Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Mawarnis ER, Ali Umar A, Tomitori M, Balouch A, Nurdin M, Muzakkar MZ, et al.
    ACS Omega, 2018 Sep 30;3(9):11526-11536.
    PMID: 31459253 DOI: 10.1021/acsomega.8b01268
    A combinative effect of two or more individual material properties, such as lattice parameters and chemical properties, has been well-known to generate novel nanomaterials with special crystal growth behavior and physico-chemical performance. This paper reports unusually high catalytic performance of AgPt nanoferns in the hydrogenation reaction of acetone conversion to isopropanol, which is several orders higher compared to the performance shown by pristine Pt nanocatalysts or other metals and metal-metal oxide hybrid catalyst systems. It has been demonstrated that the combinative effect during the bimetallisation of Ag and Pt produced nanostructures with a highly anisotropic morphology, i.e., hierarchical nanofern structures, which provide high-density active sites on the catalyst surface for an efficient catalytic reaction. The extent of the effect of structural growth on the catalytic performance of hierarchical AgPt nanoferns is discussed.
    Matched MeSH terms: Acetone
  2. Yeo CI, Tan YS, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Aug 1;71(Pt 8):937-40.
    PMID: 26396760 DOI: 10.1107/S2056989015013341
    In the title complex salt, [Au2{(C6H5)2PCH2P(C6H5)2}]Cl2·(CH3)2C=O·H2O, the dication forms an eight-membered {-PCPAu}2 ring with a transannular aurophilic inter-action [Au⋯Au = 2.9743 (2) Å]. The ring approximates a flattened boat conformation, with the two methyl-ene C atoms lying ca 0.58-0.59 Å above the least-squares plane defined by the Au2P4 atoms (r.m.s. deviation = 0.0849 Å). One Cl(-) anion functions as a weak bridge between the Au(I) atoms [Au⋯Cl = 2.9492 (13) and 2.9776 (12) Å]. The second Cl(-) anion forms two (water)O-H⋯Cl hydrogen bonds about a centre of inversion, forming a centrosymmetric eight-membered {⋯HOH⋯Cl}2 supra-molecular square. Globally, the dications and loosely associated Cl(-) anions assemble into layers lying parallel to the ac plane, being connected by C-H⋯Cl,π(phen-yl) inter-actions. The supra-molecular squares and solvent acetone mol-ecules are sandwiched in the inter-layer region, being connected to the layers on either side by C-H⋯Cl,O(acetone) inter-actions.
    Matched MeSH terms: Acetone
  3. Nasser Al-Shorgani NK, Kalil MS, Wan Yusoff WM, Shukor H, Hamid AA
    Anaerobe, 2015 Dec;36:65-72.
    PMID: 26439644 DOI: 10.1016/j.anaerobe.2015.09.008
    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio.
    Matched MeSH terms: Acetone
  4. Chai M, Tan G, Lal A
    Anal Sci, 2008 Feb;24(2):273-6.
    PMID: 18270422
    A headspace solid-phase microextraction method has been developed for the determination of 8 pesticides in vegetables and fruits by using gas chromatography with an electron capture detector. Two types of fibers (polyacrylate, 85 microm and polydimethylsiloxane, 100 microm) have been assayed and compared. The main factors: extraction and desorption parameters, ionic strength, and the effects of dilution and organic solvents, were studied and optimized. The optimized procedures resulted in more than 80% recovery for all the investigated vegetable and fruit samples with RSD values below 10%.
    Matched MeSH terms: Acetone/chemistry
  5. Ibrahim MF, Abd-Aziz S, Razak MN, Phang LY, Hassan MA
    Appl Biochem Biotechnol, 2012 Apr;166(7):1615-25.
    PMID: 22391689 DOI: 10.1007/s12010-012-9538-6
    Acetone-butanol-ethanol (ABE) production from renewable resources has been widely reported. In this study, Clostridium butyricum EB6 was employed for ABE fermentation using fermentable sugar derived from treated oil palm empty fruit bunch (OPEFB). A higher amount of ABE (2.61 g/l) was produced in a fermentation using treated OPEFB as the substrate when compared to a glucose based medium that produced 0.24 g/l at pH 5.5. ABE production was increased to 3.47 g/l with a yield of 0.24 g/g at pH 6.0. The fermentation using limited nitrogen concentration of 3 g/l improved the ABE yield by 64%. The study showed that OPEFB has the potential to be applied for renewable ABE production by C. butyricum EB6.
    Matched MeSH terms: Acetone/metabolism*
  6. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Feb;202:206-13.
    PMID: 26710346 DOI: 10.1016/j.biortech.2015.11.078
    In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.
    Matched MeSH terms: Acetone
  7. Shukor H, Al-Shorgani NK, Abdeshahian P, Hamid AA, Anuar N, Rahman NA, et al.
    Bioresour Technol, 2014 Oct;170:565-73.
    PMID: 25171212 DOI: 10.1016/j.biortech.2014.07.055
    Palm kernel cake (PKC) was used for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in acetone-butanol-ethanol (ABE) fermentation. PKC was subjected to acid hydrolysis pretreatment and hydrolysates released were detoxified by XAD-4 resin. The effect of pH, temperature and inoculum size on butanol production was evaluated using an empirical model. Twenty ABE fermentations were run according to an experimental design. Experimental results revealed that XAD-4 resin removed 50% furfural and 77.42% hydroxymethyl furfural. The analysis of the empirical model showed that linear effect of inoculums size with quadratic effect of pH and inoculum size influenced butanol production at 99% probability level (P<0.01). The optimum conditions for butanol production were pH 6.28, temperature of 28°C and inoculum size of 15.9%. ABE fermentation was carried out under optimum conditions which 0.1g/L butanol was obtained. Butanol production was enhanced by diluting PKC hydrolysate up to 70% in which 3.59g/L butanol was produced.
    Matched MeSH terms: Acetone/metabolism
  8. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Oct;218:257-64.
    PMID: 27372004 DOI: 10.1016/j.biortech.2016.06.084
    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol.
    Matched MeSH terms: Acetone/chemistry
  9. Wan Daud WR, Djuned FM
    Carbohydr Polym, 2015 Nov 5;132:252-60.
    PMID: 26256348 DOI: 10.1016/j.carbpol.2015.06.011
    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA.
    Matched MeSH terms: Acetone/chemistry
  10. Azila N, Siao FK, Othman I
    PMID: 1675964
    1. An extract prepared from the tentacle of the jellyfish (CE), Catostylus mosaicus exhibited haemolytic, oedema and haemorrhage-inducing activities. 2. Acetone treatment of the tentacle extract produced an acetone soluble extract (AE) which showed an increase in specific haemolytic and haemorrhagic activities by 25- and 120-fold respectively; the minimum oedema dose was reduced by 30-fold. 3. The AE caused a rapid onset of oedema in the mouse foot pad. The effect was long-lasting, reaching a maximum in about 30 min after injection and sustained up to 4 hr. 4. Fractionation of the AE on Q-Sepharose gave 4 bound fractions which induced oedema and haemorrhage; however only 3 of the fractions exhibited haemolytic activity.
    Matched MeSH terms: Acetone
  11. Badamasi IM, Maulidiani M, Lye MS, Ibrahim N, Shaari K, Stanslas J
    Curr Neuropharmacol, 2022;20(5):965-982.
    PMID: 34126904 DOI: 10.2174/1570159X19666210611095320
    BACKGROUND: The evaluation of metabolites that are directly involved in the physiological process, few steps short of phenotypical manifestation, remains vital for unravelling the biological moieties involved in the development of the (MDD) and in predicting its treatment outcome.

