Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Ibrahim MA, Zulkifli SZ, Azmai MNA, Mohamat-Yusuff F, Ismail A
    Toxicol Rep, 2020;7:1039-1045.
    PMID: 32913717 DOI: 10.1016/j.toxrep.2020.08.011
    Early-life exposure to toxic chemicals causes irreversible morphological and physiological abnormalities that may last for a lifetime. The present study aimed to determine the toxicity effect of 3,4-Dichloroaniline (3,4-DCA) on Javanese medaka (Oryzias javanicus) embryos. Healthy embryos were exposed to various 3,4-DCA concentrations for acute toxicity (5, 10, 25, 50, and 100 mg.L-1) and sublethal toxicity (0.10, 0.50, 1.25, 2.50, and 5.00 mg.L-1) for 96 h and 20 days respectively. Acute toxicity test revealed that the median lethal concentration (96h-LC50) was 32.87 mg.L-1 (95 % CI = 27.90-38.74, R2 = 0.95). Sublethal exposure revealed that 1.25 mg.L-1 at 3 days post-exposure (3 dpe) has a significant lower heartrate (120 ± 12.3 beats/min., p 
  2. Mohamed K, Zine K, Fahima K, Abdelfattah E, Sharifudin SM, Duduku K
    Toxicol Rep, 2018;5:480-488.
    PMID: 29854619 DOI: 10.1016/j.toxrep.2018.03.012
    Nickel oxide nanoparticles (NiO NPs) have attracted increasing attention owing to potential capacity to penetrate to several human cell systems and exert a toxic effect. Elsewhere, the use of medicinal plants today is the form of the most widespread medicine worldwide. Utilizing aromatic plants as interesting source of phytochemicals constitute one of the largest scientific concerns. Thus this study was focused to investigate antioxidant and cytoprotective effects of essential oil of a Mediterranean plant P. lentiscus (PLEO) on NiO NPs induced cytotoxicity and oxidative stress in human lung epithelial cells (A549). The obtained results showed that cell viability was reduced by NiO NPs, who's also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species and reduction of antioxidant enzymes activities. Our results also demonstrated that PLEO contains high amounts in terpinen-4-ol (11.49%), germacrene D (8.64%), α-pinene (5.97%), sabinene (5.19%), caryophyllene (5.10%) and δ-Cadinene (4.86%). PLEO exhibited a potent antioxidant capacity by cell viability improving, ROS scavenging and enhancing the endogenous antioxidant system against NiO NPs in this model of cells. The present work demonstrated, for the first time, the protective activity of PLEO against cell oxidative damage induced by NiO NPs. It was suggested that this plant essential oil could be use as a cells protector.
  3. Kaur S, Muthuraman A
    Toxicol Rep, 2019;6:505-513.
    PMID: 31211096 DOI: 10.1016/j.toxrep.2019.06.001
    The present study has been investigated the role of gallic acid (GA) in paclitaxel-induced neuropathic pain. The neuropathic pain was developed with paclitaxel (PT: 2 mg/kg, i.p.) administration in mice. GA (20 and 40 mg/kg) and pregabalin (PreG: 5 mg/kg) were administered intravenously for 10 consecutive days. The neuralgic sensations were investigated by assessing various pain tests like acetone drop, pinprick, plantar, tail flick, and tail pinch test. Mice pain behaviors were evaluated on 0, 4th, 8th, 12th and 16th days. The levels of sciatic nerve thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide anion, calcium, myeloperoxidase (MPO), and TNF-α were estimated. Treatment of GA and PreG attenuate PT induced thermal &mechanical hyperalgesia and allodynia symptoms along with the reduction of TBARS, total calcium, TNF-α, superoxide anion, and MPO activity levels; and decreased GSH level. Therefore, it has been concluded that GA has potential neuroprotective actions against PT induced neuropathic pain due to it's anti-oxidant, anti-inflammation and regulation of intracellular calcium ion concentration.
  4. Murugesu S, Khatib A, Ahmed QU, Ibrahim Z, Uzir BF, Benchoula K, et al.
    Toxicol Rep, 2019;6:1148-1154.
