Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Grigg MJ, William T, Menon J, Dhanaraj P, Barber BE, Wilkes CS, et al.
    Lancet Infect Dis, 2016 Feb;16(2):180-188.
    PMID: 26603174 DOI: 10.1016/S1473-3099(15)00415-6
    BACKGROUND: The zoonotic parasite Plasmodium knowlesi has become the most common cause of human malaria in Malaysia and is present throughout much of southeast Asia. No randomised controlled trials have been done to identify the optimum treatment for this emerging infection. We aimed to compare artesunate-mefloquine with chloroquine to define the optimum treatment for uncomplicated P knowlesi malaria in adults and children.

    METHODS: We did this open-label, randomised controlled trial at three district hospitals in Sabah, Malaysia. Patients aged 1 year or older with uncomplicated P knowlesi malaria were randomly assigned, via computer-generated block randomisation (block sizes of 20), to receive oral artesunate-mefloquine (target dose 12 mg/kg artesunate and 25 mg/kg mefloquine) or chloroquine (target dose 25 mg/kg). Research nursing staff were aware of group allocation, but allocation was concealed from the microscopists responsible for determination of the primary endpoint, and study participants were not aware of drug allocation. The primary endpoint was parasite clearance at 24 h. Analysis was by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT01708876.

    FINDINGS: Between Oct 16, 2012, and Dec 13, 2014, we randomly assigned 252 patients to receive either artesunate-mefloquine (n=127) or chloroquine (n=125); 226 (90%) patients comprised the modified intention-to-treat population. 24 h after treatment, we recorded parasite clearance in 97 (84% [95% CI 76-91]) of 115 patients in the artesunate-mefloquine group versus 61 (55% [45-64]) of 111 patients in the chloroquine group (difference in proportion 29% [95% CI 18·0-40·8]; p<0·0001). Parasite clearance was faster in patients given artesunate-mefloquine than in those given chloroquine (18·0 h [range 6·0-48·0] vs 24·0 h [6·0-60·0]; p<0·0001), with faster clearance of ring stages in the artesunate-mefloquine group (mean time to 50% clearance of baseline parasites 8·6 h [95% CI 7·9-9·4] vs 13·8 h [12·1-15·4]; p<0·0001). Risk of anaemia within 28 days was lower in patients in the artesunate-mefloquine group (71 [62%; 95% CI 52·2-70·6]) than in those in the chloroquine group (83 [75%; 65·6-82·5]; p=0·035). Gametocytaemia as detected by PCR for pks25 was present in 44 (86%) of 51 patients in the artesunate-mefloquine group and 41 (84%) of 49 patients in the chloroquine group at baseline, and in three (6%) of 49 patients and two (4%) of 48 patients, respectively, at day 7. Fever clearance was faster in the artesunate-mefloquine group (mean 11·5 h [95% CI 8·3-14·6]) than in the chloroquine group (14·8 h [11·7-17·8]; p=0·034). Bed occupancy was 2426 days per 1000 patients in the artesunate-mefloquine group versus 2828 days per 1000 patients in the chloroquine group (incidence rate ratio 0·858 [95% CI 0·812-0·906]; p<0·0001). One (<1%) patient in the artesunate-mefloquine group had a serious neuropsychiatric event regarded as probably related to study drug.

    INTERPRETATION: Artesunate-mefloquine is highly efficacious for treatment of uncomplicated P knowlesi malaria. The rapid therapeutic response of the drug offers significant advantages compared with chloroquine monotherapy and supports a unified treatment policy for artemisinin-based combination therapy for all Plasmodium species in co-endemic areas.

    FUNDING: Malaysian Ministry of Health, Australian National Health and Medical Research Council, and Asia Pacific Malaria Elimination Network.

