Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Zinatizadeh AA, Mohamed AR, Abdullah AZ, Mashitah MD, Hasnain Isa M, Najafpour GD
    Water Res, 2006 Oct;40(17):3193-208.
    PMID: 16949124
    In this study, the interactive effects of feed flow rate (QF) and up-flow velocity (V up) on the performance of an up-flow anaerobic sludge fixed film (UASFF) reactor treating palm oil mill effluent (POME) were investigated. Long-term performance of the UASFF reactor was first examined with raw POME at a hydraulic loading rate (HRT) of 3 d and an influent COD concentration of 44300 mg/l. Extreme reactor instability was observed after 25 d. Raw POME was then chemically pretreated and used as feed. Anaerobic digestion of pretreated POME was modeled and analyzed with two operating variables, i.e. feed flow rate and up-flow velocity. Experiments were conducted based on a central composite face-centered design (CCFD) and analyzed using response surface methodology (RSM). The region of exploration for digestion of the pretreated POME was taken as the area enclosed by the feed flow rate (1.01, 7.63 l/d) and up-flow velocity (0.2, 3 m/h) boundaries. Twelve dependent parameters were either directly measured or calculated as response. These parameters were total COD (TCOD) removal, soluble COD (SCOD) removal, effluent pH, effluent total volatile fatty acid (TVFA), effluent bicarbonate alkalinity (BA), effluent total suspended solids (TSS), CH4 percentage in biogas, methane yield (Y M), specific methanogenic activity (SMA), food-to-sludge ratio (F/M), sludge height in the UASB portion and solid retention time (SRT). The optimum conditions for POME treatment were found to be 2.45 l/d and 0.75 m/h for QF and V up, respectively (corresponding to HRT of 1.5 d and recycle ratio of 23.4:1). The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.
  2. Zhang JB, Dai C, Wang Z, You X, Duan Y, Lai X, et al.
    Water Res, 2023 Oct 01;244:120555.
    PMID: 37666149 DOI: 10.1016/j.watres.2023.120555
    Herein, biochar was prepared using rice straw, and it served as the peroxymonosulfate (PMS) activator to degrade naphthalene (NAP). The results showed that pyrolysis temperature has played an important role in regulating biochar structure and properties. The biochar prepared at 900°C (BC900) had the best activation capacity and could remove NAP in a wide range of initial pH (5-11). In the system of BC900/PMS, multi-reactive species were produced, in which 1O2 and electron transfer mainly contributed to NAP degradation. In addition, the interference of complex groundwater components on the NAP removal rate must get attention. Cl- had a significant promotional effect but risked the formation of chlorinated disinfection by-products. HCO3-, CO32-, and humic acid (HA) had an inhibitory effect; surfactants had compatibility problems with the BC900/PMS system, which could lead to unproductive consumption of PMS. Significantly, the BC900/PMS system showed satisfactory remediation performance in spiked natural groundwater and soil, and it could solve the problem of persistent groundwater contamination caused by NAP desorption from the soil. Besides, the degradation pathway of NAP was proposed, and the BC900/PMS system could degrade NAP into low or nontoxic products. These suggest that the BC900/PMS system has promising applications in in-situ groundwater remediation.
  3. Vo TP, Rintala J, Dai L, Oh WD, He C
    Water Res, 2023 Oct 15;245:120672.
    PMID: 37783176 DOI: 10.1016/j.watres.2023.120672
    Hydrothermal processing (HTP) is an efficient thermochemical technology to achieve sound treatment and resource recovery of sewage sludge (SS) in hot-compressed subcritical water. However, microplastics (MPs) and heavy metals can be problematic impurities for high-quality nutrients recovery from SS. This study initiated hydrothermal degradation of representative MPs (i.e., polyethylene (PE), polyamide (PA), polypropylene (PP)) under varied temperatures (180-300 °C) to understand the effect of four ubiquitous metal ions (i.e., Fe3+, Al3+, Cu2+, Zn2+) on MPs degradation. It was found that weight loss of all MPs in metallic reaction media was almost four times of that in water media, indicating the catalytic role of metal ions in HTP. Especially, PA degradation at 300 °C was promoted by Fe3+ and Al3+ with remarkable weight loss higher than 95% and 92%, respectively, which was ca. 160 °C lower than that in pyrolysis. Nevertheless, PE and PP were more recalcitrant polymers to be degraded under identical condition. Although higher temperature thermal hydrolysis reaction induced severe chain scission of polymers to reinforce degradation of MPs, Fe3+ and Al3+ ions demonstrated the most remarkable catalytic depolymerization of MPs via enhanced free radical dissociation rather than hydrolysis. Pyrolysis gas chromatography-mass spectrometry (Py GC-MS) was further complementarily applied with GC-MS to reveal HTP of MPs to secondary MPs and nanoplastics. This fundamental study highlights the crucial role of ubiquitous metal ions in MPs degradation in hot-compressed water. HTP could be an energy-efficient technology for effective treatment of MPs in SS with abundant Fe3+ and Al3+, which will benefit sustainable recovery of cleaner nutrients in hydrochar and value-added chemicals or monomers from MPs.