    PMID: 31993329 DOI: 10.1016/j.toxrep.2019.10.020
    Clinacanthus nutans, an herbal shrub belonging to the Acanthaceae family, is traditionally used as a functional food to treat various ailments in Malaysia and Indonesia. Although the polar fraction of this plant shows non-toxic effect, the toxicity of the non-polar extract is not reported so far. The present study aimed to assess the toxic effect and determine the lethal concentration of this non-polar fraction using zebrafish embryos. The n-hexane fraction was partitioned from the crude extract of C. nutans obtained using 80% methanolic solution. After spawning of the adult male and female zebrafish, the eggs were collected, transferred into a 96-well plate and incubated with the n-hexane fraction at concentrations of 15.63 μg/ml, 31.25 μg/ml, 62.5 μg/ml, 125 μg/ml, 250 μg/ml and 500 μg/ml in 2% DMSO. The survival and sublethal endpoint were assessed, the mortality and hatchability rates were calculated based on microscopic observation, while the heartbeat rate was measured using DanioScope software. The median lethal concentration (LC50) of the C. nutans n-hexane fraction, which was determined using probit analysis, was calculated to be 75.49 μg/mL, which is harmful. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of palmitic acid, phytol, hexadecanoic acid, 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol and stigmasterol in the n-hexane fraction.
  5. Ahmad NS, Abdullah N, Yasin FM
    Toxicol Rep, 2020;7:693-699.
    PMID: 32528857 DOI: 10.1016/j.toxrep.2020.04.015
    Toxicity effect of reduced graphene oxide (rGO) and titanium dioxide (TiO2) nanomaterials (NMs) on Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria was assessed. For both strains, study demonstrated that the toxicity was time and concentration dependent which led to reduction in growth rate and cell death. Upon NMs exposure, an instantaneous cell death in E. coli culture was observed. This is in contrast with B. subtilis, in which the culture growth remained in the log phase; however their growth rate constant,

    μ
    g

    was reduced by ∼70%. The discrepancy between E. coli and B. subtilis was due to strain-specific response upon contact with NMs. TEM, SEM and EDX analysis revealed direct physical surface-surface interaction, as evidence from the adherence of NMs on the cell surface.
  6. Athar Abbasi M, Yu SM, Aziz-Ur-Rehman, Siddiqui SZ, Kim SJ, Raza H, et al.
    Toxicol Rep, 2019;6:897-903.
    PMID: 31516842 DOI: 10.1016/j.toxrep.2019.08.016
    In the study presented here, a novel chlorobenzylated bi-heterocyclic hybrid molecule (7) was synthesized and its structural confirmation was carried out by IR, 1H-NMR, 13C-NMR and CHN analysis data. This compound 7 was subjected to biological study with B16F10 mouse melanoma cells. The anti-proliferative results showed that 7 showed no significant toxicity at concentrations ranging of 0-44 μM. The treatment of B16F10 cells with 7 at aforementioned concentration range indicated that migration of cells was significantly lower than that of the control cells in a dose dependent manner. The possible migration inhibitory effect of these melanoma cells was further evaluated through gelatinolytic activity of MMP-2 and MMP-9 secreted from B16F10 cells. It was inferred from our results that 7 was not affecting the expression and activity of these enzymes. Some other zinc-dependent matrix metalloproteinases (MMPs) were involved in the inhibitory progression. Taken together, compound 7 inhibited migrations of B16F10 mouse melanoma cells. Therefore, it may deserve consideration as a potential agent for the treatment of cancer.
  7. Saipollizan QA, Ab Majid AH
    Toxicol Rep, 2021;8:1849-1855.
