Displaying publications 1 - 20 of 372 in total

Abstract:
Sort:
  1. Lim SS, Fontmorin JM, Pham HT, Milner E, Abdul PM, Scott K, et al.
    Sci Total Environ, 2021 Jul 01;776:145934.
    PMID: 33647656 DOI: 10.1016/j.scitotenv.2021.145934
    Microbial fuel cells (MFCs) that simultaneously remove organic contaminants and recovering metals provide a potential route for industry to adopt clean technologies. In this work, two goals were set: to study the feasibility of zinc removal from industrial effluents using MFCs and to understand the removal process by using reaction rate models. The removal of Zn2+ in MFC was over 96% for synthetic and industrial samples with initial Zn2+ concentrations less than 2.0 mM after 22 h of operation. However, only 83 and 42% of the zinc recovered from synthetic and industrial samples, respectively, was attached on the cathode surface of the MFCs. The results marked the domination of electroprecipitation rather than the electrodeposition process in the industrial samples. Energy dispersive X-ray (EDX) analysis showed that the recovered compound contained not only Zn but also O, evidence that Zn(OH)2 could be formed. The removal of Zn2+ in the MFC followed a mechanism where oxygen was reduced to hydroxide before reacting with Zn2+. Nernst equations and rate law expressions were derived to understand the mechanism and used to estimate the Zn2+ concentration and removal efficiency. The zero-, first- and second-order rate equations successfully fitted the data, predicted the final Zn2+ removal efficiency, and suggested that possible mechanistic reactions occurred in the electrolysis cell (direct reduction), MFC (O2 reduction), and control (chemisorption) modes. The half-life, t1/2, of the Zn2+ removal reaction using synthetic and industrial samples was estimated to be 7.0 and 2.7 h, respectively. The t1/2 values of the controls (without the power input from the MFC bioanode) were much slower and were recorded as 21.5 and 7.3 h for synthetic and industrial samples, respectively. The study suggests that MFCs can act as a sustainable and environmentally friendly technology for heavy metal removal without electrical energy input or the addition of chemicals.
  2. Simha P, Barton MA, Perez-Mercado LF, McConville JR, Lalander C, Magri ME, et al.
    Sci Total Environ, 2021 Apr 15;765:144438.
    PMID: 33418332 DOI: 10.1016/j.scitotenv.2020.144438
    Source-separating sanitation systems offer the possibility of recycling nutrients present in wastewater as crop fertilisers. Thereby, they can reduce agriculture's impacts on global sources, sinks, and cycles for nitrogen and phosphorous, as well as their associated environmental costs. However, it has been broadly assumed that people would be reluctant to perform the new sanitation behaviours that are necessary for implementing such systems in practice. Yet, few studies have tried to systematically gather evidence in support of this assumption. To address this gap, we surveyed 3763 people at 20 universities in 16 countries using a standardised questionnaire. We identified and systematically assessed cross-cultural and country-level explanatory factors that were strongly associated with people's willingness to consume food grown using human urine as fertiliser. Overall, 68% of the respondents favoured recycling human urine, 59% stated a willingness to eat urine-fertilised food, and only 11% believed that urine posed health risks that could not be mitigated by treatment. Most people did not expect to pay less for urine-fertilised food, but only 15% were willing to pay a price premium. Consumer perceptions were found to differ greatly by country and the strongest predictive factors for acceptance overall were cognitive factors (perceptions of risks and benefits) and social norms. Increasing awareness and building trust among consumers about the effectiveness of new sanitation systems via cognitive and normative messaging can help increase acceptance. Based on our findings, we believe that in many countries, acceptance by food consumers will not be the major social barrier to closing the loop on human urine. That a potential market exists for urine-fertilised food, however, needs to be communicated to other stakeholders in the sanitation service chain.
  3. Chen WL, Lin SC, Huang CH, Peng SY, Ling YS
    Sci Total Environ, 2021 Jan 01;750:141519.
