Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Low YJ, Kittur MI, Andriyana A, Ang BC, Zainal Abidin NI
    J Mech Behav Biomed Mater, 2023 Apr;140:105723.
    PMID: 36821908 DOI: 10.1016/j.jmbbm.2023.105723
    Poly(glycolide-co-caprolactone) (PGCL) has become a novice to the bioresorbable suture owing to the synergistic properties taken from the homo-polyglycolide (PGA) and polycaprolactone (PCL) such as excellent bioresorption and flexibility. In addition to under conventional monotonic loading, the understanding of mechanical responses of PGCL copolymers under complex loading conditions such as cyclic and stress relaxation is crucial for its application as a surgical suture. Consequently, the present work focuses on evaluating the mechanical responses of PGCL sutures under monotonic, cyclic, and stress relaxation loading conditions. Under monotonic loading, the stress-strain behavior of the PGCL suture was found to be non-linear with noticeable strain-rate dependence. Under cyclic loading, inelastic responses including stress-softening, hysteresis and permanent set were observed. During cyclic loading, both stress-softening and hysteresis were found to increase with the maximum strain. In multi-step stress relaxation, the PGCL sutures were observed to exhibit a strong viscoelastic response. In an attempt to describe the relationship between the stress-relaxation and strain-induced crystallization (SIC) occurring during the loading and relaxation processes, a schematic illustration of the conformational change of polymer chains in PGCL sutures was proposed in this work. Results showed that SIC was dependent on the strain level as well as the loading and relaxation durations. The inelastic phenomena observed in PGCL sutures can be thus correlated to the combined effect of stress relaxation and SIC.
    Matched MeSH terms: Absorbable Implants*
  2. Yan L, Zhang M, Wang M, Guo Y, Zhang X, Xi J, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1504-1510.
    PMID: 31492313 DOI: 10.1166/jnn.2020.17350
    This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).
    Matched MeSH terms: Absorbable Implants*
  3. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:45-6.
    PMID: 15468811
    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone were cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher measurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo.
    Matched MeSH terms: Absorbable Implants*
  4. Ginebra MP, Aparicio C, Engel E, Navarro M, Javier Gil F, Planell JA
    Med J Malaysia, 2004 May;59 Suppl B:65-6.
    PMID: 15468821
    Matched MeSH terms: Absorbable Implants*
  5. Pohchi A, Suzina AH, Samsudin AR, Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:151-2.
    PMID: 15468863
    This in vivo study revealed that porous hydroxyapatite (PHA) and dense hydroxyapatite (DHA) are good implant materials that can accelerate bone healing and resorbed in acceptable time. But there were differences in the mechanism of the resorption of DHA and PHA due to variability in the physical properties and osteogenicity.
    Matched MeSH terms: Absorbable Implants*
  6. Chandrasekhar J, Sartori S, Aquino MB, Baber U, Hájek P, Atzev B, et al.
    Am J Cardiol, 2020 07 15;127:1-8.
    PMID: 32418717 DOI: 10.1016/j.amjcard.2020.04.014
    Older patients who undergo coronary interventions are at greater risk of ischemic events and less likely to tolerate prolonged dual antiplatelet therapy (DAPT) due to bleeding risk. The COMBO biodegradable polymer sirolimus-eluting stent promotes rapid endothelialization through endothelial progenitor cell capture technology which may be advantageous in elderly patients. We compared 1-year clinical outcomes and DAPT cessation events in patients >75 versus ≤75 years from the MASCOT registry. MASCOT was a prospective, multicenter cohort study of all-comers undergoing attempted COMBO stenting. The primary endpoint was 1-year target lesion failure (TLF), composite of cardiac death, myocardial infarction (MI) not clearly attributed to a nontarget vessel or clinically driven target lesion revascularization. Bleeding was adjudicated using the Bleeding Academic Research Consortium criteria. Adjusted outcomes were analyzed using Cox regression methods. The study included 18% (n = 479) patients >75 years and 72% (n = 2,135) patients ≤75 years. One-year TLF occurred in 4.6% patients >75 years versus 3.1% patients ≤75years of age, p = 0.10; adj hazard ratio 1.36, 95% confidence intervals 0.77 to 2.38, p = 0.29. There were no significant differences in cardiac death (1.7% vs 1.3%, p = 0.55), MI (2.1% vs 1.2%, p = 0.14), target lesion revascularization (1.7% vs 1.4%, p = 0.60) and definite stent thrombosis (0.8% vs 0.4%, p = 0.19). Major Bleeding Academic Research Consortium 3,5 bleeding (3.1% vs 1.5%, p = 0.01) and DAPT cessation rates (32.4% vs 23.0%, p <0.001) were significantly higher in elderly patients. In conclusion, elderly patients >75 years treated with COMBO stents had similar TLF but significantly greater incidence of bleeding than younger patients and DAPT cessation in one-third of patients over 1 year.
