Displaying publications 1 - 20 of 126 in total

Abstract:
Sort:
  1. Bin Mokaizh AA, Nour AH, Kerboua K
    Ultrason Sonochem, 2024 Mar 18;105:106852.
    PMID: 38518410 DOI: 10.1016/j.ultsonch.2024.106852
    The "ultrasonic-assisted extraction (UAE)" method was utilized in this work to assess how different process parameters affected the yield and recovery of phenolic compounds from the leaf of Commiphora gileadensis, which is one of the medicinal plants with a variety of biological functions. Its leaf is used for a various of therapeutic applications, such as the treatment of bacterial infections, inflammation, and wound healing. The "One-Factor-At-a-Time (OFAT)" approach was employed to examine the impacts of various UAE process parameters on the process of extraction, which include time of extraction, sample/solvent ratio, ultrasonic frequency, and solvent (ethanol) concentration. The extracts were then investigated for the presence of several phytochemicals using analytical techniques such as "Gas Chromatography-Mass Spectroscopy (GC-MS)" and "Fourier Transform Infrared Spectroscopy (FTIR)" studies. The findings showed that the maximum extraction yield, the total phenolic content (TPC), and the total flavonoids content (TFC) of the ethanolic extract of the leaves of C. gileadensis using the UAE method were at 31.80 ± 0.41 %, 96.55 ± 2.81 mg GAE/g d.w. and 31.66 ± 2.01 mg QE/g d.w. accordingly under a procedure duration of 15 min, ultrasonic frequency of 20 kHz, solvent/sample ratio of 1:20 g/mL, and solvent concentration of 40 % v/v. The leaves extract of C. gileadensis included 25 phenolic compounds that were previously unreported, and GC-MS analysis confirmed their presence. Hence, it follows that the UAE technique can successfully extract the phytochemicals from C. gileadensis for a variety of therapeutic uses.
  2. Yan Sim X, He N, Mohamed Abdul P, Keong Yeap S, Woh Hui Y, Foong Tiang M, et al.
    Ultrason Sonochem, 2024 Mar;104:106811.
    PMID: 38394823 DOI: 10.1016/j.ultsonch.2024.106811
    Durian peel, an abundant waste in Malaysia could be a potential substrate for fermentable sugar recovery for value-added biochemical production. Common pretreatment such as acid or alkaline pretreatment resulted in the need for extensive solid washing which generated wastewater. Herein, this study aims to introduce sonication on top of chemical pretreatment to destruct lignin and reduce the chemical usage during the durian peel pretreatment process. In this study, the morphology and the chemical composition of the pretreated durian peels were studied. The sugar yield produced from the chemical pretreatment and the combined ultrasound and chemical pretreatment were compared. The morphology and chemical structure of durian peels were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) analysis and X-ray diffraction (XRD). The SEM images showed that the structural change became more significant when sonication was introduced. Second, XRD profile indicated a relatively higher crystallinity index and FTIR spectra displayed a lower intensity of lignin and hemicellulose for ultrasound plus alkaline (UB) pretreatment as compared to acid, alkaline and ultrasound plus acid (UA) pretreatment. UB and UA pretreatment portrayed higher yield (376.60 ± 12.14 and 237.38 ± 3.96 mg reducing sugar/g dry biomass, respectively) than their controls without the application of ultrasound. Therefore, it could be concluded that ultrasound was able to intensify the fermentable sugar recovery from durian peel by inducing physical and chemical effect of cavitation to alter the morphology of durian peel. Fermentation of UB treated durian peel resulted in 2.68 mol hydrogen/mol consumed sugar and 131.56 mL/Lmedium/h of hydrogen productivity. This study is important because it will shed light on a way to handle durian waste disposal problems and generate fermentable sugars for the production of high value-added products.
  3. Wu X, Sivakumar M, Lim SS, Wu T, Heng PC
    Ultrason Sonochem, 2024 Feb;103:106782.