    PMID: 32861074 DOI: 10.1016/j.scitotenv.2020.141519
    The use of livestock waste for the production of biogas and the application of biogas slurry to agricultural soil can resolve livestock waste problems and reduce synthetic fertiliser use. However, the migration of veterinary drugs to land and crops resulting from biogas slurry irrigation is a potential food safety concern. This study employed an ultra-performance liquid chromatography coupled with quadrupole-time of flight high-resolution mass spectrometry system for wide-scope suspect screening of pharmaceutically active substances on crop cultivated under biogas slurry irrigation. Briefly, a total of 22 pak choi samples were obtained from a greenhouse farmed in tropical south Taiwan between March 2019 and March 2020. Molecular spectra and fragmented ions (between m/z 70 and 1100) were acquired. Ion features were searched and matched with a library consisting of 1068 compounds. The matrixes in the crop production environment including soil, livestock wastewater, biogas slurry, and groundwater were included in this study to elucidate potential sources of the pharmaceutically active substances. Results demonstrated 23 suspects were matched with high mass accuracy (mass error within ±5.0 ppm) in pak choi. The detection of both bufexamac and nandrolone were confirmed using standards, where a new system of identification points was applied. Nandrolone was detected throughout the pak choi samples as well as livestock wastewater. Tetracycline, macrolide, and sulfonamide antibiotics were presented in biogas slurry and soil but not pak choi. This is the first study to reveal the presence of multiclass pharmaceutically active substances in a crop supplied as food. Such findings suggest that anabolics and antibiotics should be closely monitored in the corps irrigated by biogas slurry in future.
  4. Hasan H, Parker A, Pollard SJT
    Sci Total Environ, 2021 Feb 10;755(Pt 1):142868.
    PMID: 33348485 DOI: 10.1016/j.scitotenv.2020.142868
    We explore the interplay between preventative risk management and regulatory style for the implementation of water safety plans in Malaysia and in England and Wales, two jurisdictions with distinct philosophies of approach. Semi-structured interviews were conducted with 32 water safety professionals in Malaysia, 23 in England and Wales, supported by 6 Focus Group Discussions (n = 53 participants). A grounded theory approach produced insights on the transition from drinking water quality surveillance to preventative risk management. Themes familiar to this type of regulatory transition emerged, including concerns about compliance policy; overseeing the risk management controls of regulatees with varied competencies and funds available to drive change; and the portfolio of interventions suited to a more facilitative regulatory style. Because the potential harm from waterborne illness is high where pathogen exposures occur, the transition to risk-informed regulation demands mature organisational cultures among water utilities and regulators, and a laser-like focus on ensuring risk management controls are delivered within water supply systems.
  5. Kurniawan SB, Imron MF, Chik CENCE, Owodunni AA, Ahmad A, Alnawajha MM, et al.
    Sci Total Environ, 2022 Feb 01;806(Pt 4):150902.
    PMID: 34653447 DOI: 10.1016/j.scitotenv.2021.150902
    Biocoagulants and bioflocculants are alternative items that can be used to substitute the utilization of common-chemical coagulants and flocculants. Biocoagulants/bioflocculants can be extracted from animals, microorganisms, and plants. Moreover, biocoagulants/bioflocculants have specific characteristics that contribute to the coagulation and flocculation processes. The active compounds inside biocoagulants/bioflocculants vary and correspond to the specific working mechanisms, including charge neutralization, sweep coagulation, adsorption, bridging, and patch flocculation. This review paper summarizes the characteristics of biocoagulants/bioflocculants from different sources and its performance in treating various pollutants. Furthermore, this paper discusses the most contributing compounds and functional groups of biocoagulants/bioflocculants that can be related to their working mechanisms. Several functional groups and compounds in biocoagulants/bioflocculants are highlighted in this review article, as well as the correlation between the highlighted groups/compounds to the aforementioned coagulation-flocculation mechanisms. In addition, current knowledge gaps in the study of biocoagulants/bioflocculants and future approaches that may serve as research directions are also emphasized. This review article is expected to shed information on the characteristics of biocoagulants/bioflocculants, which may then become a focus in the optimization to obtain higher performance in future application of coagulation-flocculation processes.
  6. Li J, Li L, Suvarna M, Pan L, Tabatabaei M, Ok YS, et al.
    Sci Total Environ, 2022 Jan 07;817:152921.
    PMID: 35007594 DOI: 10.1016/j.scitotenv.2022.152921
    The ever-increasing rise in the global population coupled with rapid urbanization demands considerable consumption of fossil fuel, food, and water. This in turn leads to energy depletion, greenhouse gas emissions and wet wastes generation (including food waste, animal manure, and sewage sludge). Conversion of the wet wastes to bioenergy and biochar is a promising approach to mitigate wastes, emissions and energy depletion, and simultaneously promotes sustainability and circular economy. In this study, various conversion technologies for transformation of wet wastes to bioenergy and biochar, including anaerobic digestion, gasification, incineration, hydrothermal carbonization, hydrothermal liquefaction, slow and fast pyrolysis, are comprehensively reviewed. The technological challenges impeding the widespread adoption of these wet waste conversion technologies are critically examined. Eventually, the study presents insightful recommendations for the technological advancements and wider acceptance of these processes by establishing a hierarchy of factors dictating their performance. These include: i) life-cycle assessment of these conversion technologies with the consideration of reactor design and catalyst utilization from lab to plant level; ii) process intensification by integrating one or more of the wet waste conversion technologies for improved performance and sustainability; and iii) emerging machine learning modeling is a promising strategy to aid the product characterization and optimization of system design for the specific to the bioenergy or biochar application.