    Matched MeSH terms: Absorbable Implants*
  7. Chanana BB, Chandra P, Cheng JJ, Dick R, Gwon HC, Hiremath MS, et al.
    Int J Cardiol, 2016 Nov 01;222:832-40.
    PMID: 27522385 DOI: 10.1016/j.ijcard.2016.07.273
    BACKGROUND & AIMS: Although Absorb Bioresorbable Vascular Scaffolds (A-BVS) are routinely used in the Asia-Pacific, there is little information on patient selection or deployment technique here. This document investigates the experiences of leading interventional cardiologists from the Asia-Pacific region with a focus on patient characteristics, deployment techniques and management.

    METHODS AND RESULTS: A detailed questionnaire was distributed to 28 highly-experienced interventional cardiologists ('Authors') from 13 Asia-Pacific countries. The results were discussed at a meeting on patient selection, technical consideration, deployment practices and patient management. Potential patient benefits of Absorb compared to metallic DES, the learning curve for patient selection and preparation, device deployment, and subsequent patient management approaches are presented.

    CONCLUSIONS: Current practices are derived from guidelines optimized for European patients. Differences in approach exist in the Asia-Pacific context, including limited access to imaging and frequency of occurrence of complex lesions. Nevertheless, the use of the Absorb BVS ('Absorb') in certain Asia-Pacific countries has flourished and practices here are continuing to mature.

    Matched MeSH terms: Absorbable Implants/utilization*
  8. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Absorbable Implants
  9. Sing NB, Mostavan A, Hamzah E, Mantovani D, Hermawan H
    J Biomed Mater Res B Appl Biomater, 2015 Apr;103(3):572-7.
    PMID: 24954069 DOI: 10.1002/jbm.b.33242
    This article reports a degradation study that was done on stent prototypes made of biodegradable Fe35Mn alloy in a simulated human coronary arterial condition. The stent degradation was observed for a short-term period from 0.5 to 168 h, which simulates the early period of stenting procedure. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to quantify degradation rate and surface property of the stents. Results showed that signs of degradation were visible on both crimped and expanded stents after 1 h of test, mostly located on the stent's curvatures. The degradation rate of stent was higher compared to that of the original alloy, indicating the surface altering effect of stent fabrication processing to degradation. A single oxide layer was formed and detected as a porous structure with capacitive behavior. Expanded stents exhibited lower polarization resistance compared to the nonexpanded ones, indicating the cold work effect of expansion procedure to degradation.
    Matched MeSH terms: Absorbable Implants*
  10. Wan Ahmad WA, Nakayoshi T, Mahmood Zuhdi AS, Ismail MD, Zainal Abidin I, Ino Y, et al.
    Heart Vessels, 2020 Apr;35(4):463-473.
    PMID: 31587103 DOI: 10.1007/s00380-019-01516-9
    Recent clinical trials have raised concerns about the safety and efficacy of ABSORB™ bioresorbable vascular scaffolds (BVS). The difference in the vascular healing process between SYNERGY™ bioabsorbable polymer-coated everolimus-eluting stents (BP-EES) and BVS remains unclear. The aim of the ENHANCE study was to compare vascular healing on BP-EES versus BVS by optical coherence tomography (OCT) and coronary angioscopy (CAS) at 4- and 12-month follow-ups. This is a prospective, non-randomized, single center clinical trial. Thirteen eligible patients with multivessel disease were enrolled. BP-EES and BVS were simultaneously implanted in the same patients, but in different coronary vessels. Imaging follow-up with both OCT and CAS was completed in 11 patients at 12 months. Neointimal coverage rates were similar between the two groups based on OCT measurements. The neointimal thickness of BP-EES was significantly thicker at the 12th month than at the 4th month, whereas the neointimal thickness of BVS did not change between the measurements taken at the 4th and 12th month. Existence of intra-stent thrombus was significantly higher in the BVS group, compared to the BP-EES group. On the other hand, CAS revealed that red-thrombi and yellow-plaque were more frequently observed in BVS at 4 months and up to 12-month follow-ups than in BP-EES. These findings suggested that the evidence of instability remained up to 12 months in the vascular healing with BVS, compared to that with BP-EES. Vascular healing of the stented wall was recognized at the very early phase after BP-EES implantation. However, vascular healing with BVS was still incomplete after 12 months.
