Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Jajere SM, Atsanda NN, Bitrus AA, Hamisu TM, Goni MD
    Vet World, 2018 May;11(5):598-605.
    PMID: 29915497 DOI: 10.14202/vetworld.2018.598-605
    Background and Aim: Bovine tuberculosis (bTB) still remains a major zoonotic bacterial disease affecting livestock and humans worldwide. The disease remains a poorly managed tropical disease in most developing countries of the world; where in addition to productivity losses and significance in international trade, it posed a major public health threat to both humans and animals. A retrospective study was designed to investigate the occurrence of bTB lesions at Bauchi municipal abattoir.

    Materials and Methods: The study utilized abattoir records spanning a period of 10 years (2004-2013). The records indicated that a total of 1,08,638 heads of cattle comprising n = 56,070 males and n = 52,570 females were slaughtered at the municipal abattoir during the study period.

    Result: Of these heads, n = 1230 (1.13%) (95% confidence interval [CI]: 1.07, 1.19) had tuberculous lesions. The annual occurrence during the study period varied significantly (p<0.001) from 0.53% (95% CI: 0.40, 0.67) to 1.87% (95% CI: 1.66, 2.10) in 2010 and 2012, respectively. Females had a significantly higher (p<0.001) prevalence of 2.10% (95% CI: 1.98, 2.23) compared with the males 0.23% (95% CI: 0.19, 0.27). The distribution of suspected gross bTB lesions in different organs showed 11.87% in the lungs, 5.93% in the liver, 1.14% in the heart, and 0.49% accounted for generalized bTB. However, none was observed on the lymph nodes and intestines.

    Conclusion: It can be concluded that bTB persists in Bauchi State with annual variations during the study period. This study highlights the importance of meat inspection as an important tool for detecting the presence of bTB lesions.

  2. Jajere SM
    Vet World, 2019;12(4):504-521.
    PMID: 31190705 DOI: 10.14202/vetworld.2019.504-521
    Salmonella genus represents the most common foodborne pathogens frequently isolated from food-producing animals that is responsible for zoonotic infections in humans and animal species including birds. Thus, Salmonella infections represent a major concern to public health, animals, and food industry worldwide. Salmonella enterica represents the most pathogenic specie and includes > 2600 serovars characterized thus far. Salmonella can be transmitted to humans along the farm-to-fork continuum, commonly through contaminated foods of animal origin, namely poultry and poultry-related products (eggs), pork, fish etc. Some Salmonella serovars are restricted to one specific host commonly referred to as "host-restricted" whereas others have broad host spectrum known as "host-adapted" serovars. For Salmonella to colonize its hosts through invading, attaching, and bypassing the host's intestinal defense mechanisms such as the gastric acid, many virulence markers and determinants have been demonstrated to play crucial role in its pathogenesis; and these factors included flagella, capsule, plasmids, adhesion systems, and type 3 secretion systems encoded on the Salmonella pathogenicity island (SPI)-1 and SPI-2, and other SPIs. The epidemiologically important non-typhoidal Salmonella (NTS) serovars linked with a high burden of foodborne Salmonella outbreaks in humans worldwide included Typhimurium, Enteritidis, Heidelberg, and Newport. The increased number of NTS cases reported through surveillance in recent years from the United States, Europe and low- and middle-income countries of the world suggested that the control programs targeted at reducing the contamination of food animals along the food chain have largely not been successful. Furthermore, the emergence of several clones of Salmonella resistant to multiple antimicrobials worldwide underscores a significant food safety hazard. In this review, we discussed on the historical background, nomenclature and taxonomy, morphological features, physical and biochemical characteristics of NTS with a particular focus on the pathogenicity and virulence factors, host specificity, transmission, and antimicrobial resistance including multidrug resistance and its surveillance.
  3. Anjur N, Sabran SF, Daud HM, Othman NZ
    Vet World, 2021 May;14(5):1143-1152.
    PMID: 34220115 DOI: 10.14202/vetworld.2021.1143-1152
    Malaysia is the world's major producer and exporter of ornamental fish, contributing 9% to the global trade and taking the second position after Singapore. Because of their artistic appeal and tremendous commercial value for international trade, ornamental fish recently gain rapid importance for foreign exchange and as a source of employment. While ornamental fish production is growing, there is an increase in infectious diseases, resulting in high fish mortality with significant economic loss. Bacterial disease is a serious problem for ornamental fish industry. Bacterial species surveillance in diseased freshwater ornamental fish from an aquarium shop reveals that Aeromonas hydrophila is the most dominant bacteria isolated. Consequently, Malaysia is stepping up its efforts by implementing the Economic Transformation Program and other biosecurity steps to address the aquaculture issues and encourage the regrowth of the ornamental fish market. Chemotherapeutic medications, phytobiotics, probiotics, yeast extracts, vaccines, and disinfectants can be used in controlling bacteria. Further studies should be done to find new antibacterial agents from natural sources to combat bacterial fish diseases and reduce fish mortality rate in sustainable aquaculture farms. This review summarizes the literature on ornamental fish industries and aquaculture production in relation to A. hydrophila-associated diseases and ornamental fish health management in Malaysia.
  4. Arianto SR, Syah FA, Sari LA, Nafisyah AL, Arsad S, Musa N
    Vet World, 2023;16(7):1400-1407.
    PMID: 37621530 DOI: 10.14202/vetworld.2023.1400-1407
    BACKGROUND AND AIMS: Coronavirus disease-2019 (COVID-19) impacts increasing the use of disinfectants (benzalkonium chloride), which indirectly accumulate in water. The disinfectant accumulation in waters has been studied, but there has been no study of its impact on aquatic commodities, especially fish with a high sensitivity, one of which is goldfish (Carassius auratus). Benzalkonium chloride can potentially affect several body proteins, including the cytoskeleton, nervous and endocrine systems, and fish physiology. This study aimed to determine the impact of benzalkonium chloride as a disinfectant on the level of color brightness, growth, gill histopathology, and mortality in goldfish. This investigation provides input into the impact of using disinfectants to prevent COVID-19 on aquatic commodities.

