Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Lai JKF, Sam IC, Verlhac P, Baguet J, Eskelinen EL, Faure M, et al.
    Viruses, 2017 07 04;9(7).
    PMID: 28677644 DOI: 10.3390/v9070169
    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with aN-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.
  2. Hooper C, Debnath PP, Biswas S, van Aerle R, Bateman KS, Basak SK, et al.
    Viruses, 2020 10 02;12(10).
    PMID: 33023199 DOI: 10.3390/v12101120
    Mass mortalities of the larval stage of the giant freshwater prawn, Macrobrachium rosenbergii, have been occurring in Bangladesh since 2011. Mortalities can reach 100% and have resulted in an 80% decline in the number of hatcheries actively producing M. rosenbergii. To investigate a causative agent for the mortalities, a disease challenge was carried out using infected material from a hatchery experiencing mortalities. Moribund larvae from the challenge were prepared for metatranscriptomic sequencing. De novo virus assembly revealed a 29 kb single‑stranded positive-sense RNA virus with similarities in key protein motif sequences to yellow head virus (YHV), an RNA virus that causes mass mortalities in marine shrimp aquaculture, and other viruses in the Nidovirales order. Primers were designed against the novel virus and used to screen cDNA from larvae sampled from hatcheries in the South of Bangladesh from two consecutive years. Larvae from all hatcheries screened from both years were positive by PCR for the novel virus, including larvae from a hatchery that at the point of sampling appeared healthy, but later experienced mortalities. These screens suggest that the virus is widespread in M. rosenbergii hatchery culture in southern Bangladesh, and that early detection of the virus can be achieved by PCR. The hypothesised protein motifs of Macrobrachium rosenbergii golda virus (MrGV) suggest that it is likely to be a new species within the Nidovirales order. Biosecurity measures should be taken in order to mitigate global spread through the movement of post-larvae within and between countries, which has previously been linked to other virus outbreaks in crustacean aquaculture.
    Matched MeSH terms: RNA Viruses/classification*; RNA Viruses/genetics; RNA Viruses/isolation & purification*
  3. Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, et al.
    Viruses, 2021 Jul 18;13(7).
    PMID: 34372603 DOI: 10.3390/v13071397
    The recent coronavirus disease 2019 (COVID-19) outbreak has drawn global attention, affecting millions, disrupting economies and healthcare modalities. With its high infection rate, COVID-19 has caused a colossal health crisis worldwide. While information on the comprehensive nature of this infectious agent, SARS-CoV-2, still remains obscure, ongoing genomic studies have been successful in identifying its genomic sequence and the presenting antigen. These may serve as promising, potential therapeutic targets in the effective management of COVID-19. In an attempt to establish herd immunity, massive efforts have been directed and driven toward developing vaccines against the SARS-CoV-2 pathogen. This review, in this direction, is aimed at providing the current scenario and future perspectives in the development of vaccines against SARS-CoV-2.
  4. Lin CN, Chan KR, Ooi EE, Chiou MT, Hoang M, Hsueh PR, et al.
    Viruses, 2021 07 30;13(8).
    PMID: 34452372 DOI: 10.3390/v13081507
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus in humans, has expanded globally over the past year. COVID-19 remains an important subject of intensive research owing to its huge impact on economic and public health globally. Based on historical archives, the first coronavirus-related disease recorded was possibly animal-related, a case of feline infectious peritonitis described as early as 1912. Despite over a century of documented coronaviruses in animals, the global animal industry still suffers from outbreaks. Knowledge and experience handling animal coronaviruses provide a valuable tool to complement our understanding of the ongoing COVID-19 pandemic. In this review, we present an overview of coronaviruses, clinical signs, COVID-19 in animals, genome organization and recombination, immunopathogenesis, transmission, viral shedding, diagnosis, treatment, and prevention. By drawing parallels between COVID-19 in animals and humans, we provide perspectives on the pathophysiological mechanisms by which coronaviruses cause diseases in both animals and humans, providing a critical basis for the development of effective vaccines and therapeutics against these deadly viruses.
  5. Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H
    Viruses, 2020 07 26;12(8).
    PMID: 32722532 DOI: 10.3390/v12080803
    Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus-host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
  6. Lam SD, Ashford P, Díaz-Sánchez S, Villar M, Gortázar C, de la Fuente J, et al.
    Viruses, 2021 04 19;13(4).