    PMID: 34815950 DOI: 10.1016/j.toxrep.2021.11.005
    The German cockroach, Blattella germanica (L.), a prominent pest that requires management due to its detrimental economic and medical consequences. Several research discovered that German cockroaches were insecticide resistant, mainly commercial pesticides. One-week-old nymphs from two strains in Penang, Malaysia (Georgetown strain: EL and Greenlane strain: IC strain) were tested in the laboratory against two commercial insecticides, Cislin® 25 (deltamethrin) and Sumithion 50 (fenitrothion). The concentration of solutions used in the residual test based on the manufacturer labeling. Cislin® was tested at 1.90 ppm, 1.60 ppm, 1.30 ppm, and 1.0 ppm; Sumithion 50 was tested at 25 and 27.00 ppm, 23.00 ppm, 18.00 ppm, 14.00 ppm using the residual method. Probit analysis and one-way analysis of variance (ANOVA) were used to compare the data. Cislin® 25 and Sumithion 50 were more effective and high toxicity against the IC strain compared with the EL strain. Sumithion 50 demonstrated a fast knockdown time on cockroaches, but Cislin® 25 showed no knockdown time. Sumithion 50 showed a significant mortality rate in cockroaches within a short period of time compared to Cislin® 25. Both insecticides were found to be effective against both strains, but Sumithion 50 is more effective at controlling cockroaches than Cislin® 25.
  8. Koh KH, Tan CH, Hii LW, Lee J, Ngu LL, Chai AJ, et al.
    Toxicol Rep, 2014;1:490-495.
    PMID: 28962262 DOI: 10.1016/j.toxrep.2014.06.010
    Paraquat poisoning resulted in multiorgan failure and is associated with high mortality. We audited 83 historical cases of paraquat poisoning in past 2 years treated with conventional decontamination and supportive treatment, followed by enrolling 85 patients over a 2 year period into additional immunosuppression with intravenous (i.v.) methylprednisolone and i.v. cyclophosphamide. Our results showed that age, poor renal function and leucocytosis are the main predictors of fatal outcome. Immunosuppression regime rendered higher survival (6 out of 17 patients (35.3%)) versus historical control (1 out of 18 patients (5.6%)) (p = 0.041) in the cohort with admission eGFR < 50 ml/min/1.73 m(2) and WBC count > 11,000/μL. In contrast, there was no difference in survival with immunosuppression regime (38 out of 64 patients (59.4%)) compared to historical control (30 out of 52 patients (57.7%)) (p = 0.885) in those with eGFR > 50 ml/min/1.73 m(2) or WBC < 11,000/μL at presentation. Multivariable logistic regression showed survival probability = exp(logit)/(1 + exp(logit)), in which logit = 13.962 - (0.233 × ln(age (year))) - (1.344 × ln(creatinine (μmol/L))) - (1.602 × ln(rise in creatinine (μmol/day))) - (0.614 × ln(WBC (,000/μL))) + (2.021 × immunosuppression) and immunosuppression = 1 if given and 0 if not. Immunosuppression therapy yielded odds ratio of 0.132 (95% confidential interval: 0.029-0.603, p = 0.009). In conclusion, immunosuppression therapy with intravenous methylprednisolone and cyclophosphamide may counteract immune mediated inflammation after paraquat poisoning and improve survival of patients with admission eGFR < 50 ml/min/1.73 m(2) and WBC count > 11,000/μL.
  9. Manaharan T, Chakravarthi S, Radhakrishnan AK, Palanisamy UD
    Toxicol Rep, 2014;1:718-725.
    PMID: 28962285 DOI: 10.1016/j.toxrep.2014.09.006
    In this study, the acute and subchronic toxicity effect of the Syzygium aqueum leaf extract (SA) was evaluated. For the acute toxicity study, a single dose of 2000 mg/kg of the SA was given by oral-gavage to male Sprague-Dawley (SD) rats. The rats were observed for mortality and toxicity signs for 14 days. In the subchronic toxicity study the SA was administered orally at doses of 50, 100, and 200 mg/kg per day for 28 days to male SD rats. The animals were sacrificed at the end of the experiment. The parameters measured including food and water intake, body weight, absolute and relative organ weight, blood biochemical tests and histopathology observation. In both the acute and subchronic toxicity studies, SA did not show any visible signs of toxicity. There were also no significant differences between the control and SA treated rats in terms of their food and water intake, body weight, absolute and relative organ weight, biochemical parameters or gross and microscopic appearance of the organs. There were no acute or subchronic toxicity observed and our results indicate that this extract could be devoid of any toxic risk. This is the first in vivo study reported the safety and toxicity of SA.