    MATERIALS AND METHODS: This study utilized goldfish specimens sourced from Tulungagung, East Java, Indonesia. The experiment involved different concentration levels of benzalkonium chloride: (T1) 0 mg/L, (T2) 0.03 mg/L, (T3) 0.06 mg/L, (T4) 0.09 mg/L, and (T5) 0.12 mg/L. The research data were subjected to an analysis of variance for analysis. In cases where significant differences were observed, Duncan's test was conducted for color brightness, growth, and mortality data. Furthermore, if the gill histopathological data yielded significant differences, additional tests were applied (Kruskal-Wallis and Mann-Whitney test).

    RESULTS: The findings of this study demonstrated significant differences (p < 0.05) in the level of color brightness, growth, gill histopathology, and mortality in goldfish in response to varying concentrations of benzalkonium chloride. The relationship between the length and weight of the goldfish was analyzed using regression coefficients (b values), which were determined as 4.86, -0.04, -0.2, 0.8, and -0.07, respectively. Notably, the brightness level in the T2 group exhibited positive color results with a hue value of 11.55°, while optimal growth was observed in the T4 group, as evidenced by b value of 0.8. The gill histopathological data showed significant differences (p < 0.05). The scoring of histopathological damage in the goldfish gills ranged from 0 to 10, with higher scores indicating more severe damage. The highest total score of 10 was observed in the T5 group exposed to a concentration of 0.12 mg/L, resulting in an 85% mortality rate. This indicates that benzalkonium chloride, with its toxic compounds, can disrupt the respiratory system of fish and lead to death.

    CONCLUSION: The effects of benzalkonium chloride were evident even at a concentration of 0.03 mg/L. With increasing concentration, there was an increase in mortality rate, a decrease in growth, and a rise in histopathological damage to the gills. These findings highlight the negative impact of using conventional disinfectants on water and its organisms, emphasizing the need for further research on environmentally friendly alternatives.

  5. Nordin ML, Othman AA, Kadir AA, Shaari R, Osman AY, Mohamed M
    Vet World, 2019;12(2):236-242.
    PMID: 31040564 DOI: 10.14202/vetworld.2019.236-242
    Background and Aim: The increasing prevalence of drug resistance eventually leads scientist to discover new drugs that could solve the problem. Since ancient immemorial times, medicinal plants generally known as herbs were widely used in every culture throughout the world. In fact, currently up to 70,000 plant species have been screened for biological activities and about 70% ends up for commercialization. Therefore, this study was aimed to evaluate the potential cytotoxic and antibacterial effect of Syzygium polyanthum leaves which are local Malaysia plants, against 4T1 and MCF-7 mammary carcinoma cells, respectively, and also against bacteria causing mastitis in cows.