    PMID: 33921873 DOI: 10.3390/v13040708
    Coronavirus-like organisms have been previously identified in Arthropod ectoparasites (such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we performed in silico structural and binding energy calculations to assess the risks associated with possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on complex stability. For several species (e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our structural analyses also provide structural rationale for interactions between the viral Spike and the ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a possible role in passive transmission of the virus to their human hosts.
  7. Sakkhachornphop S, Hadpech S, Wisitponchai T, Panto C, Kantamala D, Utaipat U, et al.
    Viruses, 2018 11 13;10(11).
    PMID: 30428529 DOI: 10.3390/v10110625
    Certain proteins have demonstrated proficient human immunodeficiency virus (HIV-1) life cycle disturbance. Recently, the ankyrin repeat protein targeting the HIV-1 capsid, AnkGAG1D4, showed a negative effect on the viral assembly of the HIV-1NL4-3 laboratory strain. To extend its potential for future clinical application, the activity of AnkGAG1D4 in the inhibition of other HIV-1 circulating strains was evaluated. Chimeric NL4-3 viruses carrying patient-derived Gag/PR-coding regions were generated from 131 antiretroviral drug-naïve HIV-1 infected individuals in northern Thailand during 2001⁻2012. SupT1, a stable T-cell line expressing AnkGAG1D4 and ankyrin non-binding control (AnkA32D3), were challenged with these chimeric viruses. The p24CA sequences were analysed and classified using the K-means clustering method. Among all the classes of virus classified using the p24CA sequences, SupT1/AnkGAG1D4 demonstrated significantly lower levels of p24CA than SupT1/AnkA32D3, which was found to correlate with the syncytia formation. This result suggests that AnkGAG1D4 can significantly interfere with the chimeric viruses derived from patients with different sequences of the p24CA domain. It supports the possibility of ankyrin-based therapy as a broad alternative therapeutic molecule for HIV-1 gene therapy in the future.
  8. Mustafa ZU, Bashir S, Shahid A, Raees I, Salman M, Merchant HA, et al.
    Viruses, 2022 Oct 25;14(11).
    PMID: 36366442 DOI: 10.3390/v14112344
    This study aimed to assess the vaccination status and factors contributing to vaccine hesitancy among pregnant women in the largest province of Pakistan. A multicentric, prospective, survey-based study using an interviewer-administered tool was conducted among pregnant women attending antenatal clinics between 1 December 2021 through 30 January 2022 across seven hospitals in Pakistan. The healthcare professionals providing care at the participating hospitals administered the survey. Four hundred and five pregnant women fully consented and completed the study. The majority of the study participants (70.6%, n = 286) were aged between 25 and 34 and had a previous successful pregnancy history. More than half of the study participants (56.0%, n = 227) did not receive COVID-19 vaccination at the time of data collection despite their family members (93.9%, n = 372) had already received at least one dose of COVID-19 vaccine. Among those who received COVID-19 vaccination (n = 173), vaccine efficacy, protection for the foetus, and risk of COVID-19-associated hospitalisation were the main driving factors for vaccine hesitancy. The majority of the unvaccinated women (77.8%, n = 182) had no intention of receiving the vaccine. However, more than two-thirds (85.7%, n = 342) consulted the doctor about COVID-19 vaccines, and most were recommended to receive COVID-19 vaccines by the doctors (80.7%, n = 280). Women were significantly more likely to be vaccinated if they had employment (odds ratio [OR] 4.47, 95% confidence interval [CI]: 2.31-8.64) compared with their counterparts who were homemakers, consulted their doctors (OR 0.12, 95% CI: 0.04-0.35), and if they did not have pregnancy-related issues (OR 6.02, 95% CI: 2.36-15.33). In this study, vaccine hesitancy was prevalent, and vaccine uptake was low among pregnant women. Education and employment did impact COVID vaccination uptake, emphasising the need for more targeted efforts to enhance the trust in vaccines.
  9. Sharma A, Ahmad Farouk I, Lal SK
    Viruses, 2021 Jan 29;13(2).