  10. Parasuraman S, Raveendran R, Rajesh NG, Nandhakumar S
    Toxicol Rep, 2014;1:596-611.
    PMID: 28962273 DOI: 10.1016/j.toxrep.2014.08.006
    OBJECTIVE: To investigate the toxicological effects of cleistanthin A and cleistanthin B using sub-chronic toxicity testing in rodents.

    METHOD: Cleistanthins A and B were isolated from the leaves of Cleistanthus collinus. Both the compounds were administered orally for 90 days at the concentration of 12.5, 25 and 50 mg/kg, and the effects on blood pressure, biochemical parameters and histology were assessed. The dose for sub-chronic toxicology was determined by fixed dose method according to OECD guidelines.

    RESULT: Sub-chronic toxicity study of cleistanthins A and B spanning over 90 days at the dose levels of 12.5, 25 and 50 mg/kg (once daily, per oral) revealed a significant dose dependant toxic effect in lungs. The compounds did not have any effect on the growth of the rats. The food and water intake of the animals were also not affected by both cleistanthins A and B. Both the compounds did not have any significant effect on liver and renal markers. The histopathological analysis of both cleistanthins A and B showed dose dependent morphological changes in the brain, heart, lung, liver and kidney. When compared to cleistanthin A, cleistanthin B had more toxic effect in Wistar rats. Both the compounds have produced a dose dependent increase of corpora amylacea in brain and induced acute tubular necrosis in kidneys. In addition, cleistanthin B caused spotty necrosis of liver in higher doses.

    CONCLUSION: The present study concludes that both cleistanthin A and cleistanthin B exert severe toxic effects on lungs, brain, liver, heart and kidneys. They do not cause any significant pathological change in the reproductive system; neither do they induce neurodegenerative changes in brain. When compared to cleistanthin A, cleistanthin B is more toxic in rats.

  11. Sarkar T, Alam MM, Parvin N, Fardous Z, Chowdhury AZ, Hossain S, et al.
    Toxicol Rep, 2016;3:346-350.
    PMID: 28959555 DOI: 10.1016/j.toxrep.2016.03.003
    This study is aimed to assess the heavy metals contamination and health risk in Shrimp (Macrobrachium rosenbergii and Penaeus monodon) collected from Khulna-Satkhira region in Bangladesh. The results showed that the Pb concentrations (0.52-1.16 mg/kg) in all shrimp samples of farms were higher than the recommended limit. The Cd levels (0.05-0.13 mg/kg) in all samples and Cr levels in all farms except tissue content at Satkhira farm were higher than the permissible limits. The individual concentration of Pb, Cd, and Cr between shrimp tissue and shell in all rivers and farms were not statistically significant (P > 0.05). Target hazard quotient (THQ) and hazard index (HI) were estimated to assess the non-carcinogenic health risks. Shrimp samples from all locations under the current study were found to be safe for consumption, the possibility of health risk associated with non-carcinogenic effect is very low for continuous consumption for 30 years.
  12. Dessie BK, Mehari B, Tefera M, Osman M, Tsegaye Y, Gari SR, et al.
    Toxicol Rep, 2022;9:1777-1787.