    Materials and Methods: The cytotoxic effect of hydromethanolic extract of S. polyanthum against 4T1 and MCF-7 mammary carcinoma cells was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The cells were treated with the concentration of extracts ranging from 15.63 µg/mL to 1000 µg/ml for 72 h, and the percentage of cell survivability was determined based on minimum concentration that was able to allow at least 50% growth of cancer cells (IC50) after 72 h. The antibacterial activity was tested against common bacteria causing mastitis in cow. The bacteria were isolated from milk samples. The antibacterial activity of the extract was determined by disk diffusion method and susceptibility test based on minimum inhibitory concentration (MIC).

    Results: Staphylococcus aureus, Staphylococcus hyicus, and Staphylococcus intermedius were isolated from the milk samples that positive for mastitis. The MIC values range from 7.12 mm to 13.5 mm. The extract exhibits the widest zone of inhibition (13.5±0.20 mm) at 1000 mg/ml of concentrations. The extract relatively has low cytotoxicity effect against 4T1 and MCF-7 cells with IC50 values ranging from 672.57±59.42 and 126.05±50.89 µg/ml, respectively.

    Conclusion: S. polyanthum exerts weak antibacterial activity and cytotoxic effect to mammary carcinoma cells. The extract does not toxic to cells. However, further study is recommended, especially, this plant should be tested for in vivo.

  6. Mat Zawawi NZ, Shaari R, Luqman Nordin M, Hayati Hamdan R, Peng TL, Zalati CWSCW
    Vet World, 2020 Mar;13(3):508-514.
    PMID: 32367957 DOI: 10.14202/vetworld.2020.508-514
    Background and Aim: Channa striatus extract, a freshwater snakehead fish known as Haruan, is popular in Southeast Asia for consumption and as a traditional therapeutic remedy for wound healing. C. striatus is also used in osteoarthritic for its anti-inflammatory. The aim of this study was to determine the presence of antibacterial properties of C. striatus extract against oral bacteria and to investigate the cytotoxic activity against Vero cells.

    Materials and Methods: The authors prepared C. striatus extract in chloroform-methanol solvents. Next, the authors took subgingival microbiological samples from 16 cats that had periodontal disease. The authors determined the antibacterial properties of C. striatus extract against the isolated bacteria using the disk diffusion method and a broth microdilution-based resazurin microtiter assay. Finally, the authors used the Vero cell line to evaluate the cytotoxic activity, and they assessed the cell availability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

    Results: The results showed weak antibacterial activity of C. striatus extract against Pseudomonas spp. and Escherichia coli. In addition, the authors found that minimum inhibition concentration values ranged between 400 and 500 mg/mL, and minimum bactericidal concentration values ranged between 650 and 550 mg/mL. However, the cytotoxic results were promising, showing that C. striatus extract increased the cell viability and growth when it was at a higher concentration. The extract also promotes growth and cell proliferation.

    Conclusion: These findings suggest that C. striatus extract promoted cell proliferation in vitro and could be a plausible therapeutic wound healing alternative for periodontal disease in cats.

  7. Rahman AZA, Adzahan NM, Zakaria Z, Mayaki AM
    Vet World, 2021 May;14(5):1128-1132.
    PMID: 34220113 DOI: 10.14202/vetworld.2021.1128-1132
    Background and Aim: Horse wounds can be easily infected with bacteria depending on the nature of its cause such as laceration, abrasion, or puncture as well as the nature of its environment. Various treatments are available in managing open wounds, including the usage of topical antibiotics and antiseptics. However, antibiotic resistance has been a major concern attributed with chronic wound infection. The aim of this study was to test the efficacy of ionized water at different pH against the growth of common bacteria from horse wounds.

    Materials and Methods: Ten swab samples from equine infected wounds were collected and bacteria isolation and identification were performed. The antibacterial effect of the ionized water of pH 2.5, 4.5, 7.0, and 11.5 was tested on Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus intermedius, Escherichia coli, Pantoea agglomerans, and Klebsiella pneumoniae. The time-kill profiles of the ionized waters were determined at time 0, 2, 4, 6, and 8 h.