    PMID: 33572857 DOI: 10.3390/v13020202
    Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. The emergence of a novel coronavirus poses a serious global public health threat and possibly carries the potential of causing a major pandemic outbreak in the naïve human population. The recent outbreak of COVID-19, the disease caused by SARS-CoV-2, in Wuhan, Hubei Province, China has infected over 36.5 million individuals and claimed over one million lives worldwide, as of 8 October 2020. The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.
  10. Tham HW, Balasubramaniam VR, Tejo BA, Ahmad H, Hassan SS
    Viruses, 2014 Dec;6(12):5028-46.
    PMID: 25521592 DOI: 10.3390/v6125028
    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.
  11. Mandary MB, Poh CL
    Viruses, 2018 06 12;10(6).
    PMID: 29895721 DOI: 10.3390/v10060320
    Enterovirus 71 (EV-A71) is a major etiological agent of hand, foot and mouth disease (HFMD) that mainly affects young children less than five years old. The onset of severe HFMD is due to neurological complications bringing about acute flaccid paralysis and pulmonary oedema. In this review, we address how genetic events such as recombination and spontaneous mutations could change the genomic organization of EV-A71, leading to an impact on viral virulence. An understanding of the recombination mechanism of the poliovirus and non-polio enteroviruses will provide further evidence of the emergence of novel strains responsible for fatal HFMD outbreaks. We aim to see if the virulence of EV-A71 is contributed solely by the presence of fatal strains or is due to the co-operation of quasispecies within a viral population. The phenomenon of quasispecies within the poliovirus is discussed to reflect viral fitness, virulence and its implications for EV-A71. Ultimately, this review gives an insight into the evolution patterns of EV-A71 by looking into its recombination history and how spontaneous mutations would affect its virulence.
  12. Mandary MB, Masomian M, Ong SK, Poh CL
    Viruses, 2020 Jun 17;12(6).
    PMID: 32560288 DOI: 10.3390/v12060651
    Viral plaque morphologies in human cell lines are markers for growth capability and they have been used to assess the viral fitness and selection of attenuated mutants for live-attenuated vaccine development. In this study, we investigate whether the naturally occurring plaque size variation reflects the virulence of the variants of EV-A71. Variants of two different plaque sizes (big and small) from EV-A71 sub-genotype B4 strain 41 were characterized. The plaque variants displayed different in vitro growth kinetics compared to the parental wild type. The plaque variants showed specific mutations being present in each variant strain. The big plaque variants showed four mutations I97L, N104S, S246P and N282D in the VP1 while the small plaque variants showed I97T, N237T and T292A in the VP1. No other mutations were detected in the whole genome of the two variants. The variants showed stable homogenous small plaques and big plaques, respectively, when re-infected in rhabdomyosarcoma (RD) and Vero cells. The parental strain showed faster growth kinetics and had higher viral RNA copy number than both the big and small plaque variants. Homology modelling shows that both plaque variants have differences in the structure of the VP1 protein due to the presence of unique spontaneous mutations found in each plaque variant This study suggests that the EV-A71 sub-genotype B4 strain 41 has at least two variants with different plaque morphologies. These differences were likely due to the presence of spontaneous mutations that are unique to each of the plaque variants. The ability to maintain the respective plaque morphology upon passaging indicates the presence of quasi-species in the parental population.
  13. Lalani S, Poh CL
    Viruses, 2020 Jun 30;12(7).
    PMID: 32630136 DOI: 10.3390/v12070712
    We have recently been made aware by Mr. Saravanan (National University of Singapore) thatthe structure of prunin flavonoid used in their study was different to the one that we reported [...].
  14. Yee PT, Poh CL
    Viruses, 2015 Dec 30;8(1).
    PMID: 26729152 DOI: 10.3390/v8010001
    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.
  15. Parkash O, Shueb RH
    Viruses, 2015 Oct 19;7(10):5410-27.
    PMID: 26492265 DOI: 10.3390/v7102877
    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
  16. Saad N, Olmstead JW, Varsani A, Polston JE, Jones JB, Folimonova SY, et al.
    Viruses, 2021 Jun 18;13(6).
