pigs and humans were infected. While pigs generally developed severe respiratory disease due to effective virus replication and associated inflammation processes in porcine airways, respiratory symptoms in humans were rare and less severe. To elucidate the reasons for the species-specific differences in NiV airway infections, we compared the cytokine responses as a first reaction to NiV in primary porcine and human bronchial epithelial cells (PBEpC and HBEpC, respectively). In both cell types, NiV infection resulted in the expression of type III interferons (IFN-λ). Upon infection with similar virus doses, viral RNA load and IFN expression were substantially higher in HBEpC. Even if PBEpC expressed the same viral RNA amounts as NiV-infected HBEpC, the porcine cells showed reduced IFN- and IFN-dependent antiviral gene expression. Despite this inherently limited IFN response, the expression of proinflammatory cytokines (IL-6, IL-8) in NiV-infected PBEpC was not decreased. The downregulation of antiviral activity in the presence of a functional proinflammatory cytokine response might be one of the species-specific factors contributing to efficient virus replication and acute inflammation in the lungs of pigs infected with the Malaysian NiV strain.
  12. Putaporntip C, Hongsrimuang T, Seethamchai S, Kobasa T, Limkittikul K, Cui L, et al.
    J Infect Dis, 2009 Apr 15;199(8):1143-50.
    PMID: 19284284 DOI: 10.1086/597414
    BACKGROUND: A case of human infection with Plasmodium knowlesi has been recently discovered in Thailand. To investigate the prevalence of this malaria species, a molecular-based survey was performed.

    METHODS: Blood samples from 1874 patients were tested for Plasmodium species by microscopy and nested polymerase chain reaction. P. knowlesi was characterized by sequencing the merozoite surface protein 1 gene (msp-1).

    RESULTS: Of all Plasmodium species identified, P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi contributed 43.52%, 68.08%, 1.37%, 1.03%, and 0.57%, respectively. Mixed-species infections were more common in northwestern and southwestern regions bordering Myanmar (23%-24%) than in eastern and southern areas (3%-5%). In northwestern and southwestern regions, mixed-species infections had a significantly higher prevalence in dry than in rainy seasons (P < .001). P. knowlesi was found in 10 patients, mostly from southern and southwestern areas-9 were coinfected with either P. falciparum or P. vivax. Most of the P. knowlesi Thai isolates were more closely related to isolates from macaques than to isolates from Sarawak patients. The msp-1 sequences of isolates from the same area of endemicity differed and possessed novel sequences, indicating genetic polymorphism in P. knowlesi infecting humans.

    CONCLUSIONS: This survey highlights the widespread distribution of P. knowlesi in Thailand, albeit at low prevalence and mostly occurring as cryptic infections.

  13. Barber BE, Grigg MJ, William T, Piera KA, Boyle MJ, Yeo TW, et al.
    J Infect Dis, 2017 06 15;215(12):1908-1917.
    PMID: 28863470 DOI: 10.1093/infdis/jix193
    Background: In populations pauci-immune to malaria, risk of severe malaria increases with age. This is particularly apparent in Plasmodium knowlesi malaria. However, pathophysiological mechanisms underlying knowlesi malaria, and of the age-related increase in risk of severe malaria in general, are poorly understood.

    Methods: In Malaysian patients aged ≥12 years with severe (n = 47) and nonsevere (n = 99) knowlesi malaria, severe (n = 21) and nonsevere (n = 109) falciparum malaria, and healthy controls (n = 50), we measured parasite biomass, systemic inflammation (interleukin 6 [IL-6]), endothelial activation (angiopoietin-2), and microvascular function, and evaluated the effects of age.

    Results: Plasmodium knowlesi parasitemia correlated with age (Spearman's correlation coefficient [rs] = 0.36; P < .0001). In knowlesi malaria, IL-6, angiopoietin-2, and microvascular dysfunction were increased in severe compared to nonsevere disease, and all correlated with age, independent of parasitemia. In falciparum malaria, angiopoietin-2 increased with age, independent of parasite biomass (histidine-rich protein 2 [HRP2]). Independent risk factors for severe malaria included parasitemia and angiopoietin-2 in knowlesi malaria, and HRP2, angiopoietin-2, and microvascular dysfunction in falciparum malaria.

    Conclusions: Parasite biomass, endothelial activation, and microvascular dysfunction are associated with severe disease in knowlesi malaria and likely contribute to pathogenesis. The association of each of these processes with aging may account for the greater severity of malaria observed in older adults in low-endemic regions.