  4. Show KY, Mao T, Lee DJ
    Water Res, 2007 Dec;41(20):4741-7.
    PMID: 17688907
    This study presents an examination on the correlation of sonication operating condition, sludge property, formation and behaviour of cavitation bubbles in sludge disruption under low-frequency ultrasound sonication. The influence of sonication time, sonication density, type of sludge and solids content on the disruption was evaluated. The most vigorous particle disruption was achieved in the initial period of sonication, which subsided subsequently. The explosive effect was likely due to the rapid cavitation arising from powerful transient bubbles generated in fractions of microseconds. A rating for the type of sludge was derived based on the finding that particles in secondary sludge were more readily disrupted than both primary sludge and mixed sludge. While sonication density exhibited the most significant role in cavitation bubble formation and behaviour, particle disruption could be optimised for energy input by sonicating at higher sonication density and shorter sonication time. Based on theoretical consideration, it was deduced that within an optimum sludge solids content ranging between 2.3% and 3.2%, superior particle disruption could be accomplished within a minute for secondary sludge sonicated at a density of 0.52 W/mL. Useful guidelines for sonication system installation, equipment protection and process reliability could be established from knowledge derived from a good understanding on the influence of solids content on sludge sonication.
  5. Saim N, Osman R, Sari Abg Spian DR, Jaafar MZ, Juahir H, Abdullah MP, et al.
    Water Res, 2009 Dec;43(20):5023-30.
    PMID: 19896157 DOI: 10.1016/j.watres.2009.08.052
    Faecal sterols detection is a promising method for identifying sources of faecal pollution. In this study, faecal contamination in water samples from point source (sewage treatment plants, chicken farms, quail farms and horse stables) was extracted using the solid phase extraction (SPE) technique. Faecal sterols (coprostanol, cholesterol, stigmasterol, beta-sitosterol and stigmastanol) were selected as parameters to differentiate the source of faecal pollution. The results indicated that coprostanol, cholesterol and beta-sitosterol were the most significant parameters that can be used as source tracers for faecal contamination. Chemometric techniques, such as cluster analysis, principal component analysis and discriminant analysis were applied to the data set on faecal contamination in water from various pollution sources in order to validate the faecal sterols' profiles. Cluster analysis generated three clusters: coprostanol was in cluster 1, cholesterol and beta-sitosterol formed cluster 2, while cluster 3 contained stigmasterol and stigmastanol. Discriminant analysis suggested that coprostanol, cholesterol and beta-sitosterol were the most significant parameters to discriminate between the faecal pollution source. The use of chemometric techniques provides useful and promising indicators in tracing the source of faecal contamination.
  6. Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A
    Water Res, 2014 Nov 01;64:102-112.
    PMID: 25046374 DOI: 10.1016/j.watres.2014.06.038
    The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR sludge best and allows it not only to outcompete other Accumulibacter clades but coexist with GAOs without compromising EBPR activity.
  7. Muda K, Aris A, Salim MR, Ibrahim Z, van Loosdrecht MC, Ahmad A, et al.
    Water Res, 2011 Oct 15;45(16):4711-21.