    Results: Ionized water of pH 2.5 and 4.5 showed antibacterial activity against S. aureus, S. pseudintermedius, and S. intermedius with significant (p>0.05) reduction in colony-forming unit/mL within 2-8 h. The degree of bactericidal effect of the acidic ionized water differs between the species with S. intermedius more susceptible. However, there was no antibacterial effect at pH 2.5, 4.5, 7.0, and 11.5 on the Gram-negative bacteria tested.

    Conclusion: Ionized water of pH 2.5 and 4.5 is effective in minimizing the growth of Gram-positive bacteria; thus it could be of clinical importance as an antiseptic for surface wound lavage in horses.

  8. Lee SW, Wendy W
    Vet World, 2017 Jul;10(7):803-807.
    PMID: 28831226 DOI: 10.14202/vetworld.2017.803-807
    AIM: The aim of this study is to identify antibiogram and heavy metal resistance pattern of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile aeromonas septicemia and edwardsiellosis in four commercial fish farms.

    MATERIALS AND METHODS: A. hydrophila and E. tarda were isolated using glutamate starch phenol red and xylose lysine deoxycholate (Merck, Germany) as a selective medium, respectively. All the suspected bacterial colonies were identified using conventional biochemical tests and commercial identification kit (BBL Crystal, USA). Susceptibility testing of present bacterial isolates to 16 types of antibiotics (nalidixic acid, oxolinic acid, compound sulfonamides, doxycycline, tetracycline, novobiocin, chloramphenicol, kanamycin, sulfamethoxazole, flumequine, erythromycin, ampicillin, spiramycin, oxytetracycline, amoxicillin, and fosfomycin) and four types of heavy metals (mercury, chromium, copper, and zinc) were carried out using disk diffusion and two-fold agar dilution method, respectively.

    RESULTS: Three hundred isolates of A. hydrophila and E. tarda were successfully identified by biochemical tests. Antibiotic susceptibility testing results showed that 42.2% of the bacterial isolates were sensitive to compound sulfonamides, sulfamethoxazole, flumequine, oxytetracycline, doxycycline, and oxolinic acid. On the other hand, 41.6% of these isolates were resistant to novobiocin, ampicillin, spiramycin, and chloramphenicol, which resulted for multiple antibiotic resistance index values 0.416. Among tested heavy metals, bacterial isolates exhibited resistant pattern of Zn(2+) > Cr(6+) > Cu(2+) > Hg(2+).

    CONCLUSION: Results from this study indicated that A. hydrophila and E. tarda isolated from coinfected farmed red hybrid tilapia were multi-resistant to antibiotics and heavy metals. These resistant profiles could be useful information to fish farmers to avoid unnecessary use of antimicrobial products in the health management of farmed red hybrid tilapia.

  9. Pauzi NA, Mohamad N, Azzam-Sayuti M, Yasin ISM, Saad MZ, Nasruddin NS, et al.
    Vet World, 2020 Oct;13(10):2166-2171.
    PMID: 33281351 DOI: 10.14202/vetworld.2020.2166-2171
    Background and Aim: Aeromonas hydrophila is a major cause of bacterial infections affecting a wide range of warm water fishes worldwide. In Malaysia, A. hydrophila isolations from diseased fishes were previously reported; however, with limited information. The present study investigates the antibiotic susceptibility and pathogenicity of A. hydrophila isolated from farmed red hybrid tilapia (Oreochromis spp.) in Malaysia.

    Materials and Methods: A. hydrophila was biochemically identified and subjected to antibiotic susceptibility tests. The isolate was then intraperitoneally injected into red hybrid tilapia, and the mortality, clinicopathological changes, and LD50 were determined up to 240 h post-infection (hpi).

    Results: The isolate demonstrated multiple antibiotic resistances (MAR) toward amikacin, ampicillin, cefotaxime, amoxicillin, trimethoprim-sulfamethoxazole, erythromycin, and streptomycin, with a MAR index of 0.5. The experimental infection of A. hydrophila at 105 CFU/mL in the red hybrid tilapia resulted in 100% mortality at 240 hpi. The LD50 was determined at 1.1×104 CFU/mL. Infected fish demonstrated occasional erratic swimming patterns, localized hemorrhages and depigmentation on the body and operculum areas, fin erosion, enlargement of the gall bladder, and hemorrhage in internal organs. Microscopic observation of infected fish revealed brain congestion, tubular necrosis, and glomerular shrinkage in the kidneys, necrosis of hepatocytes, and congestion of blood vessels in the liver.