    PMID: 38309050 DOI: 10.1016/j.ultsonch.2024.106782
    This study investigates a prospective and straightforward method for producing graphene material derived from biomass, examining the influence of plant cell composition and functions. The experimental outcomes highlight ultrasound's crucial role in synthesizing graphene material sourced from biomass. Ultrasound, a pivotal element in the experiment, significantly affects graphene production from biomass by working synergistically with the liquid components in the solvent system. Notably, the ethanol content reduces the solution's surface tension, facilitating the effective dispersion of biochar and graphene oxide sheets throughout the process. Simultaneously, the water content maintains the solution's polarity, enhancing the cavitation effect induced by ultrasound. Biomass-derived graphene is exfoliated utilizing an ultrasonic bath system (134.4 W, 40 kHz, 0.5 W/cm2) from biochar. The as-synthesized graphene oxide exhibits a structure comprising a few layers while remaining intact, featuring abundant functional groups. Interestingly, the resulting product displays nanopores with an approximate diameter of 100 nm. These nanopores are attributed to preserving specific cell structures, particularly those with specialized cell wall structures or secondary metabolite deposits from biomass resources. The study's findings shed light on the impact of cellular structure on synthesizing graphene material sourced from biomass, emphasizing the potential application of ultrasound as a promising approach in graphene production.
  4. Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, et al.
    Ultrason Sonochem, 2023 Dec;101:106702.
    PMID: 38041881 DOI: 10.1016/j.ultsonch.2023.106702
    Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
  5. Nugroho RWN, Tardy BL, Eldin SM, Ilyas RA, Mahardika M, Masruchin N
    Ultrason Sonochem, 2023 Oct;99:106581.
    PMID: 37690260 DOI: 10.1016/j.ultsonch.2023.106581
    Cellulose nanocrystals (CNCs) are typically extracted from plants and present a range of opto-mechanical properties that warrant their use for the fabrication of sustainable materials. While their commercialization is ongoing, their sustainable extraction at large scale is still being optimized. Ultrasonication is a well-established and routinely used technology for (re-) dispersing and/or isolating plant-based CNCs without the need for additional reagents or chemical processes. Several critical ultrasonication parameters, such as time, amplitude, and energy input, play dominant roles in reducing the particle size and altering the morphology of CNCs. Interestingly, this technology can be coupled with other methods to generate moderate and high yields of CNCs. Besides, the ultrasonics treatment also has a significant impact on the dispersion state and the surface chemistry of CNCs. Accordingly, their ability to self-assemble into liquid crystals and subsequent superstructures can, for example, imbue materials with finely tuned structural colors. This article gives an overview of the primary functions arising from the ultrasonication parameters for stabilizing CNCs, producing CNCs in combination with other promising methods, and highlighting examples where the design of photonic materials using nanocrystal-based celluloses is substantially impacted.
  6. Sabaruddin FA, Megashah LN, Shazleen SS, Ariffin H
    Ultrason Sonochem, 2023 Oct;99:106572.
    PMID: 37696213 DOI: 10.1016/j.ultsonch.2023.106572
    The utilization of agricultural residues to obtain biocompounds of high-added value has significantly increased in the past decades. The conversion of agro-based residues into valuable products appears to be an economically efficient, environment-friendly, and protracted waste management practice. The implementation of ultrasonic technologies in the conversion of value-added goods from agricultural waste materials through pre-treatment and valorization processes has imparted many advantageous effects including rapid processing, effective process performance, minimization of processing steps, minimal dependency on harmful chemicals, and an increased yield and properties of bio-products. To further enliven the literature and inspire new research investigations, this review covers the comprehensive work including theoretical principles, processes, and potential benefits of ultrasonic treatment technologies to assist the production of bio-products which emphasize the extraction yield and the characteristic of the end-product extracted from agriculture residues. A detailed evaluation of these methods and key aspects impacting their performance as well as the features and shortcomings of each ultrasound-assisted approach is also discussed. This review also addressed some of the challenges associated with using ultrasonic irradiation and proposed several potential techniques to maximize productivity. Understanding the concept of ultrasonication technique allow the academician and industrial practitioners to explore the possibility of applying a greener and sustainable approach of biomass extraction to be translated into higher scale production of commercial products.