  2. Grant R, Benamouzig D, Catton H, Cheng VC, Dhingra N, Laxminarayan R, et al.
    Lancet Infect Dis, 2023 Oct;23(10):1108-1110.
    PMID: 37572686 DOI: 10.1016/S1473-3099(23)00485-1
  3. Mariatulqabtiah AR, Buttigieg KR
    Lancet Infect Dis, 2022 Sep;22(9):1255-1256.
    PMID: 35760075 DOI: 10.1016/S1473-3099(22)00414-5
  4. Kang H, Auzenbergs M, Clapham H, Maure C, Kim JH, Salje H, et al.
    Lancet Infect Dis, 2024 Feb 08.
    PMID: 38342105 DOI: 10.1016/S1473-3099(23)00810-1
    BACKGROUND: Chikungunya is an arboviral disease transmitted by Aedes aegypti and Aedes albopictus mosquitoes with a growing global burden linked to climate change and globalisation. We aimed to estimate chikungunya seroprevalence, force of infection (FOI), and prevalence of related chronic disability and hospital admissions in endemic and epidemic settings.

    METHODS: In this systematic review, meta-analysis, and modelling study, we searched PubMed, Ovid, and Web of Science for articles published from database inception until Sept 26, 2022, for prospective and retrospective cross-sectional studies that addressed serological chikungunya virus infection in any geographical region, age group, and population subgroup and for longitudinal prospective and retrospective cohort studies with data on chronic chikungunya or hospital admissions in people with chikungunya. We did a systematic review of studies on chikungunya seroprevalence and fitted catalytic models to each survey to estimate location-specific FOI (ie, the rate at which susceptible individuals acquire chikungunya infection). We performed a meta-analysis to estimate the proportion of symptomatic patients with laboratory-confirmed chikungunya who had chronic chikungunya or were admitted to hospital following infection. We used a random-effects model to assess the relationship between chronic sequelae and follow-up length using linear regression. The systematic review protocol is registered online on PROSPERO, CRD42022363102.

    FINDINGS: We identified 60 studies with data on seroprevalence and chronic chikungunya symptoms done across 76 locations in 38 countries, and classified 17 (22%) of 76 locations as endemic settings and 59 (78%) as epidemic settings. The global long-term median annual FOI was 0·007 (95% uncertainty interval [UI] 0·003-0·010) and varied from 0·0001 (0·00004-0·0002) to 0·113 (0·07-0·20). The highest estimated median seroprevalence at age 10 years was in south Asia (8·0% [95% UI 6·5-9·6]), followed by Latin America and the Caribbean (7·8% [4·9-14·6]), whereas median seroprevalence was lowest in the Middle East (1·0% [0·5-1·9]). We estimated that 51% (95% CI 45-58) of people with laboratory-confirmed symptomatic chikungunya had chronic disability after infection and 4% (3-5) were admitted to hospital following infection.

    INTERPRETATION: We inferred subnational heterogeneity in long-term average annual FOI and transmission dynamics and identified both endemic and epidemic settings across different countries. Brazil, Ethiopia, Malaysia, and India included both endemic and epidemic settings. Long-term average annual FOI was higher in epidemic settings than endemic settings. However, long-term cumulative incidence of chikungunya can be similar between large outbreaks in epidemic settings with a high FOI and endemic settings with a relatively low FOI.

    FUNDING: International Vaccine Institute.

  5. Haider S, Hassali MA, Iqbal Q, Anwer M, Saleem F
    Lancet Infect Dis, 2016 12;16(12):1333.
    PMID: 27998597 DOI: 10.1016/S1473-3099(16)30452-2
  6. Commons RJ, Rajasekhar M, Edler P, Abreha T, Awab GR, Baird JK, et al.
    Lancet Infect Dis, 2024 Feb;24(2):172-183.
    PMID: 37748496 DOI: 10.1016/S1473-3099(23)00430-9
    BACKGROUND: Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence.

    METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470.

    FINDINGS: Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias.

    INTERPRETATION: Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms.

    FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.