    PMID: 21714982 DOI: 10.1016/j.watres.2011.05.012
    The physical characteristics, microbial activities and kinetic properties of the granular sludge biomass were investigated under the influence of different hydraulic retention times (HRT) along with the performance of the system in removal of color and COD of synthetic textile wastewater. The study was conducted in a column reactor operated according to a sequential batch reactor with a sequence of anaerobic and aerobic reaction phases. Six stages of different HRTs and different anaerobic and aerobic reaction time were evaluated. It was observed that the increase in HRT resulted in the reduction of organic loading rate (OLR). This has caused a decrease in biomass concentration (MLSS), reduction in mean size of the granules, lowered the settling ability of the granules and reduction of oxygen uptake rate (OUR), overall specific biomass growth rate (ìoverall), endogeneous decay rate (kd) and biomass yield (Yobs, Y). When the OLR was increased by adding carbon sources (glucose, sodium acetate and ethanol), there was a slight increase in the MLSS, the granules mean size, ìoverall, and biomass yield. Under high HRT, increasing the anaerobic to aerobic reaction time ratio caused an increase in the concentration of MLSS, mean size of granules and lowered the SVI value and biomass yield. The ìoverall and biomass yield increased with the reduction in anaerobic/aerobic time ratio. The HRT of 24 h with anaerobic and aerobic reaction time of 17.8 and 5.8 h respectively appear to be the best cycle operation of SBR. Under these conditions, not only the physical properties of the biogranules have improved, the highest removal of color (i.e. 94.1±0.6%) and organics (i.e. 86.5±0.5%) of the synthetic textile dyeing wastewater have been achieved.
  8. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MC, et al.
    Water Res, 2010 Aug;44(15):4341-50.
    PMID: 20580402 DOI: 10.1016/j.watres.2010.05.023
    Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 +/- 0.01 mm to 2.3 +/- 1.0 mm and the average settling velocity increased from 9.9 +/- 0.7 m h(-1) to 80 +/- 8 m h(-1). This resulted in an increased biomass concentration (from 2.9 +/- 0.8 g L(-1) to 7.3 +/- 0.9 g L(-1)) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.
  9. Mannan S, Fakhru'l-Razi A, Alam MZ
    Water Res, 2005 Aug;39(13):2935-43.
    PMID: 16000208
    The present study was designed to evaluate the potential of microbial adaptation and its affinity to biodegradation as well as bioconversion of soluble/insoluble (organic) substances of domestic wastewater treatment plant (DWTP) sludge (activated domestic sludge) under natural/non-sterilized conditions. The two filamentous fungi, Penicillium corylophilum (WWZP1003) and Aspergillus niger (SCahmA103) were used to achieve the objectives. It was observed that P. corylophilum (WWZP1003) was the better strain compared to A. niger (SCahmA103) for the bioconversion of domestic activated sludge through adaptation. The visual observation in plate culture showed that about 95-98% of cultured microbes (P. corylophilum and A. niger) dominated in treated sludge after 2 days of treatment. In this study, it was also found that the P. corylophilum was capable of removing 94.40% of COD and 98.95% of turbidity of filtrate with minimum dose of inoculum of 10% v/v in DWTP sludge (1% w/w). The pH level was lower (acidic condition) in the fungal treatment and maximum reduction of COD and turbidity was observed (at lower pH). The results for specific resistance to filtration (SRF) showed that the fungi played a great role in enhancing the dewaterability and filterability. In particular, the strain Penicillium had a more significant capability (than A. niger) of reducing 93.20% of SRF compared to the uninoculated sample. Effective results were observed by using fungal inoculum after 2 days of treatment. The developed LSB process is a new biotechnological approach for sludge management strategy.
  10. Lim PE, Ong SA, Seng CE
    Water Res, 2002 Feb;36(3):667-75.
    PMID: 11827329
    The application of simultaneous adsorption and biodegradation processes in the same reactor is known to be effective in the removal of both biodegradable and non-biodegradable contaminants in various kinds of wastewater. The objective of this study is to evaluate the efficacy of the two processes under sequencing batch reactor (SBR) operation in treating copper and cadmium-containing synthetic wastewater with powdered activated carbon (PAC) as the adsorbent. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in the ratio of 0.5: 3.5: 1.0: 0.75 :0.25 for a cycle time of 6 h. In the presence of 10 mg/L Cu(II) and 30 mg/L Cd(II), respectively, the average COD removal efficiencies were above 85% with the PAC dosage in the influent solution at 143 mg/L compared to around 60% without PAC addition. Copper(II) was found to exert a more pronounced inhibitory effect on the bioactivity of the microorganisms compared to Cd(II). It was observed that the combined presence of Cu(II) and Cd(II) did not exert synergistic effects on the microorganisms. Kinetic study conducted for the REACT period showed that the addition of PAC had minimized the inhibitory effect of the heavy metals on the bioactivity of microorganisms.
  11. Lee KM, Lai CW, Ngai KS, Juan JC
    Water Res, 2016 Jan 01;88:428-448.
    PMID: 26519627 DOI: 10.1016/j.watres.2015.09.045
    Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.