  7. Loke YL, Beishenaliev A, Wang PW, Lin CY, Chang CY, Foo YY, et al.
    Ultrason Sonochem, 2023 Jun;96:106437.
    PMID: 37187119 DOI: 10.1016/j.ultsonch.2023.106437
    Sonodynamic therapy (SDT) emerges as a promising non-invasive alternative for eradicating malignant tumours. However, its therapeutic efficacy remains limited due to the lack of sonosensitisers with high potency and biosafety. Previously, gold nanorods (AuNRs) have been extensively studied for their applications in photodynamic or photothermal cancer therapy, but their sonosensitising properties are largely unexplored. Here, we reported the applicability of alginate-coated AuNRs (AuNRsALG) with improved biocompatibility profiles as promising nanosonosensitisers for SDT for the first time. AuNRsALG were found stable under ultrasound irradiation (1.0 W/cm2, 5 min) and maintained structural integrity for 3 cycles of irradiation. The exposure of the AuNRsALG to ultrasound irradiation (1.0 W/cm2, 5 min) was shown to enhance the cavitation effect significantly and generate a 3 to 8-fold higher amount of singlet oxygen (1O2) than other reported commercial titanium dioxide nanosonosensitisers. AuNRsALG exerted dose-dependent sonotoxicity on human MDA-MB-231 breast cancer cells in vitro, with ∼ 81% cancer cell killing efficacy at a sub-nanomolar level (IC50 was 0.68 nM) predominantly through apoptosis. The protein expression analysis showed significant DNA damage and downregulation of anti-apoptotic Bcl-2, suggesting AuNRsALG induced cell death through the mitochondrial pathway. The addition of mannitol, a reactive oxygen species (ROS) scavenger, inhibited cancer-killing effect of AuNRsALG-mediated SDT, further verifying that the sonotoxicity of AuNRsALG is driven by the production of ROS. Overall, these results highlight the potential application of AuNRsALG as an effective nanosonosensitising agent in clinical settings.
  8. Braim FS, Razak NNANA, Aziz AA, Dheyab MA, Ismael LQ
    Ultrason Sonochem, 2023 Mar 15;95:106371.
    PMID: 36934677 DOI: 10.1016/j.ultsonch.2023.106371
    The incorporation of additional functional groups such as bismuth nanoparticles (Bi NPs) into magnetite nanoparticles (Fe3O4 NPs) is critical for their properties modification, stabilization, and multi-functionalization in biomedical applications. In this work, ultrasound has rapidly modified iron oxide (Fe3O4) NPs via incorporating their surface through coating with Bi NPs, creating unique Fe3O4@Bi composite NPs. The Fe3O4@Bi nanocomposites were synthesized and statistically optimized using an ultrasonic probe and response surface methodology (RSM). A face-centered central composite design (FCCD) investigated the effect of preparation settings on the stability, size, and size distribution of the nanocomposite. Based on the numerical desirability function, the optimized preparation parameters that influenced the responses were determined to be 40 ml, 5 ml, and 12 min for Bi concentration, sodium borohydride (SBH) concentration, and sonication time, respectively. It was found that the sonication time was the most influential factor in determining the responses. The predicted values for the zeta potential, hydrodynamic size, and polydispersity index (PDI) at the highest desirability solution (100%) were -45 mV, 122 nm, and 0.257, while their experimental values at the optimal preparation conditions were -47.1 mV, 125 nm, and 0.281, respectively. Dynamic light scattering (DLS) result shows that the ultrasound efficiently stabilized and functionalized Fe3O4NPs following modification to Fe3O4@Bi NPs, improved the zeta potential value from -33.5 to -47.1 mV, but increased the hydrodynamic size from 98 to 125 nm. Energy dispersive spectroscopy (EDX) validated the elemental compositions and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of Sumac (Rhus coriaria) compounds in the composition of the nanocomposites. The stability and biocompatibility of Fe3O4@Bi NPs were improved by using the extract solution of the Sumacedible plant. Other physicochemical results revealed that Fe3O4NPs and Fe3O4@Bi NPs were crystalline, semi-spherical, and monodisperse with average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization (Ms) values were found to be 132.33 emu/g and 92.192 emu/g, respectively. In vitro cytotoxicity of Fe3O4@Bi NPs on the HEK-293 cells was dose- and time-dependent. Based on our findings, the sonochemical approach efficiently produced (and RSM accurately optimized) an extremely stable, homogeneous, and biocompatible Fe3O4@Bi NPs with multifunctional potential for various biomedical applications.