  7. Wernli D, Jørgensen PS, Parmley EJ, Troell M, Majowicz S, Harbarth S, et al.
    Lancet Infect Dis, 2020 Dec;20(12):e307-e311.
    PMID: 32853549 DOI: 10.1016/S1473-3099(20)30392-3
    Improving evidence for action is crucial to tackle antimicrobial resistance. The number of interventions for antimicrobial resistance is increasing but current research has major limitations in terms of efforts, methods, scope, quality, and reporting. Moving the agenda forwards requires an improved understanding of the diversity of interventions, their feasibility and cost-benefit, the implementation factors that shape and underpin their effectiveness, and the ways in which individual interventions might interact synergistically or antagonistically to influence actions against antimicrobial resistance in different contexts. Within the efforts to strengthen the global governance of antimicrobial resistance, we advocate for the creation of an international One Health platform for online learning. The platform will synthesise the evidence for actions on antimicrobial resistance into a fully accessible database; generate new scientific insights into the design, implementation, evaluation, and reporting of the broad range of interventions relevant to addressing antimicrobial resistance; and ultimately contribute to the goal of building societal resilience to this central challenge of the 21st century.
  8. Rasheed MK, Hasan SS, Babar ZU, Ahmed SI
    Lancet Infect Dis, 2019 03;19(3):242-243.
    PMID: 30833059 DOI: 10.1016/S1473-3099(19)30051-9
  9. Hoenigl M, Salmanton-García J, Walsh TJ, Nucci M, Neoh CF, Jenks JD, et al.
    Lancet Infect Dis, 2021 Aug;21(8):e246-e257.
    PMID: 33606997 DOI: 10.1016/S1473-3099(20)30784-2
    With increasing numbers of patients needing intensive care or who are immunosuppressed, infections caused by moulds other than Aspergillus spp or Mucorales are increasing. Although antifungal prophylaxis has shown effectiveness in preventing many invasive fungal infections, selective pressure has caused an increase of breakthrough infections caused by Fusarium, Lomentospora, and Scedosporium species, as well as by dematiaceous moulds, Rasamsonia, Schizophyllum, Scopulariopsis, Paecilomyces, Penicillium, Talaromyces and Purpureocillium species. Guidance on the complex multidisciplinary management of infections caused by these pathogens has the potential to improve prognosis. Management routes depend on the availability of diagnostic and therapeutic options. The present recommendations are part of the One World-One Guideline initiative to incorporate regional differences in the epidemiology and management of rare mould infections. Experts from 24 countries contributed their knowledge and analysed published evidence on the diagnosis and treatment of rare mould infections. This consensus document intends to provide practical guidance in clinical decision making by engaging physicians and scientists involved in various aspects of clinical management. Moreover, we identify areas of uncertainty and constraints in optimising this management.
  10. Thompson GR, Le T, Chindamporn A, Kauffman CA, Alastruey-Izquierdo A, Ampel NM, et al.
    Lancet Infect Dis, 2021 12;21(12):e364-e374.
    PMID: 34364529 DOI: 10.1016/S1473-3099(21)00191-2
    The global burden of the endemic mycoses (blastomycosis, coccidioidomycosis, emergomycosis, histoplasmosis, paracoccidioidomycosis, sporotrichosis, and talaromycosis) continues to rise yearly and these infectious diseases remain a leading cause of patient morbidity and mortality worldwide. Management of the associated pathogens requires a thorough understanding of the epidemiology, risk factors, diagnostic methods and performance characteristics in different patient populations, and treatment options unique to each infection. Guidance on the management of these infections has the potential to improve prognosis. The recommendations outlined in this Review are part of the "One World, One Guideline" initiative of the European Confederation of Medical Mycology. Experts from 23 countries contributed to the development of these guidelines. The aim of this Review is to provide an up-to-date consensus and practical guidance in clinical decision making, by engaging physicians and scientists involved in various aspects of clinical management.
  11. GBD 2021 Tuberculosis Collaborators
    Lancet Infect Dis, 2024 Mar 19.
    PMID: 38518787 DOI: 10.1016/S1473-3099(24)00007-0
    BACKGROUND: Global evaluations of the progress towards the WHO End TB Strategy 2020 interim milestones on mortality (35% reduction) and incidence (20% reduction) have not been age specific. We aimed to assess global, regional, and national-level burdens of and trends in tuberculosis and its risk factors across five separate age groups, from 1990 to 2021, and to report on age-specific progress between 2015 and 2020.