  7. Zabed H, Suely A, Faruq G, Sahu JN
    Sci Total Environ, 2014 Feb 15;472:363-9.
    PMID: 24295752 DOI: 10.1016/j.scitotenv.2013.11.051
    A sacred ritual well with continuously discharging of methane gas through its water body was studied for physicochemical and microbiological quality in three seasons and during ritual mass bathing. Most of the physicochemical parameters showed significant seasonal variations (P<0.05) and a sharp fluctuation during mass bathing. Dissolved oxygen (DO) was found negatively correlated with temperature (r=-0.384, P<0.05), biochemical oxygen demand (BOD) (r=-0.58, P<0.001) and ammonia (r=-0.738, P<0.001), while BOD showed positive correlation with chemical oxygen demand (COD) (r=0.762, P<0.001) and ammonia (r=0.83, P<0.001). Simple regression analysis also yielded significant linear relationship in DO vs. temperature (r(2)=0.147, P<0.05), DO vs. ammonia (r(2)=0.544, P<0.001) and BOD vs. DO (r(2)=0.336, P<0.001). A total of eight microbial indicators were studied and found that all of them increased unusually during mass bathing comparing with their respective seasonal values. Total coliforms (TC) were found positively correlated with fecal coliforms (FC) (r=0.971), FC with Escherichia coli (EC) (r=0.952), EC with intestinal enterococci (IE) (r=0.921), fecal streptococci (FS) with IE (r=0.953) and Staphylococcus aureus (SA) with Pseudomonas aeruginosa (PA) (r=0.946), which were significant at P<0.001. Some regression models showed significant linear relationship at P<0.001 with r(2) value of 0.943 for FC vs. TC, 0.907 for EC vs. FC, 0.869 for FS vs. FC, 0.848 for IE vs. EC and 0.909 for IE vs. FS. The overall results found in this study revealed that well water is suitable for bathing purpose but the religious activity considerably worsen its quality.
  8. Ho KC, Teow YH, Sum JY, Ng ZJ, Mohammad AW
    Sci Total Environ, 2021 Mar 15;760:143966.
    PMID: 33341611 DOI: 10.1016/j.scitotenv.2020.143966
    Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
  9. Dalu T, Wasserman RJ, Tonkin JD, Mwedzi T, Magoro ML, Weyl OLF
    Sci Total Environ, 2017 Dec 31;607-608:317-325.
    PMID: 28692901 DOI: 10.1016/j.scitotenv.2017.06.267
    Water pollution is a critical management issue, with many rivers and streams draining urban areas being polluted by the disposal of untreated solid waste and wastewater discharge, storm water and agricultural runoff. This has implications for biodiversity, and many rivers in the developing world are now considered compromised. We investigated benthic macroinvertebrate community structure and composition in relation to physico-chemical conditions of the water column and sediments. The study was conducted in an Austral catchment subject to both urban and agricultural pollutants in two different seasons. We assessed whether sediment characteristics were more important drivers of macroinvertebrate community composition than water column characteristics. We expected clear differences in macroinvertebrate community composition and in the associated community metrics due to distinct flow conditions between the two seasons. A combination of multivariate analyses (canonical correspondence analysis (CCA)) and biological indicator analysis were used to examine these patterns. Chironomidae was the most abundant family (>60%) in the upper mainstem river and stream sites. Stream sites were positively associated with CCA axis 2, being characterised by high turbidity and lower pH, salinity, phosphate concentration, channel width and canopy cover. Canopy cover, channel width, substrate embeddedness, phosphate concentration, pH, salinity and turbidity all had a significant effect on macroinvertebrate community composition. Using CCA variation partitioning, water quality was, however, a better predictor of benthic macroinvertebrate composition than sediment chemical conditions. Furthermore, our results suggest that seasonality had little effect on structuring benthic macroinvertebrate communities in this south-eastern zone of South Africa, despite clear changes in sediment chemistry. This likely reflects the relative lack of major variability in water chemistry compared to sediment chemistry between seasons and the relatively muted variability in precipitation between seasons than the more classic Austral temperate climates.