    Conclusion: The high virulence of A. hydrophila to the red hybrid tilapia emphasizes the importance of active, on-going monitoring of its prevalence in Malaysian tilapia farming.

  10. Mahmood ZK, Jesse FF, Saharee AA, Jasni S, Yusoff R, Wahid H
    Vet World, 2015 Sep;8(9):1105-17.
    PMID: 27047206 DOI: 10.14202/vetworld.2015.1105-1117
    There is very little information regarding blood changes during the challenge of phospholipase D (PLD) in goats. Therefore, this experiment was conducted to study the changes in blood after the challenge with Corynebacterium pseudotuberculosis and its exotoxin, PLD to fill in the gap of caseous lymphadenitis (CLA) research.
  11. Jesse FFA, Amira NA, Isa KM, Maqbool A, Ali NM, Chung ELT, et al.
    Vet World, 2019 Jul;12(7):978-983.
    PMID: 31528021 DOI: 10.14202/vetworld.2019.978-983
    Mannheimiosis or pneumonic pasteurellosis commonly occurs in small ruminants. Mannheimiosis is caused by Mannheimia haemolytica (M. haemolytica) a Gram-negative coccobacillus producing acute febrile and infectious condition resulting in death of animal if not diagnosed and treated promptly. M. haemolytica serotype A2 is a commensal of the nasopharynx, gaining access to the lungs when host defenses are compromised by stress or infection in small ruminants. Till date, there is a vast literature and research that has been conducted on the pathogenesis of M. haemolytica invariably on respiratory system and its related immune system and mechanisms. From the clinical point of view, infection or diseases involving vital organs will systemically affect the production and performance of the infected animal. Therefore, there is a huge gap of knowledge and research to answer the question whether there is any association between M. haemolytica infection with reproductive physiology and performance in small ruminants and how it affects the productivity level. This review will explore the possibilities of involvement and new potential research to be carried out to determine the involvement of male and female reproductive system with M. haemolytica infection among small ruminants.
  12. Khumran AM, Yimer N, Rosnina Y, Wahid H, Ariff MO, Homayoun H, et al.
    Vet World, 2019 Apr;13(4):649-654.
    PMID: 32546907 DOI: 10.14202/vetworld.2020.649-654
    Aim: The aim of this study was to investigate the effects of different concentration of butylated hydroxytoluene (BHT) on sperm membrane surface protein "P25b" from cryopreserved bull semen in either lecithin based Bioxcell® (BX) or two egg-yolk based extenders, tris-egg yolk (TEY), and citrate-egg yolk (CEY).

    Materials and Methods: Forty-five semen samples, 15 each were extended with either BX, TEY, or CEY extender which contained different concentrations (0.0 - control, 0.5, 1.0, 1.5, 2.0, and 3.0 mM/mL) of BHT. The extended semen samples were frozen at a concentration of 20×106/mL in 0.25 mL straws and stored in liquid nitrogen for 2weeks. The frozen samples were thereafter thawed, proteins extracted and analyzed for quantities of protein P25b through direct sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel densitometry. Peptides were confirmed by Western blotting (WB).

    Results: Results showed that supplementation of BHT improved (p<0.05) quantity of protein P25b at concentrations of 0.5mM/mL for BX and at 1.0 mM/mL for TEY and CE when compared with the controls and other treatments.

    Conclusion: BHT supplementation at 0.5 in BX and 1.0 mM/mL in TEY and CEY has protected bull sperm fertility marker protein P25b in frozen-thawed bull sperm.

  13. Testamenti VA, Surya M, Saepuloh U, Iskandriati D, Tandang MV, Kristina L, et al.
    Vet World, 2020 Nov;13(11):2459-2468.
    PMID: 33363342 DOI: 10.14202/vetworld.2020.2459-2468
    Background and Aim: Melioidosis is a potentially fatal disease affecting humans and a wide range of animal species; it is often underdiagnosed and underreported in veterinary medicine in Indonesia. This study aimed to characterize morphological and molecular features of Burkholderia pseudomallei, the causative agent of melioidosis which caused the death of a Bornean orangutan.