  14. Hsu VP, Abdul Rahman HB, Wong SL, Ibrahim LH, Yusoff AF, Chan LG, et al.
    J Infect Dis, 2005 Sep 1;192 Suppl 1:S80-6.
    PMID: 16088810
    BACKGROUND: Accurate national estimates of the disease burden associated with rotavirus diarrhea are essential when considering implementation of a rotavirus vaccination program. We sought to estimate rotavirus disease-associated morbidity and mortality in Malaysia, using available sources of information.
    METHODS: We analyzed national data from the Ministry of Health (Kuala Lumpur, Malaysia) to derive rates of hospitalization, clinic visits, and deaths related to acute gastroenteritis (AG) among children <5 years of age. The number of events attributable to rotavirus infection was estimated by multiplying age-stratified rates of detection of rotavirus from 2 hospital surveillance sites by national data.
    RESULTS: In 1999 and 2000, an average of 13,936 children (1 in 187 children) were hospitalized annually for AG. Surveillance of visits to outpatient clinics for AG identified an average of 60,342 such visits/year between 1998 and 2000. The AG-associated mortality rate was 2.5 deaths/100,000 children. On the basis of the finding that 50% of children were hospitalized for rotavirus diarrhea, we estimated that 1 in 61 children will be hospitalized for rotavirus disease and that 1 in 37 children will seek treatment as an outpatient.
    CONCLUSIONS: Among Malaysian children, there is a significant burden associated with AG- and rotavirus disease-related hospitalizations and outpatient visits, and this burden potentially could be prevented by the use of rotavirus vaccines.
    Data source: (1) hospital discharges, (2) clinic visits for AG, and (3) registration of deaths, together with (4) new data from hospital-based rotavirus surveillance studies
  15. Raj SM, Choo KE, Noorizan AM, Lee YY, Graham DY
    J Infect Dis, 2009 Mar 15;199(6):914-5.
    PMID: 19239342 DOI: 10.1086/597066
  16. Escaffre O, Hill T, Ikegami T, Juelich TL, Smith JK, Zhang L, et al.
    J Infect Dis, 2018 10 05;218(10):1602-1610.
    PMID: 29912426 DOI: 10.1093/infdis/jiy357
    Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited.

    Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP).

    Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection.

    Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.

  17. Anthony TG, Conway DJ, Cox-Singh J, Matusop A, Ratnam S, Shamsul S, et al.
    J Infect Dis, 2005 May 1;191(9):1558-64.
    PMID: 15809916
    The population genetic structure of Plasmodium falciparum differs between endemic regions, but the characteristics of a population recently fragmented by effective malaria control have been unknown.
  18. Tay MZ, Tang W, Lee WC, Ong ASM, Novera W, Malleret B, et al.
    J Infect Dis, 2024 Mar 05.
    PMID: 38441336 DOI: 10.1093/infdis/jiae111
    We previously described a novel Plasmodium vivax invasion mechanism into human reticulocytes via the PvRBP2a-CD98 receptor-ligand pair. We assessed the PvRBP2a epitopes involved in CD98 binding and recognised by antibodies from infected patients using linear epitope mapping. We identified two epitope clusters mediating PvRBP2a-CD98 interaction. One cluster named cluster B (PvRBP2a431-448, TAALKEKGKLLANLYNKL) was the target of antibody responses in P. vivax-infected humans. Peptides from each cluster were able to prevent live parasite invasion of human reticulocytes. These results provide new insights for development of a malaria blood stage vaccine against P. vivax.
  19. Kang WT, Vellasamy KM, Chua EG, Vadivelu J
    J Infect Dis, 2015 Mar 1;211(5):827-34.
    PMID: 25165162 DOI: 10.1093/infdis/jiu492
    OBJECTIVES: The bsa locus of Burkholderia pseudomallei encodes several proteins that are components of the type III secretion system (TTSS). BipC was postulated as one of the TTSS-3 effector proteins, but its role in the pathogenesis of B. pseudomallei infection is not well understood. Thus, the aim of this study was to determine its role(s) in the virulence of B. pseudomallei pathogenesis.
    METHODS: A bipC TTSS-3-deficient strain of B. pseudomallei and complemented strains were generated to assess the role of BipC as a type III translocation apparatus. Human cell lines and a mouse model of melioidosis were used for in vitro and in vivo assays, respectively.
    RESULTS: A significant 2-fold reduction was demonstrated in the percentage of adherence, invasion, intracellular survival, and phagosomal escape of the bipC mutant. Interestingly, microscopic studies have shown that BipC was capable of delayed B. pseudomallei actin-based motility. The virulence of the mutant strain in a murine model of melioidosis demonstrated that the bipC mutant was less virulent, compared with the wild type.
    CONCLUSION: The results suggested that BipC possesses virulence determinants that play significant roles in host cell invasion and immune evasion.
    KEYWORDS: BipC; Burkholderia pseudomallei; host cell invasion; type III secretion system; type III translocation apparatus; virulence
  20. Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, et al.
    J Infect Dis, 2019 Oct 22;220(11):1738-1749.
    PMID: 30668735 DOI: 10.1093/infdis/jiz016
    The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links