  12. Lee CW, Ng AY, Bong CW, Narayanan K, Sim EU, Ng CC
    Water Res, 2011 Feb;45(4):1561-70.
    PMID: 21146847 DOI: 10.1016/j.watres.2010.11.025
    Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella.
  13. Lau WJ, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail AF
    Water Res, 2015 Sep 1;80:306-24.
    PMID: 26011136 DOI: 10.1016/j.watres.2015.04.037
    This review focuses on the development of polyamide (PA) thin film nanocomposite (TFN) membranes for various aqueous media-based separation processes such as nanofiltration, reverse osmosis and forward osmosis since the concept of TFN was introduced in year 2007. Although the total number of published TFN articles falls far short of the articles of the well-known thin film composite (TFC) membranes, its growth rate is significant, particularly since 2012. Generally, by incorporating an appropriate amount of nanofiller into a thin selective PA layer of a composite membrane, one could produce TFN membranes with enhanced separation characteristics as compared to the conventional TFC membrane. For certain cases, the resulting TFN membranes demonstrate not only excellent antifouling resistance and/or greater antibacterial effect, but also possibly overcome the trade-off effect between water permeability and solute selectivity. Furthermore, this review attempts to give the readers insights into the difficulties of incorporating inorganic nanomaterials into the organic PA layer whose thickness usually falls in a range of several-hundred nanometers. It is also intended to show new possible approaches to overcome these challenges in TFN membrane fabrication.
  14. Latif MA, Ghufran R, Wahid ZA, Ahmad A
    Water Res, 2011 Oct 15;45(16):4683-99.
    PMID: 21764417 DOI: 10.1016/j.watres.2011.05.049
    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.
  15. Karim S, Bae S, Greenwood D, Hanna K, Singhal N
    Water Res, 2017 11 15;125:32-41.
    PMID: 28826034 DOI: 10.1016/j.watres.2017.08.029
    The catalytic properties of nanoparticles (e.g., nano zero valent iron, nZVI) have been used to effectively treat a wide range of environmental contaminants. Emerging contaminants such as endocrine disrupting chemicals (EDCs) are susceptible to degradation by nanoparticles. Despite extensive investigations, questions remain on the transformation mechanism on the nZVI surface under different environmental conditions (redox and pH). Furthermore, in terms of the large-scale requirement for nanomaterials in field applications, the effect of polymer-stabilization used by commercial vendors on the above processes is unclear. To address these factors, we investigated the degradation of a model EDC, the steroidal estrogen 17α-ethinylestradiol (EE2), by commercially sourced nZVI at pH 3, 5 and 7 under different oxygen conditions. Following the use of radical scavengers, an assessment of the EE2 transformation products shows that under nitrogen purging direct reduction of EE2 by nZVI occurred at all pHs. The radicals transforming EE2 in the absence of purging and upon air purging were similar for a given pH, but the dominant radical varied with pH. Upon air purging, EE2 was transformed by the same radical species as the non-purged system at the same respective pH, but the degradation rate was lower with more oxygen - most likely due to faster nZVI oxidation upon aeration, coupled with radical scavenging. The dominant radicals were OH at pH 3 and O2- at pH 5, and while neither radical was involved at pH 7, no conclusive inferences could be made on the actual radical involved at pH 7. Similar transformation products were observed without purging and upon air purging.
  16. Jia Y, Zheng F, Maier HR, Ostfeld A, Creaco E, Savic D, et al.
    Water Res, 2021 Sep 01;202:117419.
    PMID: 34274902 DOI: 10.1016/j.watres.2021.117419
    Urban sewer networks (SNs) are increasingly facing water quality issues as a result of many challenges, such as population growth, urbanization and climate change. A promising way to addressing these issues is by developing and using water quality models. Many of these models have been developed in recent years to facilitate the management of SNs. Given the proliferation of different water quality models and the promise they have shown, it is timely to assess the state-of-the-art in this field, to identify potential challenges and suggest future research directions. In this review, model types, modeled quality parameters, modeling purpose, data availability, type of case studies and model performance evaluation are critically analyzed and discussed based on a review of 110 papers published between 2010 and 2019. The review identified that applications of empirical and kinetic models dominate those of data-driven models for addressing water quality issues. The majority of models are developed for prediction and process understanding using experimental or field sampled data. While many models have been applied to real problems, the corresponding prediction accuracies are overall moderate or, in some cases, low, especially when dealing with larger SNs. The review also identified the most common issues associated with water quality modeling of SNs and based on these proposed several future research directions. These include the identification of appropriate data resolutions for the development of different SN models, the need and opportunity to develop hybrid SN models and the improvement of SN model transferability.