  9. Aslam R, Alam MS, Ali A, Tao Y, Manickam S
    Ultrason Sonochem, 2023 Jan;92:106268.
    PMID: 36543045 DOI: 10.1016/j.ultsonch.2022.106268
    The enzymatic browning induced in amla juice due to the high activity of polyphenol oxidase (PPO) and peroxidase (POD) is one of the critical issues faced by the industry. The present study assessed the suitability of non-thermal, high-intensity ultrasound (US) on the inactivation of PPO and POD in fresh Indian Gooseberry juice. Ultrasonic waves, using a 6 mm titanium alloy probe were irradiated in the juice at a maximum power of 455 W and frequency of 20 kHz. The subsequent effects on biochemical attributes were studied using response surface methodology. Inactivation rates of 90.72 % and 73.18 %, respectively, for PPO and POD enzymes, were observed at the highest US intensity and exposure time. Numerical optimisation using the three-factor, three-level Box-Behnken design suggested that an optimum process at 70 % (energy density: 1610 Wcm-2) pulsed at 5 s on and 5 s off for 7 min 30 s resulted in PPO and POD inactivation of the order of 76.42 % and 64.57 % respectively. At these experimental conditions, the optimized levels of biochemical attributes i.e., ascorbic acid (738.50 mg/100 mL), total phenols (17.10 mg/mL), DPPH antioxidant activity (58.47 %), tannins (7.11 µg/mL), colour change (ΔE = 9.04) and flavonoids (6.14 mg/mL) were achieved. The overall statistical models were significant for all the responses except for reducing sugars. Furthermore, the approximation equations for individual responses indicated that the goodness of fit was adequate (R2 > 0.90). The results suggested that ultrasound is a suitable processing technique for amla juice stabilisation compared to thermal treatments that result in the loss of quality.
  10. Thilakarathna RCN, Siow LF, Tang TK, Chan ES, Lee YY
    Ultrason Sonochem, 2023 Jan;92:106280.
    PMID: 36587443 DOI: 10.1016/j.ultsonch.2022.106280
    Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded 
  11. Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, et al.
    Ultrason Sonochem, 2022 Nov;90:106194.
    PMID: 36242792 DOI: 10.1016/j.ultsonch.2022.106194
    Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.
  12. Hoo DY, Low ZL, Low DYS, Tang SY, Manickam S, Tan KW, et al.
    Ultrason Sonochem, 2022 Nov;90:106176.
    PMID: 36174272 DOI: 10.1016/j.ultsonch.2022.106176
    With rising consumer demand for natural products, a greener and cleaner technology, i.e., ultrasound-assisted extraction, has received immense attention given its effective and rapid isolation for nanocellulose compared to conventional methods. Nevertheless, the application of ultrasound on a commercial scale is limited due to the challenges associated with process optimization, high energy requirement, difficulty in equipment design and process scale-up, safety and regulatory issues. This review aims to narrow the research gap by placing the current research activities into perspectives and highlighting the diversified applications, significant roles, and potentials of ultrasound to ease future developments. In recent years, enhancements have been reported with ultrasound assistance, including a reduction in extraction duration, minimization of the reliance on harmful chemicals, and, most importantly, improved yield and properties of nanocellulose. An extensive review of the strengths and weaknesses of ultrasound-assisted treatments has also been considered. Essentially, the cavitation phenomena enhance the extraction efficiency through an increased mass transfer rate between the substrate and solvent due to the implosion of microbubbles. Optimization of process parameters such as ultrasonic intensity, duration, and frequency have indicated their significance for improved efficiency.