  10. Nguyen KA, Liou YA, Terry JP
    Sci Total Environ, 2019 Sep 10;682:31-46.
    PMID: 31121354 DOI: 10.1016/j.scitotenv.2019.04.069
    Typhoons have devastating impacts across many Asian countries. Vietnam is presently one of the most disaster-prone nations. Typhoons regularly disrupt human lives and livelihoods in various ways and cause significant damage. Making efficient policy decisions to minimize the vulnerability of affected communities is crucial. This requires a deep understanding of the factors that make a society vulnerable to extreme events and natural disasters. An appropriate approach is integrating the three dimensions of hazard, exposure and sensitivity, and community adaptive capacity. However, the vulnerability and adaptive capacity response to typhoons within Vietnam is poorly investigated. Here, we develop a conceptual framework that incorporates 21 indicators to identify vulnerability and adaptive capacity (VAC) using geospatial techniques at regional scales, applied over Vietnam. We find large spatial differences in VAC and are able to identify the top-priority regions that need to enhance their adaptation to typhoons. The Southern Coastal area, South East and Red River Delta demonstrate high and very high vulnerability because of their physical features and the intensity of typhoons that frequently cross these parts of Vietnam. The lower Mekong Delta and Northern Coastal areas are vulnerable to typhoon-driven flood threats, in particular where compounded by sea-level rise. Our framework successfully identified the spatial distribution and different levels of VAC within acceptable limits of uncertainty. It can therefore serve as a template to tackle national issues in disaster risk reduction in Vietnam and assist in the development of suitable mitigation strategies to achieve sustainable outcomes.
  11. Norbäck D, Hashim JH, Hashim Z, Ali F
    Sci Total Environ, 2017 Aug 15;592:153-160.
    PMID: 28319702 DOI: 10.1016/j.scitotenv.2017.02.215
    This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m3 and 2.0μg/m3, respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m3, respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m3 (median<1μg/m3). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m3, respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m3.
  12. Kondo T, Sakai N, Yazawa T, Shimizu Y
    Sci Total Environ, 2021 Jun 20;774:145075.
    PMID: 33609845 DOI: 10.1016/j.scitotenv.2021.145075
    The Soil and Water Assessment Tool (SWAT) ecohydrological model was utilized to simulate fecal contamination in the 1937 km2 Selangor River Watershed in Malaysia. The watershed conditions posed considerable challenges owing to data scarcity and tropical climate conditions, which are very different from the original conditions that SWAT was developed and tested for. Insufficient data were compensated by publicly available data (e.g., land cover, soil, and weather) to run SWAT. In addition, field monitoring and interviews clarified representative situations of pollution sources and loads, which were used as input for the model. Model parameters determined by empirical analyses in the USA (e.g., surface runoff, evapotranspiration, and temperature adjustment for bacteria die-off) are thoroughly discussed. In particular, due consideration was given to tropical climate characteristics such as intense rainfall, high potential evapotranspiration, and high temperatures throughout the year. As a result, the developed SWAT successfully simulated fecal contamination ranging several orders of magnitude along with its spatial distribution (i.e., Nash-Sutcliffe Efficiency (NSE) = 0.64, Root Mean Square Error-Observations Standard Deviation Ratio (RSR) = 0.64 at six mainstem sites, and NSE = 0.67 and RSR = 0.57 at 12 major tributaries). Moreover, mitigation countermeasures for future worsening of fecal contamination (i.e., E.coli concentration > 20,000 CFU/100 mL for 690 days during nine years at a raw water intake point for Kuala Lumpur [KL] residents) were analyzed through scenario simulations, thereby contributing to discussing effective watershed management. The results propose improving decentralized sewage treatment systems and treating chicken manure with effective microorganisms in order to guarantee water safety for KL residents (i.e., E.coli concentrations <20,000 CFU/100 mL throughout the period, considering Malaysian standards). Accordingly, this study verified the applicability of SWAT to simulate fecal contamination in areas that are difficult to model and suggests solutions for watershed management based on quantitative evidence.
  13. Yuan C, Wu F, Wu Q, Fornara DA, Heděnec P, Peng Y, et al.
    Sci Total Environ, 2023 Jun 25;879:163059.
