Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:45-6.
    PMID: 15468811
    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone were cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher measurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo.
    Matched MeSH terms: Absorbable Implants*
  2. Alavi R, Akbarzadeh AH, Hermawan H
    J Mech Behav Biomed Mater, 2021 05;117:104413.
    PMID: 33640846 DOI: 10.1016/j.jmbbm.2021.104413
    In-depth analyses of post-corrosion mechanical properties and architecture of open cell iron foams with hollow struts as absorbable bone scaffolds were carried out. Variations in the architectural features of the foams after 14 days of immersion in a Hanks' solution were investigated using micro-computed tomography and scanning electron microscope images. Finite element Kelvin foam model was developed, and the numerical modeling and experimental results were compared against each other. It was observed that the iron foam samples were mostly corroded in the periphery regions. Except for quasi-elastic gradient, other mechanical properties (i.e. compressive strength, yield strength and energy absorbability) decreased monotonically with immersion time. Presence of adherent corrosion products enhanced the load-bearing capacity of the open cell iron foams at small strains. The finite element prediction for the quasi-elastic response of the 14-day corroded foam was in an agreement with the experimental results. This study highlights the importance of considering corrosion mechanism when designing absorbable scaffolds; this is indispensable to offer desirable mechanical properties in porous materials during degradation in a biological environment.
    Matched MeSH terms: Absorbable Implants*
  3. Aminuddin BS
    Med J Malaysia, 2004 May;59 Suppl B:3-4.
    PMID: 15468790
    Management of severe tracheal anomalies remains a clinical challenge. Tissue engineering offers new hope in trachea reconstruction surgery. However to date no optimal technique achieved in the formation of human or animal trachea. The main problem lies on the biomaterial used and the complex city of forming trachea in vivo. This study was aimed at creating tissue-engineered trachea cartilage from easily accessible human and animal nasal septum cartilage using internal scaffold and biodegradable human and animal fibrin.
    Matched MeSH terms: Absorbable Implants
  4. Bakhsheshi-Rad HR, Hamzah E, Ying WS, Razzaghi M, Sharif S, Ismail AF, et al.
    Materials (Basel), 2021 Apr 12;14(8).
    PMID: 33921460 DOI: 10.3390/ma14081930
    Magnesium has been recognized as a groundbreaking biodegradable biomaterial for implant applications, but its use is limited because it degrades too quickly in physiological solutions. This paper describes the research on the influence of polycaprolactone (PCL)/chitosan (CS)/zinc oxide (ZnO) composite coating (PCL/CS/ZnO) on the corrosion resistance and antibacterial activity of magnesium. The PCL/CS film presented a porous structure with thickness of about 40-50 μm, while after incorporation of ZnO into the PCL/CS, a homogenous film without pores and defects was attained. The ZnO embedded in PCL/CS enhanced corrosion resistance by preventing corrosive ions diffusion in the magnesium substrate. The corrosion, antibacterial, and cell interaction mechanism of the PCL/CS/ZnO composite coating is discussed in this study. In vitro cell culture revealed that the PCL/CS coating with low loaded ZnO significantly improved cytocompatibility, but coatings with high loaded ZnO were able to induce some cytotoxicity osteoblastic cells. It was also found that enhanced antibacterial activity of the PCL/CS/ZnO coating against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, while less significant antibacterial activity was detected for uncoated Mg and PCL/CS coating. Based on the results, the PCL/CS coatings loaded with low ZnO content may be recommended as a candidate material for biodegradable Mg-based orthopedic implant applications.
    Matched MeSH terms: Absorbable Implants
  5. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg
    Matched MeSH terms: Absorbable Implants*
  6. Campos CM, Caixeta A, Franken M, Bartorelli AL, Whitbourn RJ, Wu CJ, et al.
    Catheter Cardiovasc Interv, 2018 02 15;91(3):387-395.
    PMID: 28471086 DOI: 10.1002/ccd.27109
    OBJECTIVES: to compare the occurrence of clinical events in diabetics treated with the Absorb bioresorbable vascular scaffold (Absorb BVS; Abbott Vascular, Santa Clara, CA) versus everolimus-eluting metal stents (EES; XIENCE V; Abbott Vascular, Santa Clara, CA) BACKGROUND: There are limited data dedicated to clinical outcomes of diabetic patients treated with bioresorbable scaffolds (BRS) at 2-year horizon.