    PMID: 36518487 DOI: 10.1016/j.toxrep.2022.09.006
    The objective of this study was to evaluate the association between exposure to heavy metals and oxidative DNA damage among residents living in the potentially more polluted downstream (Akaki-Kality) area of Addis Ababa, in comparison to the upstream area (Gullele). For this, 8-hydroxy-2'-deoxyguanosine (8-OHdG) was used as a biomarker for oxidative DNA damage and heavy metals (Fe, Zn, Mn, Cu, Ni, Cr, Pb, As) as indicators of exposure. The concentrations of heavy metals in nails were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES), and 8-OHdG in urine using Enzyme-Linked with Immunosorbent Assay (ELISA), from 95 residents of the two areas, upstream and downstream. The urinary 8-OHdG concentration was not significantly different (p = 0.05) between the two Sub-Cities, with mean of 18.50 ± 4.37 ng/mg Creatinine in Akaki-Kality and 17.30 ± 5.83 ng/mg Creatinine in Gullele. Also, there were no statistically significant (p = 0.05) difference among the different demographic groups according to gender, age, educational status, body mass index or habit of alcohol consumption. However, the interactions of sex with age, sex with alcohol consumption and alcohol consumption with education were found to affect the urinary 8-OHdG levels of residents of the two Sub-Cities. The mean concentrations (µg/g) of the elements were 488 and 1035 for Fe, 106 and 251 for Zn, 13.0 and 31.2 for Mn, 5.23 and 6.63 for Cu, 11.2 and 7.39 for Ni, 2.23 and 2.02 for Cr, 0.09 and 0.63 for Pb; and 0.16 and 0.25 for As, in nail samples from Akaki-Kality and Gullele, respectively. The determined concentrations of the heavy metals in nails were not significantly associated (p = 0.05) with the corresponding urinary levels of 8-OHdG. Hence, the observed 8-OHdG might have been caused by environmental exposure to toxic substances other than the analyzed heavy metals.
  13. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Toxicol Rep, 2022;9:759-768.
    PMID: 36518400 DOI: 10.1016/j.toxrep.2022.03.040
    Cathinone is the psychostimulatory major active ingredient of khat (Catha edulis Forsk) and are often co-abused with alcohols and polydrugs. With the increased consumption of khat and cathinones on a global scale, efforts should be channelled into understanding and minimising the excruciating effects of possible khat-drug interactions. This study aimed to determine the in vitro inhibitory effects of cathinone on CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 and the in silico identification of their type of interactions and residues involved. The activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were examined by fluorescence based assays using recombinant cDNA-expressed human CYPs in Vivid® P450 screening kits. Cathinone reversibly inhibited CYP1A2, CYP2A6 and CYP3A5 via competitive, uncompetitive and noncompetitive modes with inhibition constant (Ki) values of 57.12, 13.75 and 23.57 µM respectively. Cathinone showed negligible inhibitory effects on CYP2B6, CYP2C8, CYP2C19, CYP2E1 and CYP2J2. Cathinone showed negligible time dependent inhibition on all 8 CYPs. Docking studies was performed on cathinone with CYP1A2, CYP2A6 and CYP3A5 following their inhibition in vitro. Cathinone is bound to a few key amino acid residues in the active sites while π-π interactions are formed in aromatic clusters of CYP1A2 and CYP3A5. These findings offer valuable reference for the use of cathinones and khat when combined with therapeutic drugs that are metabolised by CYP enzymes especially patients on medications metabolised by CYP1A2, CYP2A6 and CYP3A5.
  14. Usman S, Razis AFA, Shaari K, Azmai MNA, Saad MZ, Isa NM, et al.
    Toxicol Rep, 2022;9:1369-1379.
    PMID: 36518379 DOI: 10.1016/j.toxrep.2022.05.001
    Microplastics (MPs) have become emerging pollutants of public health concern, due to their impact on aqua-terrestrial ecosystems and integration into the food web, with evidence of human exposure and unrevealed health implications. There is a paucity of information regarding the effects of MPs exposure on the gut system using metagenomic and metabolomic approaches. In this study, Javanese medaka fish was exposed to 5 µm beads of polystyrene microplastics (PS-MPs) suspensions, at concentrations of 100 μg/L (MP-LOW), 500 μg/L (MP-MED), and 1000 μg/L (MP-HIGH), for a duration of 21 days, and evaluated for gut microbiome and metabolome responses. The results revealed a significant reduction (p < 0.05) in richness and diversity of the gut microbiome in the MP-HIGH group, and identification of 7 bacterial genera as differential features by the Linear discriminant analysis Effect Size (LEfSe). The gut metabolic profile revealed upregulation of 9 metabolites related to energy metabolism, via tricarboxylic acid cycle (TCA), creatine pathway, and urea cycle, as determined by the pathway analysis. Furthermore, positive correlation was found between the genus Aeromonas and glucose, lactate, and creatine metabolites. The study revealed that PS-MPs exposure resulted in altered bacterial microbiome and metabolic disorder related to energy metabolism. It further provided additional data on gut bacterial genera and metabolites associated with MPs toxicity in aquatic organism, which will inevitably enable its future health risks assessment in animals and possibly humans.