  17. Jia Y, Zheng F, Zhang Q, Duan HF, Savic D, Kapelan Z
    Water Res, 2021 Oct 01;204:117594.
    PMID: 34474249 DOI: 10.1016/j.watres.2021.117594
    Hydraulic modeling of a foul sewer system (FSS) enables a better understanding of the behavior of the system and its effective management. However, there is generally a lack of sufficient field measurement data for FSS model development due to the low number of in-situ sensors for data collection. To this end, this study proposes a new method to develop FSS models based on geotagged information and water consumption data from smart water meters that are readily available. Within the proposed method, each sewer manhole is firstly associated with a particular population whose size is estimated from geotagged data. Subsequently, a two-stage optimization framework is developed to identify daily time-series inflows for each manhole based on physical connections between manholes and population as well as sewer sensor observations. Finally, a new uncertainty analysis method is developed by mapping the probability distributions of water consumption captured by smart meters to the stochastic variations of wastewater discharges. Two real-world FSSs are used to demonstrate the effectiveness of the proposed method. Results show that the proposed method can significantly outperform the traditional FSS model development approach in accurately simulating the values and uncertainty ranges of FSS hydraulic variables (manhole water depths and sewer flows). The proposed method is promising due to the easy availability of geotagged information as well as water consumption data from smart water meters in near future.
  18. Jani J, Toor GS
    Water Res, 2018 06 15;137:344-354.
    PMID: 29571112 DOI: 10.1016/j.watres.2018.02.042
    Nitrogen (N) transport from land to water is a dominant contributor of N in estuarine waters leading to eutrophication, harmful algal blooms, and hypoxia. Our objectives were to (1) investigate the composition of inorganic and organic N forms, (2) distinguish the sources and biogeochemical mechanisms of nitrate-N (NO3-N) transport using stable isotopes of NO3- and Bayesian mixing model, and (3) determine the dissolved organic N (DON) bioavailability using bioassays in a longitudinal gradient from freshwater to estuarine ecosystem located in the Tampa Bay, Florida, United States. We found that DON was the most dominant N form (mean: 64%, range: 46-83%) followed by particulate organic N (PON, mean: 22%, range: 14-37%), whereas inorganic N forms (NOx-N: 7%, NH4-N: 7%) were 14% of total N in freshwater and estuarine waters. Stable isotope data of NO3- revealed that nitrification was the main contributor (36.4%), followed by soil and organic N sources (25.5%), NO3- fertilizers (22.4%), and NH4+ fertilizers (15.7%). Bioassays showed that 14 to 65% of DON concentrations decreased after 5-days of incubation indicating utilization of DON by microbes in freshwater and estuarine waters. These results suggest that despite low proportion of inorganic N forms, the higher concentrations and bioavailability of DON can be a potential source of N for algae and bacteria leading to water quality degradation in the estuarine waters.
  19. Isobe KO, Zakaria MP, Chiem NH, Minh le Y, Prudente M, Boonyatumanond R, et al.
    Water Res, 2004 May;38(9):2448-58.
    PMID: 15142807
    This paper reports the result of sewage pollution monitoring conducted in South and Southeast Asia during 1998-2003 using linear alkylbenzenes (LABs) as molecular tracers of sewage contamination. Eighty-nine water samples collected from Malaysia, Vietnam, and Japan (Tokyo), and 161 surface sediment samples collected from Tokyo, Thailand, Malaysia, Philippines, Vietnam, Cambodia, Indonesia, and India were analyzed for alkylbenzenes. The concentration range of SigmaLABs in river water particles in Southeast Asia (<0.005-0.913 microg/L) was comparable to or higher than those found in Tokyo (<0.005-0.638 microg/L). I/E ratios (a ratio of internal to external isomers of LABs) in tropical Asian waters were close to the value of LABs in raw sewage ( approximately 1) and much lower than those in secondary effluents (3-5). This suggests that untreated or inadequately treated sewage is discharged into the water. SigmaLABs concentrations in sediments from South and Southeast Asia ranged from <0.002-42.6 microg/g-dry with the highest concentration occurring at several populous cities. Low I/E ratios of the sediments with high SigmaLABs concentrations suggest a heavy load of untreated sewage. Clearly in view of the current data and evidence of the implications of sewage pollution, this paper highlights the necessity of the continuation of water treatment system improvement in tropical Asia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links