Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Fung WY, Liong MT, Yuen KH
    J Pharm Pharmacol, 2016 Feb;68(2):159-69.
    PMID: 26730452 DOI: 10.1111/jphp.12502
    OBJECTIVES: This study aimed to prepare Coenzyme Q10 (CoQ10) microparticles using electrospraying technology, and evaluate the in-vitro properties and in-vivo oral bioavailability.
    KEY FINDINGS: Electrospraying was successfully used to prepare CoQ10 to enhance its solubility and dissolution properties. In-vitro evaluation of the electrosprayed microparticles showed bioavailability-enhancing properties such as reduced crystallinity and particle size. The formulation was evaluated using dissolution study and in-vivo oral bioavailability using rat model. The dissolution study revealed enhanced dissolution properties of electrosprayed microparticles compared with physical mixture and raw material. The absorption profiles showed increasing mean plasma levels CoQ10 in the following order: raw material < physical mixture < electrosprayed microparticles.
    CONCLUSION: Based on the findings in this study, electrospraying is a highly prospective technology to produce functional nano- and micro-structures as delivery vehicles for drugs with poor oral bioavailability due to rate-limiting solubility.
  2. Wong TW
    J Pharm Pharmacol, 2011 Dec;63(12):1497-512.
    PMID: 22060280 DOI: 10.1111/j.2042-7158.2011.01347.x
    Use of alginate graft copolymers in oral drug delivery reduces dosage form manufacture complexity with reference to mixing or coating processes. It is deemed to give constant or approximately steady weight ratio of alginate to covalently attached co-excipient in copolymers, thereby leading to controllable matrix processing and drug release. This review describes various grafting approaches and their outcome on oral drug release behaviour of alginate graft copolymeric matrices. It examines drug release modulation mechanism of alginate graft copolymers against that of co-excipients in non-grafted formulations.
  3. Yap SP, Yuen KH, Wong JW
    J Pharm Pharmacol, 2001 Jan;53(1):67-71.
    PMID: 11206194
    We have investigated the pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under fed and fasted conditions in eight healthy volunteers. The volunteers were administered a single oral dose of mixed tocotrienols (300 mg) under fed or fasted conditions. The bioavailability of tocotrienols under the two conditions was compared using the parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax) and total area under the plasma concentration-time curve (AUC(o-infinity)). A statistically significant difference was observed between the fed and fasted logarithmic transformed values of Cmax (P < 0.01) and AUC(0-infinity) (P < 0.01) for all three tocotrienols. In addition, the 90% confidence intervals for the ratio of the logarithmic transformed AUC(0-infinity) values of alpha-, gamma- and delta-tocotrienols under the fed state over those of the fasted state were found to lie between 2.24-3.40, 2.05-4.09 and 1.59-3.81, respectively, while those of the Cmax were between 2.28-4.39, 2.31-5.87 and 1.52-4.05, respectively. However, no statistically significant difference was observed between the fed and fasted Tmax values of the three homologues. The mean apparent elimination half-life (t(1/2)) of alpha-, gamma- and delta-tocotrienols was estimated to be 4.4, 4.3 and 2.3 h, respectively, being between 4.5- to 8.7-fold shorter than that reported for alpha-tocopherol. No statistically significant difference was observed between the fed and fasted t(1/2) values. The mean apparent volume of distribution (Vd/f) values under the fed state were significantly smaller than those of the fasted state, which could be attributed to increased absorption of the tocotrienols in the fed state.
  4. Wong JW, Yuen KH, Nagappan S, Shahul WS, Ho SS, Gan EK, et al.
    J Pharm Pharmacol, 2003 Feb;55(2):193-8.
    PMID: 12631411
    We have evaluated the therapeutic equivalence of a beta-cyclodextrin-artemisinin complex at an artemisinin dose of 150 mg, with a commercial reference preparation, Artemisinin 250 at a recommended dose of 250 mg. One hundred uncomplicated falciparum malarial patients were randomly assigned to orally receive either beta-cyclodextrin-artemisinin complex (containing 150 mg artemisinin) twice daily for five days or the active comparator (containing 250 mg artemisinin) twice daily for five days. The patients were hospitalized for seven days and were required to attend follow up assessments on days 14, 21, 28 and 35. All patients in both treatment groups were cured of the infection and achieved therapeutic success. At day seven of treatment, all patient blood was clear of the parasites and the sublingual temperature of all patients was less than 37.5 degrees C. Moreover, the parasite clearance time in both treatment groups was similar, being approximately three days after initiation of treatment. Comparable plasma artemisinin concentrations were observed between patients in both treatment groups at 1.5 and 3.0 h, although slightly higher levels were obtained with patients in the beta-cyclodextrin-artemisinin complex-treated group. The beta-cyclodextrin-artemisinin complex at a dose of 150 mg artemisinin was therapeutically equivalent to 250 mg Artemisinin 250. Additionally, patients receiving beta-cyclodextrin-artemisinin complex showed less variability in their plasma artemisinin concentrations at 1.5 h post-dosing, which suggested a more consistent rate of drug absorption.
  5. Salleh WMNHW, Abed SA, Taher M, Kassim H, Tawang A
    J Pharm Pharmacol, 2021 Mar 01;73(1):1-21.
    PMID: 33791809 DOI: 10.1093/jpp/rgaa034
    OBJECTIVES: The genus Ferulago belonging to the family Apiaceae is a flora widely distributed in Central Asia and the Mediterranean and used in folk medicine. It is administered as a sedative, tonic, digestive, aphrodisiac, also as a treatment for intestinal worms and haemorrhoids. Herein, we reported a review on phytochemistry and its biological activities reported from 1990 up to early 2020. All the information and reported studies concerning Ferulago plants were summarized from the library and digital databases (e.g. Scopus, Medline, Scielo, ScienceDirect, SciFinder and Google Scholar).