    PMID: 36963687 DOI: 10.1016/j.scitotenv.2023.163059
    Vegetation restoration is a widely used, effective, and sustainable method to improve soil quality in post-mining lands. Here we aimed to assess global patterns and driving factors of potential vegetation restoration effects on soil carbon, nutrients, and enzymatic activities. We synthesized 4838 paired observations extracted from 175 publications to evaluate the effects that vegetation restoration might have on the concentrations of soil carbon, nitrogen, and phosphorus, as well as enzymatic activities. We found that (1) vegetation restoration had consistent positive effects on the concentrations of soil organic carbon, total nitrogen, available nitrogen, ammonia, nitrate, total phosphorus, and available phosphorus on average by 85.4, 70.3, 75.7, 54.6, 58.6, 34.7, and 60.4 %, respectively. Restoration also increased the activities of catalase, alkaline phosphatase, sucrase, and urease by 63.3, 104.8, 125.5, and 124.6 %, respectively; (2) restoration effects did not vary among different vegetation types (i.e., grass, tree, shrub and their combinations) or leaf type (broadleaved, coniferous, and mixed), but were affected by mine type; and (3) latitude, climate, vegetation species richness, restoration year, and initial soil properties are important moderator variables, but their effects varied among different soil variables. Our global scale study shows how vegetation restoration can improve soil quality in post-mining lands by increasing soil carbon, nutrients, and enzymatic activities. This information is crucial to better understand the role of vegetation cover in promoting the ecological restoration of degraded mining lands.
  14. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
  15. Zhou XY, Zheng B, Khu ST
    Sci Total Environ, 2019 May 15;665:774-784.
    PMID: 30790750 DOI: 10.1016/j.scitotenv.2019.02.146
    The concept of "carrying capacity" has been widely used in various disciplines in reference to human-environment sustainability. No unified cognition exists regarding carrying capacity limits for humans. As a typical type of carrying capacity, the water environment carrying capacity (WECC) has been researched for human-water environment sustainability. However, most recent research has focused on the assessment of the water environment carrying capacity of a certain region or river basin. The detailed resilience potential of human-water environment systems that could improve the local water environment carrying capacity has not been systematically exploited. The key concerns of the existence of water environment carrying capacity limits and the exact value have not been addressed. This study first distinguished the characteristics of related concepts, such as carrying capacity, planetary boundaries, resilience, limitations, thresholds and tipping points. An analytical framework was then established to exploit the resilience potential from the four dimensions of "scale, structure, pattern and network". The economy scale with full use of the resilience potential is 11,511,880 M yuan under the current technology and development status, which is nearly 37 times that of the current scale of the economy. The analytical framework confirms that the limit on the water environment carrying capacity is a dynamic value, which could be changed from the four dimensions. The socioeconomic scale that the local water environment can support would be nearly unlimited in some extreme ideal situation. The results would provide some enlightenment on the carrying capacity and other similar marked concepts of theoretical research and provide support for human-environment sustainability.
  16. Tan S, Zhou G, Yang Q, Ge S, Liu J, Cheng YW, et al.
    Sci Total Environ, 2023 Mar 15;864:160990.
    PMID: 36539095 DOI: 10.1016/j.scitotenv.2022.160990
    Traditional disposal of animal manures and lignocellulosic biomass is restricted by its inefficiency and sluggishness. To advance the carbon management and greenhouse gas mitigation, this review scrutinizes the effect of pyrolysis in promoting the sustainable biomass and manure disposal as well as stimulating the biochar industry development. This review has examined the advancement of pyrolysis of animal manure (AM) and lignocellulosic biomass (LB) in terms of efficiency, cost-effectiveness, and operability. In particular, the applicability of pyrolysis biochar in enhancing the crops yields via soil remediation is highlighted. Through pyrolysis, the heavy metals of animal manures are fixated in the biochar, thereby both soil contamination via leaching and heavy metal uptake by crops are minimized. Pyrolysis biochar is potentially use in soil remediation for agronomic and environmental co-benefits. Fast pyrolysis assures high bio-oil yield and revenue with better return on investment whereas slow pyrolysis has low revenue despite its minimum investment cost because of relatively low selling price of biochar. For future commercialization, both continuous reactors and catalysis can be integrated to pyrolysis to ameliorate the efficiency and economic value of pyrolysis biochar.
  17. Strain EMA, Alexander KA, Kienker S, Morris R, Jarvis R, Coleman R, et al.
    Sci Total Environ, 2019 Mar 25;658:1293-1305.
