Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Wong KT, Pathmanathan R
    J Parasitol, 1994 Apr;80(2):327-30.
    PMID: 8158479
    The ultrastructure of the human skeletal muscle sarcocyst found in Malaysia is reported. Sarcocyst-positive, formalin-fixed tongue tissues were postfixed in osmium tetroxide. The primary cyst wall consisted of a thin membrane supported by osmiophilic material that was interrupted regularly by vesicle-like invaginations. Although there were no cytophaneres, stubby protrusions of the primary wall were observed. These protrusions were accentuated by dense, curvilinear material externally. The primary wall was wavy over about half the cross section of the cyst. The granular ground substance underlying the primary wall occasionally contained hitherto undescribed coiled microtubular structures. Branching septa extended from the ground substance into the cyst, separating mature merozoites into compartments. A few peripheral metrocytes and many laminated myelin figure-like structures, probably degenerating merozoites, were found. Although the human muscular sarcocyst has the same basic ultrastructure as those found in other animals, the stubby protrusions and coiled microtubular structures in the ground substance have not been described previously in nonhuman animals.
  2. Deveaux TP, Schmidt GD, Krishnasamy M
    J Parasitol, 1988 Apr;74(2):322-5.
    PMID: 3128654
    Moniliformis tarsii n. sp. was found in Tarsius bancanus. It is unique in possessing 11-12 longitudinal rows of 6-7 hooks each. Hooks 2 and 3 are conspicuously enlarged, 41-55 microns long. Moniliformis echinosorexi n. sp. differs from all other species in having 12-15 rows of 11-13 hooks that are 34-36 microns long, and in having a proboscis receptacle 1.2-2.0 mm long. Several new host records for M. moniliformis are presented.
  3. Maupin RS, Diong CH, McQuistion TE
    J Parasitol, 1998 Dec;84(6):1210-2.
    PMID: 9920316
    During 3 collecting expeditions between October 1996 and December 1996, fecal samples were obtained from 43 adult Gonocephalus grandis from Tanah Rata and the Cameron Highlands in Peninsular Malaysia. Two species of coccidia (Isospora gonocephali n. sp. [9/43, 23%] and Eimeria cameronensis n. sp. [3/43, 7%]) were discovered. Sporulated oocysts of I. gonocephali are subspherical to ovoidal, 22.3 x 18.7 (19-25 x 17-23) microm with a bilayered wall composed of a thin inner wall and a striated outer wall with a pitted surface; oocyst residuum absent; 1 polar granule present; sporocysts are almond-shaped, 13.5 x 9.2 (12-15 x 8.5-10) microm, Stieda body broad, domelike, substieda body fanlike, sporocyst residuum consisting of coarse, nonuniform granules in an amorphous cluster; sporozoites sausage-shaped with 1 large terminal, refractile body and lay randomly in the sporocyst. Sporulated oocysts of E. cameronensis are bilayered, smooth-walled, ellipsoidal, 26.5 x 12.4 (25-28 x 12-13) microm; with 1, small, polar granule composed of 2-3 splinter-like structures fused together; oocyst residuum absent; sporocysts ovoidal, almost rectangular-shaped 8.8 x 6.6 (8-9 x 5-7) microm, with no Stieda or substieda bodies, containing scattered residuum and 2 sausage-shaped sporozoites with 1 terminal, ovoidal refractile body. No individual lizard was host to both coccidian species.
  4. Gibbons LM, Jacobs DE, Sani RA
    J Parasitol, 2001 Jun;87(3):660-5.
    PMID: 11426732
    Toxocara malaysiensis n. sp. from the small intestine of the domestic cat (Felis catus L.) in Malaysia is described and illustrated. This ascaridoid nematode was previously assumed to be Toxocara canis, which it superficially resembles, or designated Toxocara sp. cf. canis. The new species differs from T. canis in the shape of the cervical alae in cross section, spicule length, and the lip structure. It is also distinct from other species assigned to Toxocara.
  5. Hasegawa H, Miyata A, Yong HS
    J Parasitol, 1996 Jun;82(3):508-11.