    KEY FINDINGS: The phytochemical investigations of Ferulago species revealed the presence of coumarins as the main bioactive compounds, including daucane derivatives, sesquiterpenes aryl esters, phenol derivatives, flavonoids and essential oils. Moreover, the therapeutic potentials of the pure compounds isolated from the genus Ferulago possess promising properties namely anticholinesterase, antimicrobial, anticoagulant, antileishmanial, antioxidant, antibacterial and antiproliferative.

    SUMMARY: Today, significant advances in phytochemical and biological activity studies of different Ferulago species have been revealed. The traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.

  6. Wong TW, Sumiran N
    J Pharm Pharmacol, 2014 May;66(5):646-57.
    PMID: 24329400 DOI: 10.1111/jphp.12192
    Objective: Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties.

    Methods: The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated.

    Key findings: Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation.

    Conclusion: Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles.

    Keywords: Tween 80; alginate; insulin; nanoparticle; pectin.
  7. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
  8. Bagalkotkar G, Sagineedu SR, Saad MS, Stanslas J
    J Pharm Pharmacol, 2006 Dec;58(12):1559-70.
    PMID: 17331318
    This review discusses the medicinal plant Phyllanthus niruri Linn. (Euphorbiaceae), its wide variety of phytochemicals and their pharmacological properties. The active phytochemicals, flavonoids, alkaloids, terpenoids, lignans, polyphenols, tannins, coumarins and saponins, have been identified from various parts of P. niruri. Extracts of this herb have been proven to have therapeutic effects in many clinical studies. Some of the most intriguing therapeutic properties include anti-hepatotoxic, anti-lithic, anti-hypertensive, anti-HIV and anti-hepatitis B. Therefore, studies relating to chemical characteristics and structural properties of the bioactive phytochemicals found in P. niruri are very useful for further research on this plant as many of the phytochemicals have shown preclinical therapeutic efficacies for a wide range of human diseases, including HIV/AIDS and hepatitis B.
  9. Tan SY, Kan E, Lim WY, Chay G, Law JH, Soo GW, et al.
    J Pharm Pharmacol, 2011 Jul;63(7):918-25.
    PMID: 21635257 DOI: 10.1111/j.2042-7158.2011.01296.x
    The pharmacokinetic interaction between metronidazole, an antibiotic-antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
  10. Kirby BP, Pabari R, Chen CN, Al Baharna M, Walsh J, Ramtoola Z
    J Pharm Pharmacol, 2013 Oct;65(10):1473-81.
    PMID: 24028614 DOI: 10.1111/jphp.12125
    In this study, we examined the relative cellular uptake of nanoparticles (NPs) formulated using poly(lactic-co-glycolic acid) (PLGA) polymers with increasing degree of pegylation (PLGA-PEG) and their potential to deliver loperamide to the brain of a mouse.
  11. Septama AW, Jantan I, Panichayupakaranant P
    J Pharm Pharmacol, 2018 Sep;70(9):1242-1252.
    PMID: 29943393 DOI: 10.1111/jphp.12952
    OBJECTIVES: To investigate the effects of flavonoids isolated from Artocarpus heterophyllus. heartwood on chemotaxis, phagocytosis, reactive oxygen species (ROS) production and myeloperoxidase (MPO) activity of human phagocytes.