    METHODS: The present study included 812 patients in the ABSORB EXTEND study in which a total of 215 diabetic patients were treated with Absorb BVS. In addition, 882 diabetic patients treated with EES in pooled data from the SPIRIT clinical program (SPIRIT II, SPIRIT III and SPIRIT IV trials) were used for comparison by applying propensity score matching using 29 different variables. The primary endpoint was ischemia driven major adverse cardiac events (ID-MACE), including cardiac death, myocardial infarction (MI), and ischemia driven target lesion revascularization (ID-TLR).

    RESULTS: After 2 years, the ID-MACE rate was 6.5% in the Absorb BVS vs. 8.9% in the Xience group (P = 0.40). There was no difference for MACE components or definite/probable device thrombosis (HR: 1.43 [0.24,8.58]; P = 0.69). The occurrence of MACE was not different for both diabetic status (insulin- and non-insulin-requiring diabetes) in all time points up to the 2-year follow-up for the Absorb and Xience groups.

    CONCLUSION: In this largest ever patient-level pooled comparison on the treatment of diabetic patients with BRS out to two years, individuals with diabetes treated with the Absorb BVS had a similar rate of MACE as compared with diabetics treated with the Xience EES. © 2017 Wiley Periodicals, Inc.

    Matched MeSH terms: Absorbable Implants*
  7. Chanana BB, Chandra P, Cheng JJ, Dick R, Gwon HC, Hiremath MS, et al.
    Int J Cardiol, 2016 Nov 01;222:832-40.
    PMID: 27522385 DOI: 10.1016/j.ijcard.2016.07.273
    BACKGROUND & AIMS: Although Absorb Bioresorbable Vascular Scaffolds (A-BVS) are routinely used in the Asia-Pacific, there is little information on patient selection or deployment technique here. This document investigates the experiences of leading interventional cardiologists from the Asia-Pacific region with a focus on patient characteristics, deployment techniques and management.

    METHODS AND RESULTS: A detailed questionnaire was distributed to 28 highly-experienced interventional cardiologists ('Authors') from 13 Asia-Pacific countries. The results were discussed at a meeting on patient selection, technical consideration, deployment practices and patient management. Potential patient benefits of Absorb compared to metallic DES, the learning curve for patient selection and preparation, device deployment, and subsequent patient management approaches are presented.

    CONCLUSIONS: Current practices are derived from guidelines optimized for European patients. Differences in approach exist in the Asia-Pacific context, including limited access to imaging and frequency of occurrence of complex lesions. Nevertheless, the use of the Absorb BVS ('Absorb') in certain Asia-Pacific countries has flourished and practices here are continuing to mature.