    PMID: 8636863
    The synlophe of Batrachonema synaptospicula Yuen, 1965 collected from Rana limnocharis Boie, 1835 of peninsular Malaysia was found to be identical morphologically to that in the specimens from Rana narina Stejneger, 1901 of Okinawa, and R. limnocharis of Taiwan. In the midbody, 20-22 ridges are present, and the ridges increase gradually in size and are oriented from right to left in the dorsal and left ventral fields, whereas the right ventral ridges are small and almost perpendicular to the body wall. The orientation of ridges from right to left is considered to be a key characteristic of the genus Batrachonema. Because Amphibiophilus ranae Wang et al., 1978 and Amphibiophilus sp. from R. limnocharis of south China are regarded to be conspecific with B. synaptospicula, this nematode is surmised to be distributed widely in southeast and east Asia.
  6. Ang HH, Chan KL, Mak JW
    J Parasitol, 1996 Dec;82(6):1029-31.
    PMID: 8973418
    Six clones were derived from each Malaysian Plasmodium falciparum isolate and characterized for their susceptibilities against type II antifolate drugs, cycloguanil and pyrimethamine. Results showed that these isolates were of a heterogeneous population, with average IC50 values of Gombak C clones at 0.012-0.084 microM and 0.027-0.066 microM, ST 9 clones at 0.019-0.258 microM and 0.027-0.241 microM, ST 12 clones at 0.015-0.342 microM and 0.012-0.107 microM, ST 85 clones at 0.022-0.087 microM and 0.024-0.426 microM, and ST 148 clones at 0.027-0312 microM and 0.029-0.690 microM against cycloguanil and pyrimethamine, respectively. Generally, most of these clones displayed susceptibility patterns similar to their parent isolates except ST 9/A4, ST 9/A7, ST 9/B5, ST 9/D9, ST 9/D10, ST 148/A4, ST 148/A5, ST 148/A7, ST 148/F7, ST 148/F8 clones, which were sensitive at 0.027 microM, 0.019 microM, 0.022 microM, 0.063 microM, 0.037 microM, 0.031 microM, 0.042, microM, 0.042 microM, 0.062 microM, and 0.027 microM, whereas, ST 12/D7 clone was resistant at 0.342 microM, against cycloguanil respectively. However, ST 9/A4, ST 9/D8, ST 12/D5, ST 85/A5, ST 85/B3, ST 85/B4, ST 85/D3, ST 85/D7, ST 148/A6, and ST 148/A7 clones were resistant to pyrimethamine at 0.158 microM, 0.241 microM, 0.107 microM, 0.223 microM, 0.393 microM, 0.402 microM, 0.426 microM, 0.115 microM, 0.690 microM, and 0.520 microM, respectively.
  7. Greer GJ, Ow-Yang CK, Yong HS
    J Parasitol, 1988 Jun;74(3):471-80.
    PMID: 3379527
    Schistosoma malayensis n. sp., a member of the Schistosoma japonicum complex is described from Rattus muelleri in Peninsular Malaysia and 2 strains are characterized. The only morphological differences noted among adults from natural hosts were that S. malayensis are in general smaller than S. mekongi and S. japonicum. But these differences may be the result of host-induced variations and therefore are of little taxonomic value. To minimize the effects of host-induced variations, adult worms recovered from laboratory mice with similar worm burdens at 50-56 days postinfection were compared. These comparisons revealed only minor morphometric differences among these 3 species. Schistosoma malayensis eggs from naturally and experimentally infected hosts are most similar to those of S. mekongi, with eggs of both species being, in general, smaller than those of S. japonicum. The egg index for S. malayensis is usually higher than for S. japonicum and lower than for S. mekongi. Differences were noted in the developmental rates in mice for 2 isolates of S. malayensis, S. mekongi, and S. japonicum (Philippine strain), but relatively large differences observed between isolates of S. malayensis indicate that, in this case, the developmental rate is not a useful taxonomic character. Schistosoma malayensis is erected principally on the basis of differences, reported elsewhere, in the life histories and in the electrophoretic migration patterns of isoenzymes of adult worms as compared to S. mekongi and S. japonicum. These comparisons indicate that S. malayensis is more closely related to S. mekongi than to S. japonicum.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links