    METHODS: Chemotaxis was evaluated using a modified Boyden chamber and phagocytosis was determined by flowcytometer. Respiratory burst was investigated by luminol-based chemiluminescence assay while MPO activity was determined by colorimetric assay.

    KEY FINDINGS: Artocarpanone and artocarpin strongly inhibited all steps of phagocytosis. Artocarpanone and artocarpin showed strong chemotactic activity with IC50 values of 6.96 and 6.10 μm, respectively, which were lower than that of ibuprofen (7.37 μm). Artocarpanone was the most potent compound in inhibiting ROS production of polymorphonuclear leucocytes and monocytes with IC50 values comparable to those of aspirin. Artocarpin at 100 μg/ml inhibited phagocytosis of opsonized bacteria (28.3%). It also strongly inhibited MPO release with an IC50 value (23.3 μm) lower than that of indomethacin (69 μm). Structure-activity analysis indicated that the number of hydroxyl group, the presence of prenyl group and variation of C-2 and C-3 bonds might contribute towards their phagocytosis.

    CONCLUSIONS: Artocarpanone and artocarpin were able to suppress strongly the phagocytosis of human phagocytes at different steps and have potential to be developed into potent anti-inflammatory agents.

  12. Cherian S, Hacisayidli KM, Kurian R, Mathews A
    J Pharm Pharmacol, 2023 Mar 12;75(3):301-327.
    PMID: 36757388 DOI: 10.1093/jpp/rgac105
    OBJECTIVES: Increasing literature data have suggested that the genus Polygonum L. possesses pharmacologically important plant secondary metabolites. These bioactive compounds are implicated as effective agents in preclinical and clinical practice due to their pharmacological effects such as anti-inflammatory, anticancer, antidiabetic, antiaging, neuroprotective or immunomodulatory properties among many others. However, elaborate pharmacological and clinical data concerning the bioavailability, tissue distribution pattern, dosage and pharmacokinetic profiles of these compounds are still scanty.

    KEY FINDINGS: The major bioactive compounds implicated in the therapeutic effects of Polygonum genus include phenolic and flavonoid compounds, anthraquinones and stilbenes, such as quercetin, resveratrol, polydatin and others, and could serve as potential drug leads or as adjuvant agents. Data from in-silico network pharmacology and computational molecular docking studies are also highly helpful in identifying the possible drug target of pathogens or host cell machinery.

    SUMMARY: We provide an up-to-date overview of the data from pharmacodynamic, pharmacokinetic profiles and preclinical (in-vitro and in-vivo) investigations and the available clinical data on some of the therapeutically important compounds of genus Polygonum L. and their medical interventions, including combating the outbreak of the COVID-19 pandemic.