    METHODS: We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 (GBD 2021) analytical framework to compute age-specific tuberculosis mortality and incidence estimates for 204 countries and territories (1990-2021 inclusive). We quantified tuberculosis mortality among individuals without HIV co-infection using 22 603 site-years of vital registration data, 1718 site-years of verbal autopsy data, 825 site-years of sample-based vital registration data, 680 site-years of mortality surveillance data, and 9 site-years of minimally invasive tissue sample (MITS) diagnoses data as inputs into the Cause of Death Ensemble modelling platform. Age-specific HIV and tuberculosis deaths were established with a population attributable fraction approach. We analysed all available population-based data sources, including prevalence surveys, annual case notifications, tuberculin surveys, and tuberculosis mortality, in DisMod-MR 2.1 to produce internally consistent age-specific estimates of tuberculosis incidence, prevalence, and mortality. We also estimated age-specific tuberculosis mortality without HIV co-infection that is attributable to the independent and combined effects of three risk factors (smoking, alcohol use, and diabetes). As a secondary analysis, we examined the potential impact of the COVID-19 pandemic on tuberculosis mortality without HIV co-infection by comparing expected tuberculosis deaths, modelled with trends in tuberculosis deaths from 2015 to 2019 in vital registration data, with observed tuberculosis deaths in 2020 and 2021 for countries with available cause-specific mortality data.

    FINDINGS: We estimated 9·40 million (95% uncertainty interval [UI] 8·36 to 10·5) tuberculosis incident cases and 1·35 million (1·23 to 1·52) deaths due to tuberculosis in 2021. At the global level, the all-age tuberculosis incidence rate declined by 6·26% (5·27 to 7·25) between 2015 and 2020 (the WHO End TB strategy evaluation period). 15 of 204 countries achieved a 20% decrease in all-age tuberculosis incidence between 2015 and 2020, eight of which were in western sub-Saharan Africa. When stratified by age, global tuberculosis incidence rates decreased by 16·5% (14·8 to 18·4) in children younger than 5 years, 16·2% (14·2 to 17·9) in those aged 5-14 years, 6·29% (5·05 to 7·70) in those aged 15-49 years, 5·72% (4·02 to 7·39) in those aged 50-69 years, and 8·48% (6·74 to 10·4) in those aged 70 years and older, from 2015 to 2020. Global tuberculosis deaths decreased by 11·9% (5·77 to 17·0) from 2015 to 2020. 17 countries attained a 35% reduction in deaths due to tuberculosis between 2015 and 2020, most of which were in eastern Europe (six countries) and central Europe (four countries). There was variable progress by age: a 35·3% (26·7 to 41·7) decrease in tuberculosis deaths in children younger than 5 years, a 29·5% (25·5 to 34·1) decrease in those aged 5-14 years, a 15·2% (10·0 to 20·2) decrease in those aged 15-49 years, a 7·97% (0·472 to 14·1) decrease in those aged 50-69 years, and a 3·29% (-5·56 to 9·07) decrease in those aged 70 years and older. Removing the combined effects of the three attributable risk factors would have reduced the number of all-age tuberculosis deaths from 1·39 million (1·28 to 1·54) to 1·00 million (0·703 to 1·23) in 2020, representing a 36·5% (21·5 to 54·8) reduction in tuberculosis deaths compared to those observed in 2015. 41 countries were included in our analysis of the impact of the COVID-19 pandemic on tuberculosis deaths without HIV co-infection in 2020, and 20 countries were included in the analysis for 2021. In 2020, 50 900 (95% CI 49 700 to 52 400) deaths were expected across all ages, compared to an observed 45 500 deaths, corresponding to 5340 (4070 to 6920) fewer deaths; in 2021, 39 600 (38 300 to 41 100) deaths were expected across all ages compared to an observed 39 000 deaths, corresponding to 657 (-713 to 2180) fewer deaths.