    Matched MeSH terms: Absorbable Implants/utilization*
  8. Chandrasekhar J, Sartori S, Aquino MB, Baber U, Hájek P, Atzev B, et al.
    Am J Cardiol, 2020 07 15;127:1-8.
    PMID: 32418717 DOI: 10.1016/j.amjcard.2020.04.014
    Older patients who undergo coronary interventions are at greater risk of ischemic events and less likely to tolerate prolonged dual antiplatelet therapy (DAPT) due to bleeding risk. The COMBO biodegradable polymer sirolimus-eluting stent promotes rapid endothelialization through endothelial progenitor cell capture technology which may be advantageous in elderly patients. We compared 1-year clinical outcomes and DAPT cessation events in patients >75 versus ≤75 years from the MASCOT registry. MASCOT was a prospective, multicenter cohort study of all-comers undergoing attempted COMBO stenting. The primary endpoint was 1-year target lesion failure (TLF), composite of cardiac death, myocardial infarction (MI) not clearly attributed to a nontarget vessel or clinically driven target lesion revascularization. Bleeding was adjudicated using the Bleeding Academic Research Consortium criteria. Adjusted outcomes were analyzed using Cox regression methods. The study included 18% (n = 479) patients >75 years and 72% (n = 2,135) patients ≤75 years. One-year TLF occurred in 4.6% patients >75 years versus 3.1% patients ≤75years of age, p = 0.10; adj hazard ratio 1.36, 95% confidence intervals 0.77 to 2.38, p = 0.29. There were no significant differences in cardiac death (1.7% vs 1.3%, p = 0.55), MI (2.1% vs 1.2%, p = 0.14), target lesion revascularization (1.7% vs 1.4%, p = 0.60) and definite stent thrombosis (0.8% vs 0.4%, p = 0.19). Major Bleeding Academic Research Consortium 3,5 bleeding (3.1% vs 1.5%, p = 0.01) and DAPT cessation rates (32.4% vs 23.0%, p <0.001) were significantly higher in elderly patients. In conclusion, elderly patients >75 years treated with COMBO stents had similar TLF but significantly greater incidence of bleeding than younger patients and DAPT cessation in one-third of patients over 1 year.
    Matched MeSH terms: Absorbable Implants*
  9. Che Nor Zarida Che Seman, Zamzuri Zakaria
    MyJurnal
    Critical size defects (CSD) in the long bones of New Zealand White rabbits (Oryctolagus cuniculus) have been used for years as an experimental model for investigation of the effectiveness of a new bone substitute material. There are varieties of protocols available in the literature. This technical note attempts to present an alternative surgical technique of a CSD in the New Zealand white rabbit tibia. Methods: Thirty-nine New Zealand White rabbits were used in this study. A CSD of approximately 4.5 mm (width) X 9.0 mm (length) was surgically drilled at the proximal tibial metaphysis, approximately 1 cm from the knee joint. The surrounding of soft tissue was repositioned and sutured layer by layer with bioabsorbable surgical suture. Two x-rays of anteroposterior and lateral were taken before assessed under computed tomography scan at 6, 12 and 24 weeks. Results: This alternative method created CSD with less bleeding from the muscle observed. No mortality or other surgical complications observed within 6 weeks, 12 weeks and 24 weeks following surgery. Conclusion: A simple and safe method for performing CSD was demonstrated and recommended as an alternative approach for surgery on New Zealand White rabbits.
    Matched MeSH terms: Absorbable Implants
  10. Dambatta MS, Murni NS, Izman S, Kurniawan D, Froemming GR, Hermawan H
    Proc Inst Mech Eng H, 2015 May;229(5):335-42.
    PMID: 25991712 DOI: 10.1177/0954411915584962
    This article reports the in vitro degradation and cytotoxicity assessment of Zn-3Mg alloy developed for biodegradable bone implants. The alloy was prepared using casting, and its microstructure was composed of Mg2Zn11 intermetallic phase distributed within a Zn-rich matrix. The degradation assessment was done using potentiodynamic polarization and electrochemical impedance spectrometry. The cell viability and the function of normal human osteoblast cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and alkaline phosphatase extracellular enzyme activity assays. The results showed that the degradation rate of the alloy was slower than those of pure Zn and pure Mg due to the formation of a high polarization resistance oxide film. The alloy was cytocompatible with the normal human osteoblast cells at low concentrations (<0.5 mg/mL), and its alkaline phosphatase activity was superior to pure Mg. This assessment suggests that Zn-3Mg alloy has the potential to be developed as a material for biodegradable bone implants, but the toxicity limit must be carefully observed.
    Matched MeSH terms: Absorbable Implants*
  11. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Norimah Y, Asnah H
    Med J Malaysia, 2004 May;59 Suppl B:178-9.
    PMID: 15468876
    The study was carried out to evaluate macroscopically the ability of coral to repair a large size bone defect. A total 12 adult, male sheep were used in the study. The large bone defect (2.5cm x 0.5cm x 0.5cm) was created surgically on the left proximal femur and replaced by a block of coral (Porites sp.). Radiographs were obtained immediately after surgery and at 2, 4, 8 and 12 weeks post-implantation. Ultrasonographic examinations were carried out every 2 weeks after implantation up to 12 weeks using ultrasound machine (TOSHIBA Capasee II) connected with 7MHz frequency transducer. The sheep were euthanased at 2, 4, 8, and 12 weeks post-implantation and the bone examined grossly. Both ultrasonographs and radiographs taken at 8 and 12 weeks showed that the implants had been resorbed and left the space that much reduced in size. There was no sign of implant rejection observed in all animals. The results showed that processed coral has potential to become bone substitute for reconstructive bone surgery.
    Matched MeSH terms: Absorbable Implants*
  12. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Al-Salihi KA, Norimah Y, et al.
    Med J Malaysia, 2004 May;59 Suppl B:127-8.
    PMID: 15468851
    The study was carried out with the aim to evaluate natural coral (Porites spp.) implanted in sheep femur microscopically. Twelve adult, male sheep were used in this study. The defect area was implanted with coral and monitored for up to 12 weeks. The sheep were euthanased at 2,4,8, and 12 weeks post-implantation. Microscopically, natural coral implanted into bone tissue have shown gradual resorption and progressively replaced by new bone. At 12 weeks post-implantation, the implanted site was almost completely surrounded by mature bone. The results showed that natural coral was found to be a biodegradable and osteo-conductive biomaterial, which acted as a scaffold for a direct osteoblastic apposition.
    Matched MeSH terms: Absorbable Implants*
  13. Ginebra MP, Aparicio C, Engel E, Navarro M, Javier Gil F, Planell JA
    Med J Malaysia, 2004 May;59 Suppl B:65-6.
    PMID: 15468821
    Matched MeSH terms: Absorbable Implants*