  13. Abeer MM, Mohd Amin MC, Martin C
    J Pharm Pharmacol, 2014 Aug;66(8):1047-61.
    PMID: 24628270 DOI: 10.1111/jphp.12234
    The field of pharmaceutical technology is expanding rapidly because of the increasing number of drug delivery options. Successful drug delivery is influenced by multiple factors, one of which is the appropriate identification of materials for research and engineering of new drug delivery systems. Bacterial cellulose (BC) is one such biopolymer that fulfils the criteria for consideration as a drug delivery material.
  14. KIANG AK, DOUGLAS B, MORSINGH F
    J Pharm Pharmacol, 1961 Feb;13:98-104.
    PMID: 13755798
  15. Abubakar IB, Loh HS
    J Pharm Pharmacol, 2016 Apr;68(4):423-32.
    PMID: 26887962 DOI: 10.1111/jphp.12523
    OBJECTIVES: Tabernaemontana is a genus from the plant family, Apocynaceae with vast medicinal application and widespread distribution in the tropics and subtropics of Africa, Americas and Asia. The objective of this study is to critically evaluate the ethnobotany, medicinal uses, pharmacology and phytochemistry of the species, Tabernaemontana corymbosa (Roxb. ex Wall.) and provide information on the potential future application of alkaloids isolated from different parts of the plant.

    KEY FINDINGS: T. corymbosa (Roxb. ex Wall.) parts are used as poultice, boiled juice, decoctions and infusions for treatment against ulceration, fracture, post-natal recovery, syphilis, fever, tumours and orchitis in Malaysia, China, Thailand and Bangladesh. Studies recorded alkaloids as the predominant phytochemicals in addition to phenols, saponins and sterols with vast bioactivities such as antimicrobial, analgesic, anthelmintic, vasorelaxation, antiviral and cytotoxicity.

    SUMMARY: An evaluation of scientific data and traditional medicine revealed the medicinal uses of different parts of T. corymbosa (Roxb. ex Wall.) across Asia. Future studies exploring the structure-bioactivity relationship of alkaloids such as jerantinine and vincamajicine among others could potentially improve the future application towards reversing anticancer drug resistance.

  16. Yap SP, Yuen KH, Lim AB
    J Pharm Pharmacol, 2003 Jan;55(1):53-8.
    PMID: 12625867
    A study was conducted to evaluate the bioavailability of alpha-, gamma- and delta-tocotrienols administered via oral, intravenous, intramuscular and intraperitoneal routes in rats. Three separate experiments, each conducted according to a two-way crossover design, were carried out to compare intravenous and oral, intramuscular and oral, and intraperitoneal and oral administration. Oral absorption of all three tocotrienols was found to be incomplete. Of the three tocotrienols, alpha-tocotrienol had the highest oral bioavailability, at about 27.7+/-9.2%, compared with gamma- and delta-tocotrienols, which had values of 9.1+/-2.4% and 8.5+/-3.5%, respectively. Such biodiscrimination was also observed in their total clearance rates (estimated from the intravenous data). alpha-Tocotrienol showed the lowest clearance rate at about 0.16 L kg(-1) h(-1), whereas that of delta- and gamma-tocotrienols was quite similar, with values of 0.24 and 0.23 L kg(-1) h(-1), respectively. Interestingly, all three tocotrienols were found to be negligibly absorbed when administered intraperitoneally and intramuscularly. Thus, these two routes of administration should be avoided when evaluating the biological activities of the tocotrienols in whole animal experiments.
  17. Lee EH, Lim SS, Yuen KH, Lee CY
    J Pharm Pharmacol, 2019 May;71(5):860-868.
    PMID: 30515807 DOI: 10.1111/jphp.13052
    OBJECTIVES: This study aims to investigate the blood-brain barrier (BBB) permeability of curcumin analogues with shortened linkers and their ability to protect against amyloid-beta toxicity in a whole organism model.

    METHOD: Four curcumin analogues were synthesized. These analogues and curcumin were evaluated for their BBB permeability in the parallel artificial membrane permeability assay. The transgenic Caenorhabditis elegansGMC101 that expresses human Aβ1-42 was treated with the compounds to evaluate their ability to delay Aβ-induced paralysis. Expression of skn-1mRNA was examined on nematodes treated with selected efficacious compounds. In vitro Aβ aggregation in the presence of the compounds was performed.