    PMID: 34207047 DOI: 10.3390/v13061165
    Southern highbush blueberry (interspecific hybrids of Vaccinium corymbosum L.) is cultivated near wild V. corymbosum as well as closely related species in Florida, USA. The expansion of blueberry cultivation into new areas in Florida and deployment of new cultivars containing viruses can potentially increase the diversity of viruses in wild and cultivated V. corymbosum. In this study, viral diversity in wild and cultivated blueberries (V. corymbosum) is described using a metagenomic approach. RNA viromes from V. corymbosum plants collected from six locations (two cultivated and four wild) in North Central Florida were generated by high throughput sequencing (HTS) and analyzed using a bioinformatic analysis pipeline. De novo assembled contigs obtained from viromes of both commercial and wild sites produced sequences with similarities to plant virus species from a diverse range of families (Amalgaviridae, Caulimoviridae, Endornaviridae, Ophioviridae, Phenuiviridae, and Virgaviridae). In addition, this study has enabled the identification of blueberry latent virus (BlLV) and blueberry mosaic associated ophiovirus (BlMaV) for the first time in Florida, as well as a tentative novel tepovirus (blueberry virus T) (BlVT) in blueberry. To the best of our knowledge, this is the first study that compares viral diversity in wild and cultivated blueberry using a metagenomic approach.
    Matched MeSH terms: Plant Viruses/classification; Plant Viruses/genetics*; Plant Viruses/isolation & purification*
  17. Nale JY, Thanki AM, Rashid SJ, Shan J, Vinner GK, Dowah ASA, et al.
    Viruses, 2022 Dec 12;14(12).
    PMID: 36560776 DOI: 10.3390/v14122772
    Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI.
  18. Low ZY, Farouk IA, Lal SK
    Viruses, 2020 09 22;12(9).
    PMID: 32972027 DOI: 10.3390/v12091058
    Traditionally, drug discovery utilises a de novo design approach, which requires high cost and many years of drug development before it reaches the market. Novel drug development does not always account for orphan diseases, which have low demand and hence low-profit margins for drug developers. Recently, drug repositioning has gained recognition as an alternative approach that explores new avenues for pre-existing commercially approved or rejected drugs to treat diseases aside from the intended ones. Drug repositioning results in lower overall developmental expenses and risk assessments, as the efficacy and safety of the original drug have already been well accessed and approved by regulatory authorities. The greatest advantage of drug repositioning is that it breathes new life into the novel, rare, orphan, and resistant diseases, such as Cushing's syndrome, HIV infection, and pandemic outbreaks such as COVID-19. Repositioning existing drugs such as Hydroxychloroquine, Remdesivir, Ivermectin and Baricitinib shows good potential for COVID-19 treatment. This can crucially aid in resolving outbreaks in urgent times of need. This review discusses the past success in drug repositioning, the current technological advancement in the field, drug repositioning for personalised medicine and the ongoing research on newly emerging drugs under consideration for the COVID-19 treatment.
  19. Mohd Hanafiah K, Ng C, Wan AM
    Viruses, 2021 Jun 03;13(6).
    PMID: 34204909 DOI: 10.3390/v13061058
    In an age of globalisation and hyperconnectivity, the COVID-19 pandemic has caused unprecedented and sustained impact worldwide. This article discusses issues related to (science) communication at different phases of the COVID-19 epidemic timeline. We consider the role of communication for prevention from the ecological perspective, taking into consideration that many emerging pathogens, including COVID-19, likely arise in part due to anthropogenic changes to natural environments. Communication forms part of the early response setting the scene for public buy-in of public health interventions at the start of an outbreak, as well as to maintain precautions over time. Finally, communication is a key element in increasing acceptance for new tools that require mass uptake to be effective, as seen with roll-out challenges for the COVID-19 vaccines, which faced heightened concerns of efficacy and safety while mired with rampant misinformation. Ultimately, strategies for prevention of viral epidemics such as COVID-19 must include communication strategies at the forefront to reduce the risk of the emergence of new diseases and enhance efforts to control their spread and burden. Despite key themes emerging, what constitutes effective communication strategies for different people and contexts needs to be investigated further.
  20. Li C, Liu J, Shaozhou W, Bai X, Zhang Q, Hua R, et al.
    Viruses, 2016 Nov 10;8(11).
    PMID: 27834908
    Duck Tembusu virus (DTMUV) causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs) 1F3 and 1A5. Two minimal epitopes were mapped to (221)LD/NLPW(225) and (87)YAEYI(91) by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas (221)LD/NLPW(225) was a cross-reactive epitope for West Nile virus (WNV), dengue virus (DENV), and Japanese encephalitis virus (JEV) and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D) II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links