  14. Hermawan H, Mantovani D
    Acta Biomater, 2013 Nov;9(10):8585-92.
    PMID: 23665503 DOI: 10.1016/j.actbio.2013.04.027
    Biodegradable stents are considered to be a recent innovation, and their feasibility and applicability have been proven in recent years. Research in this area has focused on materials development and biological studies, rather than on how to transform the developed biodegradable materials into the stent itself. Currently available stent technology, the laser cutting-based process, might be adapted to fabricate biodegradable stents. In this work, the fabrication, characterization and testing of biodegradable Fe-Mn stents are described. A standard process for fabricating and testing stainless steel 316L stents was referred to. The influence of process parameters on the physical, metallurgical and mechanical properties of the stents, and the quality of the produced stents, were investigated. It was found that some steps of the standard process such as laser cutting can be directly applied, but changes to parameters are needed for annealing, and alternatives are needed to replace electropolishing.
    Matched MeSH terms: Absorbable Implants*
  15. Krackhardt F, Kočka V, Waliszewski M, Toušek P, Janek B, Trenčan M, et al.
    Medicine (Baltimore), 2020 Feb;99(8):e19119.
    PMID: 32080086 DOI: 10.1097/MD.0000000000019119
    Stent designs with ultrathin struts may further increase the procedural success of challenging lesion subsets. The objective of this study was to assess the safety and efficacy of ultrathin strut, polymer-free sirolimus eluting stent (PF-SES) implantations in a large scale, unselected patient population.Adult patients underwent percutaneous coronary interventions (PCI) with a thin-strut PF-SES. Data from two all-comers observational studies having the same protocol (ClinicalTrials.gov Identifiers: NCT02629575 and NCT02905214) were pooled. The accumulated target lesion revascularization (TLR) rate at 9-12 months was the primary endpoint. All dual antiplatelet therapy strategies according to the applicable guidelines were permissible.In total, 7243 patients were prospectively enrolled for PCI with PF-SES in stable coronary artery disease or acute coronary syndrome (ACS). Major risk factors in the overall cohort were diabetes (37.3%), ST elevation myocardial infarction (18.1%) and non-ST myocardial infarction (24.6%). The follow-up rate was 88.6% in the overall population. The TLR rate in the overall cohort was 2.2% whereas definite/probable stent thrombosis (ST) occurred in 0.7%. In patients with in-stent restenosis lesions, the major adverse cardiac events rate was 6.4% whereas the corresponding rate for isolated left main coronary artery (LMCA) disease was highest with 6.7% followed by patients with culprit lesions in vein bypasses (VB, 7.1%). The mortality rate in patients treated in VB lesions was highest with 5.4%, followed by the isolated LMCA subgroup (3.4%) and ACS (2.6%).PCI with PF-SES in an unselected patient population, is associated with low clinical event and ST rates. Furthermore, PF-SES angioplasty in niche indications demonstrated favorable safety and efficacy outcomes with high procedural success rates.
    Matched MeSH terms: Absorbable Implants/adverse effects
  16. Low YJ, Kittur MI, Andriyana A, Ang BC, Zainal Abidin NI
    J Mech Behav Biomed Mater, 2023 Apr;140:105723.
    PMID: 36821908 DOI: 10.1016/j.jmbbm.2023.105723
    Poly(glycolide-co-caprolactone) (PGCL) has become a novice to the bioresorbable suture owing to the synergistic properties taken from the homo-polyglycolide (PGA) and polycaprolactone (PCL) such as excellent bioresorption and flexibility. In addition to under conventional monotonic loading, the understanding of mechanical responses of PGCL copolymers under complex loading conditions such as cyclic and stress relaxation is crucial for its application as a surgical suture. Consequently, the present work focuses on evaluating the mechanical responses of PGCL sutures under monotonic, cyclic, and stress relaxation loading conditions. Under monotonic loading, the stress-strain behavior of the PGCL suture was found to be non-linear with noticeable strain-rate dependence. Under cyclic loading, inelastic responses including stress-softening, hysteresis and permanent set were observed. During cyclic loading, both stress-softening and hysteresis were found to increase with the maximum strain. In multi-step stress relaxation, the PGCL sutures were observed to exhibit a strong viscoelastic response. In an attempt to describe the relationship between the stress-relaxation and strain-induced crystallization (SIC) occurring during the loading and relaxation processes, a schematic illustration of the conformational change of polymer chains in PGCL sutures was proposed in this work. Results showed that SIC was dependent on the strain level as well as the loading and relaxation durations. The inelastic phenomena observed in PGCL sutures can be thus correlated to the combined effect of stress relaxation and SIC.
    Matched MeSH terms: Absorbable Implants*
  17. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Oct 01;67:792-806.
    PMID: 27287178 DOI: 10.1016/j.msec.2016.05.037
    Bones are nanocomposites consisting of a collagenous fibre network, embedded with calcium phosphates mainly hydroxyapatite (HA) nanocrystallites. As bones are subjected to continuous loading and unloading process every day, they often tend to become prone to fatigue and breakdown. Therefore, this review addresses the use of nanocomposites particularly polymers reinforced with nanoceramics that can be used as load bearing bone implants. Further, nanocomposite preparation and dispersion modification techniques have been highlighted along with thorough discussion on the influence that various nanofillers have on the physico-mechanical properties of nanocomposites in relation to that of natural bone properties. This review updates the nanocomposites that meet the physico-mechanical properties (strength and elasticity) as well as biocompatibility requirement of a load bearing bone implant and also attempts to highlight the gaps in the reported studies to address the fatigue and creep properties of the nanocomposites.
    Matched MeSH terms: Absorbable Implants*
  18. Mourougayan V
    Cleft Palate Craniofac J, 2006 Nov;43(6):656-8.
    PMID: 17105330
    To study the quality of scars following the use of butyl cyanoacrylate to close the skin during cleft lip repair.
    Matched MeSH terms: Absorbable Implants
  19. Muhammad KB, Abas WA, Kim KH, Pingguan-Murphy B, Zain NM, Akram H
    Clinics (Sao Paulo), 2012;67(6):629-38.
    PMID: 22760903
    OBJECTIVE: Dark poly(caprolactone) trifumarate is a successful candidate for use as a bone tissue engineering scaffold. Recently, a white polymeric scaffold was developed that shows a shorter synthesis time and is more convenient for tissue-staining work. This is an in vitro comparative study of both the white and dark scaffolds.