    Matched MeSH terms: Absorbable Implants
  11. Shahrulazua A, Ariff Sukimin MS, Tengku Muzaffar TM, Yusof MI
    Singapore Med J, 2010 Mar;51(3):235-41.
    PMID: 20428746
    The purpose of this study was to evaluate the early functional outcome following the use of a bioabsorbable suture anchor to simplify the repair of injured lateral ankle structures as a variation of an established technique known as the Brostrom-Gould procedure.
    Matched MeSH terms: Absorbable Implants*
  12. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Oct 01;67:792-806.
    PMID: 27287178 DOI: 10.1016/j.msec.2016.05.037
    Bones are nanocomposites consisting of a collagenous fibre network, embedded with calcium phosphates mainly hydroxyapatite (HA) nanocrystallites. As bones are subjected to continuous loading and unloading process every day, they often tend to become prone to fatigue and breakdown. Therefore, this review addresses the use of nanocomposites particularly polymers reinforced with nanoceramics that can be used as load bearing bone implants. Further, nanocomposite preparation and dispersion modification techniques have been highlighted along with thorough discussion on the influence that various nanofillers have on the physico-mechanical properties of nanocomposites in relation to that of natural bone properties. This review updates the nanocomposites that meet the physico-mechanical properties (strength and elasticity) as well as biocompatibility requirement of a load bearing bone implant and also attempts to highlight the gaps in the reported studies to address the fatigue and creep properties of the nanocomposites.
    Matched MeSH terms: Absorbable Implants*
  13. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg
    Matched MeSH terms: Absorbable Implants*
  14. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Norimah Y, Asnah H
    Med J Malaysia, 2004 May;59 Suppl B:178-9.
    PMID: 15468876
    The study was carried out to evaluate macroscopically the ability of coral to repair a large size bone defect. A total 12 adult, male sheep were used in the study. The large bone defect (2.5cm x 0.5cm x 0.5cm) was created surgically on the left proximal femur and replaced by a block of coral (Porites sp.). Radiographs were obtained immediately after surgery and at 2, 4, 8 and 12 weeks post-implantation. Ultrasonographic examinations were carried out every 2 weeks after implantation up to 12 weeks using ultrasound machine (TOSHIBA Capasee II) connected with 7MHz frequency transducer. The sheep were euthanased at 2, 4, 8, and 12 weeks post-implantation and the bone examined grossly. Both ultrasonographs and radiographs taken at 8 and 12 weeks showed that the implants had been resorbed and left the space that much reduced in size. There was no sign of implant rejection observed in all animals. The results showed that processed coral has potential to become bone substitute for reconstructive bone surgery.
    Matched MeSH terms: Absorbable Implants*
  15. Bakhsheshi-Rad HR, Hamzah E, Ying WS, Razzaghi M, Sharif S, Ismail AF, et al.
    Materials (Basel), 2021 Apr 12;14(8).
    PMID: 33921460 DOI: 10.3390/ma14081930
    Magnesium has been recognized as a groundbreaking biodegradable biomaterial for implant applications, but its use is limited because it degrades too quickly in physiological solutions. This paper describes the research on the influence of polycaprolactone (PCL)/chitosan (CS)/zinc oxide (ZnO) composite coating (PCL/CS/ZnO) on the corrosion resistance and antibacterial activity of magnesium. The PCL/CS film presented a porous structure with thickness of about 40-50 μm, while after incorporation of ZnO into the PCL/CS, a homogenous film without pores and defects was attained. The ZnO embedded in PCL/CS enhanced corrosion resistance by preventing corrosive ions diffusion in the magnesium substrate. The corrosion, antibacterial, and cell interaction mechanism of the PCL/CS/ZnO composite coating is discussed in this study. In vitro cell culture revealed that the PCL/CS coating with low loaded ZnO significantly improved cytocompatibility, but coatings with high loaded ZnO were able to induce some cytotoxicity osteoblastic cells. It was also found that enhanced antibacterial activity of the PCL/CS/ZnO coating against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, while less significant antibacterial activity was detected for uncoated Mg and PCL/CS coating. Based on the results, the PCL/CS coatings loaded with low ZnO content may be recommended as a candidate material for biodegradable Mg-based orthopedic implant applications.
    Matched MeSH terms: Absorbable Implants
  16. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
    Matched MeSH terms: Absorbable Implants*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links