    Materials and Methods: Pulmonary abscess samples were cultured on several types of media, including Ashdown agar, Ashdown broth, and MacConkey agar. Type three secretion system orf 2 real-time polymerase chain reaction (PCR) and latex agglutination tests were performed to identify the bacteria. Morphological characteristics were compared to all previously published morphotypes. Subsequently, the bacteria were characterized by multilocus sequence typing (MLST) and Yersinia-like flagellum/Burkholderia thailandensis-like flagellum and chemotaxis PCR. The results of the genotyping were afterward compared to all genotypes from Southeast Asia.

    Results: Multiple morphotypes of B. pseudomallei were perceived during the growth on Ashdown agar. Furthermore, it was identified by MLST that the Type I and Type II morphotypes observed in this study were clones of a single ST, ST54, which is predominantly found in humans and the environment in Malaysia and Thailand, although a very limited number of reports was published in association with animals. Moreover, the E-BURST analysis showed that the ST is grouped together with isolates from Southeast Asian countries, including Malaysia, Thailand, Singapore, and Cambodia. ST54 was predicted to be the founding genotype of several STs from those regions.

    Conclusion: B. pseudomallei ST54 that caused the death of a Bornean orangutan has a distant genetic relationship with other STs which were previously reported in Indonesia, implying a vast genetic diversity in Indonesia that has not been discovered yet.

  14. Ibrahim NNN, Nasir NM, Sahrani FK, Ahmad A, Sairi F
    Vet World, 2021 Mar;14(3):678-688.
    PMID: 33935414 DOI: 10.14202/vetworld.2021.678-688
    BACKGROUND AND AIM: Shewanella algae is ubiquitous in marine-associated environments and has been increasingly recognized as a significant human pathogen that can cause serious infections mainly associated with exposure to seawater and ingestion of raw seafood. This study aimed to isolate and characterize S. algae from ballast water of ships berthed at Port Klang, Malaysia.

    MATERIALS AND METHODS: Ballast water was sampled from nine ships docked at Port Klang, Malaysia. The isolates were identified and characterized based on biochemical and enzymatic properties, 16S rRNA and gyrB sequencing, biofilm formation capability, and antibiotic susceptibility.

    RESULTS: A total of four S. algae isolates were isolated from four ballast water samples tentatively name Sa-BW1, Sa-BW2, Sa-BW7, and Sa-BW8. All isolates showed positive reaction for cytochrome oxidase, catalase, high tolerance to NaCl (6% and 8%), ability to grow at 42°C, and on Salmonella-Shigella agar. The strains also exhibited b-hemolytic activity on sheep blood and human blood agar, positive reaction for lipase, protease, DNase and gelatinase, strong biofilm adherence capabilities and multiple antibiotic resistances against ampicillin, carbenicillin, cephalothin, colistin, novobiocin, oxacillin, penicillin, rifampicin, and tobramycin which suggested their potential pathogenicity.

    CONCLUSION: This study demonstrated the occurrence of putative pathogen S. algae in ballast water of ships docked at Malaysian port.

  15. Tan CY, Lee KC, Chiou MT, Lin CN, Ooi PT
    Vet World, 2023;16(7):1444-1450.
    PMID: 37621535 DOI: 10.14202/vetworld.2023.1444-1450
    BACKGROUND AND AIM: Porcine circovirus 3 (PCV3) was recently reported in Malaysian commercial pig population in 2020 by conventional polymerase chain reaction (PCR), revealing a molecular prevalence of 17.02% in the sampled domestic pig population. This study aims to describe a chromogenic in situ hybridization (ISH) technique using digoxigenin (DIG)-labeled cloned PCV3 open reading frame 1 (ORF1) fragment DNA to detect and localize the PCV3 antigen in formalin-fixed, paraffin-embedded lung, and lymphoid tissue specimens.

    MATERIALS AND METHODS: Since PCV3 was mainly detected in lung and lymphoid tissues, we obtained tissue specimens from these organs from the previous Malaysian PCV3 study. Digoxigenin-labeled ISH probes were designed to target a 69 bp region of PCV3 ORF1 spanning from the nucleotide positions (282-350).

    RESULTS: Light microscopy analysis revealed that chromogenic staining of PCV3 antigens was visualized within the cytoplasm of pneumocytes and lymphocytes, indicating positive ISH results. The results of molecular detection of PCV3 using PCR and ISH showed a high agreement of 90.91%, including for the negative PCV3 status for all samples.