  15. Subramaniyan V, Lubau NSA, Mukerjee N, Kumarasamy V
    Toxicol Rep, 2023 Dec;11:355-367.
    PMID: 37868808 DOI: 10.1016/j.toxrep.2023.10.005
    Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.
  16. Maurya PK, Malik DS, Yadav KK, Kumar A, Kumar S, Kamyab H
    Toxicol Rep, 2019;6:472-481.
    PMID: 31193923 DOI: 10.1016/j.toxrep.2019.05.012
    This paper assesses the potential human health risks posed by five heavy metals (Zn, Pb, Cu, Cd, and Cr) found in seven most consumable fish species (Cirrhinus mrigala, Cirrhinus reba, Catla catla, Lebio rohita, Crossocheilus latius, Clupisoma garua, and Mystus tengara) collected from local markets of Varanasi, Allahabad, Mirzapur, and Kanpur of Uttar Pradesh, India. The Cu concentration was found at Varanasi (4.58 mg/l), Allahabad (2.54 mg/l), and Mirzapur (2.54 mg/l). Pb was recorded 0.54, 0.62, 0.85, and 0.24 mg/l at Kanpur, Allahabad, Mirzapur, and Varanasi, respectively. The Cd concentration was recorded 0.54, 0.68, 0.78, and 0.85 mg/l at Kanpur, Allahabad, Mirzapur, and Varanasi, respectively. The Cr, Cd, and Pb concentrations in the river water were observed over the prescribed safe limits at all sampling sites, while Cu concentration was higher than the standards at all sites except Kanpur. However, Zn was observed under the permissible limits (15 mg/l) at all sampling sites. In case of fish tissues, WHO reported the concentration of Pb, Cd, and Cr higher than the prescribed safe limits. The results determined that the highest heavy metals accumulation was found settled in the liver of all selected fish species. Zn ranked the highest quantity, which was found in fish tissues with the concentration of 32.41 ± 2.55 μg/g in the gill of C. catla and 4.77 ± 0.34 μg/g in the gill C. Reba. The metals followed the magnitude order of Zn > Pb > Cu > Cd > Cr in selected fish tissues.
  17. Subramaniyan V, Chakravarthi S, Jegasothy R, Seng WY, Fuloria NK, Fuloria S, et al.
    Toxicol Rep, 2021;8:376-385.
    PMID: 33680863 DOI: 10.1016/j.toxrep.2021.02.010
    One of the global burdens of health care is an alcohol-associated liver disease (ALD) and liver-related death which is caused due to acute or chronic consumption of alcohol. Chronic consumption of alcohol damage the normal defense mechanism of the liver and likely to disturb the gut barrier system, mucosal immune cells, which leads to decreased nutrient absorption. Therapy of ALD depends upon the spectrum of liver injury that causes fatty liver, hepatitis, and cirrhosis. The foundation of therapy starts with abstinence from alcohol. Corticosteroids are used for the treatment of ALD but due to poor acceptance, continuing mortality, and identification of tumor necrosis factor-alpha as an integral component in pathogenesis, recent studies focus on pentoxifylline and, antitumor necrosis factor antibody to neutralize cytokines in the therapy of severe alcoholic hepatitis. Antioxidants also play a significant role in the treatment but till today there is no universally accepted therapy available for any stage of ALD. The treatment aspects need to restore the gut functions and require nutrient-based treatments to regulate the functions of the gut system and prevent liver injury. The vital action of saturated fatty acids greatly controls the gut barrier. Overall, this review mainly focuses on the mechanism of alcohol-induced metabolic dysfunction, contribution to liver pathogenesis, the effect of pregnancy, and targeted therapy of ALD.
  18. Qayoom I, Balkhi M, Mukhtar M, Abubakr A, Siddiqui U, Khan S, et al.
    Toxicol Rep, 2024 Jun;12:253-259.