    KEY FINDINGS: The four analogues showed improved BBB permeability vs curcumin in the PAMPA with the hemi-analogue C4 having the highest permeability coefficient. At 100 μm, analogues C1 and C4 as well as curcumin significantly prolonged the survival of the nematodes protecting against Aβ toxicity. However, only curcumin and C4 showed protection at lower concentrations. skn-1mRNA was significantly elevated in nematodes treated with curcumin and C4 indicating SKN-1/Nrf activation as a possible mode of action.

    CONCLUSIONS: Analogue C4 provides a new lead for the development of a curcumin-based compound for protection against Aβ toxicity with an improved BBB permeability.

  18. Chung WJ, Chan KL, Lee CY
    J Pharm Pharmacol, 2021 Mar 04;73(2):161-168.
    PMID: 33793798 DOI: 10.1093/jpp/rgaa026
    OBJECTIVES: The quassinoids eurycomanone (EN) and 13α,21-dihydroeurycomanone (DHY) of Eurycoma longifolia Jack are reported to enhance spermatogenesis. This study aims to profile the pharmacokinetics of DHY, a minor and hitherto unstudied constituent, evaluate its spermatogenesis enhancement property and compare these attributes with that of the predominant EN.

    METHODS: Crude Eurycoma longifolia extract was chromatographed into a DHY-enriched extract (DHY-F) and an EN-enriched extract (EN-F). Male Sprague-Dawley rats were administered intravenously and orally with both extracts and their plasma levels of both quassinoids were determined. The extracts were then tested for their spermatogenesis augmentation ability in normal rats and an andrographolide-induced oligospermia model.

    KEY FINDINGS: Chromatographic enrichment resulted in a 28-fold increase of DHY in DHY-F and a 5-fold increase of EN in EN-F compared with non-chromatographed crude extracts. DHY showed better oral bioavailability (1.04 ± 0.58%) than EN (0.31 ± 0.19%). At 5 mg/kg, EN exhibited higher efficacy in spermatogenesis enhancement in normal rats and restoration of oligospermia to normal sperm profile versus DHY.

    CONCLUSIONS: Despite the better pharmacokinetic profile of DHY, EN remains the main chemical contributor to plant bioactivity. DHY-F and EN-F represent improvements in developing Eurycoma longifolia as a potential phytomedicine for male infertility particularly oligospermia.

  19. Ali SM, Siddiqui R, Khan NA
    J Pharm Pharmacol, 2018 Oct;70(10):1287-1300.
    PMID: 30003546 DOI: 10.1111/jphp.12976
    OBJECTIVES: Whether vertebrates/invertebrates living in polluted environments are an additional source of antimicrobials.

    KEY FINDINGS: Majority of antimicrobials have been discovered from prokaryotes and those which are of eukaryotic origin are derived mainly from fungal and plant sources. With this in mind, it is important to note that pests, such as cockroaches come across pathogenic bacteria routinely, yet thrive in polluted environments. Other animals, such as snakes thrive from feeding on germ-infested rodents. Logically, such species must have developed an approach to protect themselves from these pathogens, yet they have largely been ignored as a potential source of antimicrobials despite their remarkable capability to fight disease-causing organisms.

    SUMMARY: Animals living in polluted environments are an underutilized source for potential antimicrobials, hence it is believed that several novel bioactive molecule(s) will be identified from these sources to counter increasingly resistant bacterial infections. Further research will be necessary in the development of novel antimicrobial(s) from these unusual sources which will have huge clinical impact worldwide.

  20. Lee NY, Khoo WK, Adnan MA, Mahalingam TP, Fernandez AR, Jeevaratnam K
    J Pharm Pharmacol, 2016 Jun 10.
    PMID: 27283048 DOI: 10.1111/jphp.12565
    Phyllanthus niruri is a traditional shrub of the genus Phyllanthaceae with long-standing Ayurvedic, Chinese and Malay ethnomedical records. Preliminary studies from cell and animal model have provided valuable scientific evidence for its use.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links