    CONCLUSION: This study reports a chromogenic ISH technique using DIG-labeled probes targeting PCV3 ORF1 to detect PCV3 antigens in lung and lymphoid tissues. Despite the limited availability of PCV3 antibodies, ISH remains relevant for investigating PCV3 replication and pathogenesis and can be used complementarily with PCR for evaluating the localization of antigens in infected tissues.

  16. Mayaki AM, Intan-Shameha AR, Noraniza MA, Mazlina M, Adamu L, Abdullah R
    Vet World, 2019;12(3):377-381.
    PMID: 31089306 DOI: 10.14202/vetworld.2019.377-381
    Background and Aim: Back disorder is an ailment that often affects athletic and riding horses. Despite the rapidly growing equine athletic and equestrian activities, there is no documentation on the nature of equine back disorder (EBD) in Malaysian horses. The purpose of this study was to characterize EBD cases presented to University Veterinary Hospital, Universiti Putra Malaysia, between 2002 and 2017.

    Materials and Methods: The compilation of data was based on signalment, case history, duration of clinical signs, anatomical location of the pain, method of diagnosis, type of EBD, treatment, and outcome. The diagnosis of EBD was based on a history of poor performance, clinical examination findings, radiography, and, where applicable, necropsy.

    Results: A total of 181 diagnosed cases of EBDs were identified. The age of horses ranged from 5 to 22 years. The EBD cases were more prevalent in male than female horses and predominantly in geldings (60.77%). Thoroughbred, Arab, Polo pony, and Warmblood also recorded the most EBD cases among breeds. The discipline of horses tended to influence the development of EBDs, with patrolling horses recording the highest frequency. Most EBD cases were of the primary type (92.27%), with the main causes being soft-tissue lesions (57.48%), vertebral lesions (18.56%), tack-associated problems (16.77%), and neurological lesions (7.19%). The common treatments employed were administration of nonsteroidal anti-inflammatory agents, 1 to 3-month rest, warm and cold compression therapy, massage therapy, exercise adjustment, as well as correction of ill-saddle fit.

    Conclusion: Most EBDs in this study were associated with soft-tissue lesions. Among vertebral lesions, kissing spines were the most common cause of EBDs in horses in Malaysia.

  17. Chung EL, Abdullah FF, Adamu L, Marza AD, Ibrahim HH, Zamri-Saad M, et al.
    Vet World, 2015 Jun;8(6):783-92.
    PMID: 27065648 DOI: 10.14202/vetworld.2015.783-792
    Pasteurella multocida a Gram-negative bacterium has been identified as the causative agent of many economically important diseases in a wide range of hosts. Hemorrhagic septicemia is a disease caused by P. multocida serotype B:2 and E:2. The organism causes acute, a highly fatal septicemic disease with high morbidity and mortality in cattle and more susceptible in buffaloes. Therefore, the aim of this study was to investigate the clinical signs, blood parameters, post mortem and histopathology changes caused by P. multocida Type B:2 infections initiated through the oral and subcutaneous routes.
  18. Malik MMA, Othman F, Hussan F, Shuid AN, Saad QM
    Vet World, 2019 Dec;12(12):2052-2060.
    PMID: 32095059 DOI: 10.14202/vetworld.2019.2052-2060
    Background and Aim: Both virgin coconut oil (VCO) and tocotrienol-rich fraction (TRF) are rich in antioxidants and may protect the bone against bone loss induced by ovariectomy and high-fat diet. The study aimed to determine the protective effects of combined therapy of VCO and TRF on osteoporosis in ovariectomized (OVX) rat fed with high-fat diet.

    Materials and Methods: Thirty-six female Sprague-Dawley rats were divided into six groups: Sham-operated (SHAM), OVX control, OVX and given Premarin at 64.5 µg/kg (OVX+E2), OVX and given VCO at 4.29 ml/kg (OVX+V), OVX and given TRF at 30 mg/kg (OVX+T), and OVX and given a combination of VCO at 4.29 ml/kg and TRF at 30 mg/kg (OVX+VT). Following 24 weeks of treatments, blood and femora samples were taken for analyses.