    PMID: 38379553 DOI: 10.1016/j.toxrep.2024.02.002
    Organophosphate insecticide spray poses potential threat of contamination of environmental components their accumulation in aquatic organisms. Although various physiological deficits associated with their exposure in fishes are documented, yet their retention in their edible muscle tissues has been poorly studied. In this context, the study was undertaken to ascertain the bioaccumulation of two organophosphate insecticide compounds (dimethoate and chlorpyrifos) in the muscles of juvenile Cyprinus carpio. The study could provide insight into the risks to human health associated with consuming contaminated fish flesh. The fishes exposed to various concentrations of dimethoate and chlorpyrifos in-vivo for 96 to ascertain the uptake and retention of these insecticides in the muscle. Results indicated that fish muscles accumulated the residues at all the concentrations with the recovery of 2.99% (0.032 ppm) of dimethoate exposed to LC50 concentrations. In contrast, the chlorpyrifos residues were found Below the Detection Level (BDL) in the fishes exposed to LC50 concentrations. The percentage bioaccumulation of dimethoate in fish muscle was 88.10%, and that of chlorpyrifos was BDL. The bio-concentration factor was dose-dependent and increased with increasing doses of both insecticides. The study invites attention to human health risk assessment in the regions where contaminated fish are consumed without scientific supervision.
  19. Rahman F, Ismail A, Omar H, Hussin MZ
    Toxicol Rep, 2017;4:502-506.
    PMID: 28959680 DOI: 10.1016/j.toxrep.2017.09.003
    The Milky stork is listed as an endangered species endemic to the Southeast Asia region. In Malaysia, the population is currently being reintroduced back into the wild. However, the increase of anthropogenic activity throughout the coastal area might expose the population to hazardous chemicals such as heavy metals. This study highlights the contamination of cadmium (Cd) and lead (Pb) in the Milky stork's diet. Additionally, this is the first time an integrated exposure model being used to assess heavy metal exposure risk to the population. Lead level (5.5-7.98 mg kg-1) in particular was relatively high compared to Cd (0.08-0.33 mg kg-1). This was probably related to the different niches occupied by the species in the aquatic environment. The results further show that the predicted exposure doses (through intake of both food and water) for all metals are much lower than the Tolerable Daily Intake (TDI) values. The total exposure dose for Cd was 0.11 mg kg-1 d-1 with TDI value of 0.54 mg kg-1 d-1 while Pb total exposure dose was 0.31 mg kg-1 d-1 with TDI value of 0.64 mg kg-1 d-1. Several possible factors that could lead to the observed pattern were discussed. In conclusion, there is an urgent need to improve the current habitat quality to protect the endangered species. The authors also emphasized on the protection of remaining Milky stork's habitats i.e. mudflats and mangroves and the creation of buffer zone to mitigate the negative impacts that may arise from pollution activity.
  20. Jahan S, Yusoff IB, Alias YB, Bakar AFBA
    Toxicol Rep, 2017;4:211-220.
    PMID: 28959641 DOI: 10.1016/j.toxrep.2017.04.001
    Presently, engineered nanomaterials (ENMs) are used in a wide variety of commercial applications, resulting in an uncontrolled introduction into the aquatic environment. The purpose of this review is to summarize the pathways and factors that controlling the transport and toxicity of five extensively used ENMs. These toxicological pathways are of great importance and need to be addressed for sustainable implications of ENMs without environmental liabilities. Here we discuss five potentially utilized ENMs with their possible toxicological risk factors to aquatic plants, vertebrates model and microbes. Moreover, the key effect of ENMs surface transformations by significant reaction with environmental objects such as dissolved natural organic matter (DOM) and the effect of ENMs surface coating and surface charge will also be debated. The transformations of ENMs are subsequently facing a major ecological transition that is expected to create a substantial toxicological effect towards the ecosystem. These transformations largely involve chemical and physical processes, which depend on the properties of both ENMs and the receiving medium. In this review article, the critical issues that controlling the transport and toxicity of ENMs are reviewed by exploiting the latest reports and future directions and targets are keenly discussed to minimize the pessimistic effects of ENMs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links