  13. Low SS, Yew M, Lim CN, Chai WS, Low LE, Manickam S, et al.
    Ultrason Sonochem, 2022 Jan;82:105887.
    PMID: 34954629 DOI: 10.1016/j.ultsonch.2021.105887
    Ultrasound (US) demonstrates remarkable potential in synthesising nanomaterials, particularly nanobiomaterials targeted towards biomedical applications. This review briefly introduces existing top-down and bottom-up approaches for nanomaterials synthesis and their corresponding synthesis mechanisms, followed by the expounding of US-driven nanomaterials synthesis. Subsequently, the pros and cons of sono-nanotechnology and its advances in the synthesis of nanobiomaterials are drawn based on recent works. US-synthesised nanobiomaterials have improved properties and performance over conventional synthesis methods and most essentially eliminate the need for harsh and expensive chemicals. The sonoproduction of different classes and types of nanobiomaterials such as metal and superparamagnetic nanoparticles (NPs), lipid- and carbohydrate-based NPs, protein microspheres, microgels and other nanocomposites are broadly categorised based on the physical and/or chemical effects induced by US. This review ends on a good note and recognises US-driven synthesis as a pragmatic solution to satisfy the growing demand for nanobiomaterials, nonetheless some technical challenges are highlighted.
  14. Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, et al.
    Ultrason Sonochem, 2021 Dec;80:105805.
    PMID: 34706321 DOI: 10.1016/j.ultsonch.2021.105805
    Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
  15. Zakaria F, Tan JK, Mohd Faudzi SM, Abdul Rahman MB, Ashari SE
    Ultrason Sonochem, 2021 Dec;81:105851.
    PMID: 34864545 DOI: 10.1016/j.ultsonch.2021.105851
    The optimisation of the Ultrasound-Assisted Extraction (UAE) method was investigated by employing the Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). The UAE method was based on a simple ultrasound treatment using methanol as the extraction medium to facilitate the cell disruption of Mitragyna speciosa leaves for optimum extraction yield and Total Phenolic Content (TPC). Three different parameters comprising extraction temperature (X1: 25-50 °C), sonication time (X2: 15-50 min), and solvent to solid ratio (X3: 10-30 mL/g), and were selected as the independent variables, while two response variables were selected, namely extraction yield (Y1) and TPC (Y2). Based on the results, the developed quadratic polynomial model correlated with the experimental data is based on the coefficient of determination (R2) of extraction yield (0.9972, p 
  16. Chu JK, Tiong TJ, Chong S, Asli UA, Yap YH
    Ultrason Sonochem, 2021 Nov 05;80:105818.
    PMID: 34781044 DOI: 10.1016/j.ultsonch.2021.105818
    Recently, multi-frequency systems were reported to improve performance in power ultrasound applications. In line with this, digital prototyping of multi-frequency sonoreactors also started gaining interest. However, the conventional method of simulating multi-frequency acoustic pressure fields in the time-domain led to many challenges and limitations. In this study, a multi-frequency sonoreactor was characterised using frequency domain simulations in 2-D. The studied system consists of a hexagonal sonoreactor capable of operating at 28, 40 and 70 kHz. Four frequency combinations were studied: 28-40, 28-70, 40-70 and 28-40-70 kHz. A semi-empirical, modified Commander and Prosperetti model was used to describe the bubbly-liquid effects in the sonoreactor. The root-mean-squared acoustic pressure was compared against experimental validation results using sonochemiluminescence (SCL) images and was noted to show good qualitative agreement with SCL results in terms of antinode predictions. The empirical phase speed calculated from SCL measurements was found to be important to circumvent uncertainties in bubble parameter specifications which reduces error in the simulations. Additionally, simulation results also highlighted the importance of geometry in the context of optimising the standing wave magnitudes for each working frequency due to the effects of constructive and destructive interference.
  17. Hashemi Moosavi M, Mousavi Khaneghah A, Javanmardi F, Hadidi M, Hadian Z, Jafarzadeh S, et al.
    Ultrason Sonochem, 2021 Nov;79:105755.