    Results: There were no significant differences in serum osteocalcin levels between the groups (p>0.05), while serum C-terminal telopeptide of Type I collagen levels of the OVX+VT group were significantly lower than the other groups (p<0.05). The dynamic bone histomorphometry analysis of the femur showed that the double-labeled surface/bone surface (dLS/BS), mineral apposition rate, and bone formation rate/BS of the OVX+E2, OVX+T, and OVX+VT groups were significantly higher than the rest of the groups (p<0.05).

    Conclusion: A combination of VCO and TRF has the potential as a therapeutic agent to restore bone loss induced by ovariectomy and high-fat diet.

  19. Salah N, Yimer N
    Vet World, 2017 Jun;10(6):605-609.
    PMID: 28717310 DOI: 10.14202/vetworld.2017.605-609
    BACKGROUND: Endometritis, which is one of the most common diseases in dairy cows postpartum, causes severe economic losses, including increased open days, calving intervals, and numbers of services to achieve conception.

    AIM: This study aimed to evaluate the ultrasound method and its agreement with the endometrium cytology method, which is used to diagnose cytological endometritis in beef cows. Moreover, we determined which method has higher sensitivity and specificity at 4 and 5 weeks postpartum.

    MATERIALS AND METHODS: The study was conducted 20-35 days postpartum. A total of 53 clinically healthy beef cows (28 Brangus and 25 Kedah-Kelantan breeds) from three beef farms were obtained. All cows were evaluated at 4 and 5 weeks postpartum, using ultrasound and cytobrush endometrial examination methods to diagnose cytological endometritis.

    RESULTS: Endometrial cytology result showed that 11.3% (6/53) and 9.4% (5/53) of the cows exhibited cytological endometritis 4 and 5 weeks postpartum, respectively. A weak-to-moderate agreement found between the diagnostic methods (k=0.29 - 0.50; p<0.01 and k=0.38 - 0.49) at 4 and 5 weeks postpartum respectively.

    CONCLUSION: The percentage of beef cows that were positive to cytological endometritis was low (polymorphonuclear cells, ≥8%) at 4 and 5 weeks postpartum. Results showed that the ultrasound method is useful and practical for diagnosing endometritis 4 and 5 weeks postpartum. This method exhibited 60% sensitivity, 93.8% specificity, and a 0.50 kappa value, especially when presence of intrauterine fluids and measurement of cervix diameter used in combination.

  20. Aksono EB, Lamid M, Rimayanti R, Hamid IS, Effendi MH, Rantam FA, et al.
    Vet World, 2023 Sep;16(9):1889-1896.
    PMID: 37859973 DOI: 10.14202/vetworld.2023.1889-1896
    BACKGROUND AND AIM: Various methods can detect foot-and-mouth disease (FMD) in cows, but they necessitate resources, time, costs, laboratory facilities, and specific clinical specimen submission, often leading to FMD virus (FMDV) diagnosis delays. The 2022 FMD outbreak in East Java, Indonesia, highlighted the need for an easy, inexpensive, rapid, and accurate detection approach. This study aims to devise a one-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) technique and phylogenetic analysis to detect the serotype O FMDV outbreak in East Java.

    MATERIALS AND METHODS: Swab samples were collected from the foot vesicles, nasal secretions, and saliva of five suspected FMDV-infected cows in East Java between June and July 2022. The RT-LAMP design used hydroxy naphthol blue dye or SYBR Green I dye, with confirmatory analysis through reverse transcriptase polymerase chain reaction (RT-PCR) targeting 249 base pairs. PCR products underwent purification, sequencing, and nucleotide alignment, followed by phylogenetic analysis.

    RESULTS: The RT-LAMP method using hydroxy naphthol blue dye displayed a positive reaction through a color shift from purple to blue in the tube. Naked-eye observation in standard light or ultraviolet (UV) light at 365 nm, with SYBR Green I stain, also revealed color change. Specifically, using SYBR Green I dye, UV light at 365 nm revealed a color shift from yellow to green, signifying a positive reaction. Nucleotide alignment revealed mutations and deletion at the 15th sequence in the JT-INDO-K3 isolate from the East Java FMDV outbreak. Despite differing branches, the phylogenetic tree placed it in the same cluster as serotype O FMDV from Malaysia and Mongolia.

    CONCLUSION: JT-INDO-K3 exhibited distinctions from Indonesian serotype O FMDV isolates and those documented in GenBank. Then, the RT-LAMP method used in this study has a detection limit 10 times higher latter than the conventional RT-PCR limit, without any cross-reactivity among strains.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links