    METHODS: Both white and dark poly(caprolactone) trifumarate macromers were characterized via Fourier transform infrared spectroscopy before being chemically cross-linked and molded into disc-shaped scaffolds. Biodegradability was assessed by percentage weight loss on days 7, 14, 28, 42 and 56 (n = 5) after immersion in 10% serum-supplemented medium or distilled water. Static cell seeding was employed in which isolated and characterized rat bone marrow stromal cells were seeded directly onto the scaffold surface. Seeded scaffolds were subjected to a series of biochemical assays and scanning electron microscopy at specified time intervals for up to 28 days of incubation.

    RESULTS: The degradation of the white scaffold was significantly lower compared with the dark scaffold but was within the acceptable time range for bone-healing processes. The deoxyribonucleic acid and collagen contents increased up to day 28 with no significant difference between the two scaffolds, but the glycosaminoglycan content was slightly higher in the white scaffold throughout 14 days of incubation. Scanning electron microscopy at day 1 [corrected] revealed cellular growth and attachment.

    CONCLUSIONS: There was no cell growth advantage between the two forms, but the white scaffold had a slower biodegradability rate, suggesting that the newly synthesized poly(caprolactone) trifumarate is more suitable for use as a bone tissue engineering scaffold.

    Matched MeSH terms: Absorbable Implants*
  20. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:560-566.
    PMID: 25686984 DOI: 10.1016/j.msec.2015.01.056
    The recent proposal of using Zn-based alloys for biodegradable implants was not supported with sufficient toxicity data. This work, for the first time, presents a thorough cytotoxicity evaluation of Zn-3Mg alloy for biodegradable bone implants. Normal human osteoblast cells were exposed to the alloy's extract and three main cell-material interaction parameters: cell health, functionality and inflammatory response, were evaluated. Results showed that at the concentration of 0.75mg/ml alloy extract, cell viability was reduced by ~50% through an induction of apoptosis at day 1; however, cells were able to recover at days 3 and 7. Cytoskeletal changes were observed but without any significant DNA damage. The downregulation of alkaline phosphatase protein levels did not significantly affect the mineralization process of the cells. Significant differences of cyclooxygenase-2 and prostaglandin E2 inflammatory biomarkers were noticed, but not interleukin 1-beta, indicating that the cells underwent a healing process after exposure to the alloy. Detailed analysis on the cell-material interaction is further discussed in this paper.
    Matched MeSH terms: Absorbable Implants
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links