    PMID: 30677991 DOI: 10.1016/j.scitotenv.2018.12.285
    Marine harbours are the focus of a diverse range of activities and subject to multiple anthropogenically induced pressures. Support for environmental management options aimed at improving degraded harbours depends on understanding the factors which influence people's perceptions of harbour environments. We used an online survey, across 12 harbours, to assess sources of variation people's perceptions of harbour health and ecological engineering. We tested the hypotheses: 1) people living near impacted harbours would consider their environment to be more unhealthy and degraded, be more concerned about the environment and supportive of and willing to pay for ecological engineering relative to those living by less impacted harbours, and 2) people with greater connectedness to the harbour would be more concerned about and have greater perceived knowledge of the environment, and be more supportive of, knowledgeable about and willing to pay for ecological engineering, than those with less connectedness. Across twelve locations, the levels of degradation and modification by artificial structures were lower and the concern and knowledge about the environment and ecological engineering were greater in the six Australasian and American than the six European and Asian harbours surveyed. We found that people's perception of harbours as healthy or degraded, but not their concern for the environment, reflected the degree to which harbours were impacted. There was a positive relationship between the percentage of shoreline modified and the extent of support for and people's willingness to pay indirect costs for ecological engineering. At the individual level, measures of connectedness to the harbour environment were good predictors of concern for and perceived knowledge about the environment but not support for and perceived knowledge about ecological engineering. To make informed decisions, it is important that people are empowered with sufficient knowledge of the environmental issues facing their harbour and ecological engineering options.
  18. Rashid SS, Liu YQ, Zhang C
    Sci Total Environ, 2020 Dec 20;749:141465.
    PMID: 32827824 DOI: 10.1016/j.scitotenv.2020.141465
    Although nutrient removal and recovery from municipal wastewater are desirable to protect phosphorus resource and water-bodies from eutrophication, it is unclear how much environmental and economic benefits and burdens it might cause. This study evaluated the environmental and economic life cycle performance of three different upgraded Processes A, B and C with commercially available technologies for nutrient removal and phosphorus recovery based on an existing Malaysian wastewater treatment plant with a sequencing batch reactor technology and diluted municipal wastewater. It is found that the integration of nutrient removal, phosphorus recovery and electricity generation in all upgraded processes reduced eutrophication potential by 62-76%, and global warming potential by 7-22%, which, however, were gained at the cost of increases in human toxicity, acidification, abiotic depletion (fossil fuel) and freshwater ecotoxicity potentials by an average of 23%. New technologies for nutrient removal and phosphorus recovery are thus needed to achieve holistic rather than some environmental benefits at the expense of others. In addition, the study on two different functional units (FU), i.e. per m3 treated wastewater and per kg struvite recovered, shows that FU affected environmental assessment results, but the upgraded Process C had the least overall environmental burden with either of FUs, suggesting the necessity to use different functional units when comparing and selecting different technologies with two functions such as wastewater treatment and struvite production to confirm the best process configuration. The total life cycle costs of Processes A, B and C were 10.7%, 29.8% and 28.1%, respectively, higher than the existing process due to increased capital and operating costs. Therefore, a trade-off between environmental benefits and cost has to be balanced for technology selection or new integrated technologies have to be developed to achieve environmentally sustainable wastewater treatment economically.
  19. Liang J, Ji F, Wang H, Zhu T, Rubinstein J, Worthington R, et al.
    Sci Total Environ, 2024 Feb 25;913:169525.
    PMID: 38141979 DOI: 10.1016/j.scitotenv.2023.169525
    Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.
  20. Ang WL, Mohammad AW, Johnson D, Hilal N
    Sci Total Environ, 2020 Mar 01;706:136047.
    PMID: 31864996 DOI: 10.1016/j.scitotenv.2019.136047
    Study of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process. Instead, FO processes often appear in a hybrid or integrated form where FO is combined with other treatment technologies to achieve better overall process performance and cost savings. This article aims to provide a comprehensive review on the need for hybridization/integration for FO membrane processes, with emphasis given to process enhancement, draw solution regeneration, and pretreatment for FO fouling mitigation. In general, integrated/hybrid FO processes can reduce the membrane fouling propensity; prepare the solution suitable for subsequent value-added uses and production of renewable energy; lower the costs associated with energy consumption; enhance the quality of treated water; and enable the continuous operation of FO through the regeneration of draw solution. The future potential of FO lies in the success of how it can be hybridized or integrated with other technologies to minimize its own shortcomings, while enhancing the overall performance.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links