    INTERPRETATION: Despite accelerated progress in reducing the global burden of tuberculosis in the past decade, the world did not attain the first interim milestones of the WHO End TB Strategy in 2020. The pace of decline has been unequal with respect to age, with older adults (ie, those aged >50 years) having the slowest progress. As countries refine their national tuberculosis programmes and recalibrate for achieving the 2035 targets, they could consider learning from the strategies of countries that achieved the 2020 milestones, as well as consider targeted interventions to improve outcomes in older age groups.

    FUNDING: Bill & Melinda Gates Foundation.

  12. Zelenev A, Li J, Mazhnaya A, Basu S, Altice FL
    Lancet Infect Dis, 2018 02;18(2):215-224.
    PMID: 29153265 DOI: 10.1016/S1473-3099(17)30676-X
    BACKGROUND: Chronic infections with hepatitis C virus (HCV) and HIV are highly prevalent in the USA and concentrated in people who inject drugs. Treatment as prevention with highly effective new direct-acting antivirals is a prospective HCV elimination strategy. We used network-based modelling to analyse the effect of this strategy in HCV-infected people who inject drugs in a US city.

    METHODS: Five graph models were fit using data from 1574 people who inject drugs in Hartford, CT, USA. We used a degree-corrected stochastic block model, based on goodness-of-fit, to model networks of injection drug users. We simulated transmission of HCV and HIV through this network with varying levels of HCV treatment coverage (0%, 3%, 6%, 12%, or 24%) and varying baseline HCV prevalence in people who inject drugs (30%, 60%, 75%, or 85%). We compared the effectiveness of seven treatment-as-prevention strategies on reducing HCV prevalence over 10 years and 20 years versus no treatment. The strategies consisted of treatment assigned to either a randomly chosen individual who injects drugs or to an individual with the highest number of injection partners. Additional strategies explored the effects of treating either none, half, or all of the injection partners of the selected individual, as well as a strategy based on respondent-driven recruitment into treatment.

    FINDINGS: Our model estimates show that at the highest baseline HCV prevalence in people who inject drugs (85%), expansion of treatment coverage does not substantially reduce HCV prevalence for any treatment-as-prevention strategy. However, when baseline HCV prevalence is 60% or lower, treating more than 120 (12%) individuals per 1000 people who inject drugs per year would probably eliminate HCV within 10 years. On average, assigning treatment randomly to individuals who inject drugs is better than targeting individuals with the most injection partners. Treatment-as-prevention strategies that treat additional network members are among the best performing strategies and can enhance less effective strategies that target the degree (ie, the highest number of injection partners) within the network.

    INTERPRETATION: Successful HCV treatment as prevention should incorporate the baseline HCV prevalence and will achieve the greatest benefit when coverage is sufficiently expanded.

    FUNDING: National Institute on Drug Abuse.

  13. Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al.
    Lancet Infect Dis, 2018 Jun;18(6):640-649.
    PMID: 29650424 DOI: 10.1016/S1473-3099(18)30172-5
    BACKGROUND: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden.

    METHODS: This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis.

    FINDINGS: Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin).

    INTERPRETATION: Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden.

    FUNDING: Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.

  14. Head MG, Fitchett JR, Newell ML, Scott JAG, Clarke SC, Atun R
    Lancet Infect Dis, 2014 Nov;14(11):1037-1038.
    PMID: 25444398 DOI: 10.1016/S1473-3099(14)70949-1
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links