    PMID: 34562735 DOI: 10.1016/j.ultsonch.2021.105755
    Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018-2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar" was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.
  18. Omer N, Choo YM, Ahmad N, Mohd Yusof NS
    Ultrason Sonochem, 2021 Nov;79:105793.
    PMID: 34673338 DOI: 10.1016/j.ultsonch.2021.105793
    Pandan (Pandanus amaryllifolius) is commonly used as a food ingredient in Southeast Asia due to its delicious flavor, appetizing aroma and bright green colour. Pandan plant is uniquely found only in certain parts of the world. Despite its increasing popularity worldwide, its export market is limited by practical issues. One of the main problems for exporting Pandan to global market is its stability during transport. Due to the volatility of its active constituent, the functional properties of Pandan are lost during storage and shipment. In this study, we explored the ability of ultrasound processing technology to encapsulate the aromatic Pandan extract using lysozyme or chitosan as a shell material. 20 kHz ultrasonicator was used to encapsulate the pandan extract at 150 W of applied power. Two parameters, the ultrasonic probe tip and the core-to-shell ratio were varied to control the properties of the encapsulates. The diameters of the probe tip used were 0.3 and 1.0 cm. The core-to-shell volume ratios used were 1:160 and 1:40. The size distribution and the stability of the synthesized microspheres were characterized to understand and explore the possible parameters variation impact. Both size and size distribution of the microspheres were found to be influenced by the parameters varied to certain extent. The results showed that the mean size of the microspheres was generally smallest when using 1 cm probe tip with lower core-to-shell volume ratio but largest when using the 3 mm tip with higher core-to-shell volume ratio. This indicates that the sonication parameters could be fine-tuned to achieve the encapsulation of Pandan extract for storage and export. The pandan-encapsulated microspheres were also found to be stable during storage at least for one month.
  19. Sergeev A, Shilkina N, Motyakin M, Barashkova I, Zaborova V, Kanina K, et al.
    Ultrason Sonochem, 2021 Oct;78:105751.
    PMID: 34534797 DOI: 10.1016/j.ultsonch.2021.105751
    Methods of NMR relaxation and differential scanning calorimetry (DSC) were used to study the crystallization of anhydrous milk fat (AMF) obtained from milk and subjected to ultrasonic (US) processing. Amongst the changes in the crystallization nature under the influence of ultrasound are the decrease in the crystallization temperature and the increase in the melting enthalpy of the anhydrous milk fat samples. The increase is ∼30% at 20 min of isothermal crystallization and is presumably explained by the additional formation of β'-form crystals from the melt. The parameters of the Avrami equation applied to the description of experimental data show an increase in the crystallization rate in samples with ultrasonic treatment and a change in the dimension of crystallization with a change in melting temperature.
  20. Sergeev A, Motyakin M, Barashkova I, Zaborova V, Krasulya O, Yusof NSM
    Ultrason Sonochem, 2021 Sep;77:105673.
    PMID: 34311321 DOI: 10.1016/j.ultsonch.2021.105673
    The effect of ultrasound treatment on molecular mobility and organization of the main components in raw goat milk was studied by EPR and NMR spectroscopies. NMR relaxation studies showed an increase in the spin-lattice T1 and spin-spin T2 relaxation times in goat milk products (cream, anhydrous fat) and change in the diffusion of proton-containing molecules during ultrasound treatment. The diffusion became more uniform and could be rather accurately approximated by one effective diffusion coefficient Deff, which indicates homogenization of goat milk components, dispersion of globular and supermicellar formations under sonication. EPR studies have shown that molecular mobility and organization of hydrophobic regions in goat milk are similar to those observed in micellar formations of surfactants with a hydrocarbon chain length C12-C16. Ultrasound treatment did not affect submicellar and protein globule organization. Free radicals arising under ultrasound impact of milk reacted quickly with components of goat milk (triglycerides, proteins, fatty acids) and were not observed by spin trapping method.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links