    METHODOLOGY: Eight (8) urine and serum samples each obtained from consenting healthy controls (HC), twenty-five (25) urine and serum samples each from first episode treatment naïve MDD (TNMDD) patients, and twenty (22) urine and serum samples each s from treatment naïve MDD patients 2 weeks after SSRI treatment (TWMDD) were analysed for metabolites using proton nuclear magnetic resonance (1HNMR) spectroscopy. The evaluation of patients' samples was carried out using Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal Partial Least Square- Discriminant Analysis (OPLSDA) models.

    RESULTS: In the serum, decreased levels of lactate, glucose, glutamine, creatinine, acetate, valine, alanine, and fatty acid and an increased level of acetone and choline in TNMDD or TWMDD irrespective of whether an OPLSDA or PLSDA evaluation was used were identified. A test for statistical validations of these models was successful.

    CONCLUSION: Only some changes in serum metabolite levels between HC and TNMDD identified in this study have potential values in the diagnosis of MDD. These changes included decreased levels of lactate, glutamine, creatinine, valine, alanine, and fatty acid, as well as an increased level of acetone and choline in TNMDD. The diagnostic value of these changes in metabolites was maintained in samples from TWMDD patients, thus reaffirming the diagnostic nature of these metabolites for MDD.

    Matched MeSH terms: Acetone
  12. Royer JE, Tan KH, Mayer DG
    Environ Entomol, 2020 08 20;49(4):815-822.
    PMID: 32514581 DOI: 10.1093/ee/nvaa056
    The male fruit fly attractants, cue-lure (CL) and raspberry ketone (RK), are important in pest management. These volatile phenylbutanoids occur in daciniphilous Bulbophyllum Thouar (Orchidaceae: Asparagales) orchids, along with zingerone (ZN) and anisyl acetone (AA). While these four compounds attract a similar range of species, their relative attractiveness to multiple species is unknown. We field tested these compounds in two fruit fly speciose locations in north Queensland, Australia (Lockhart and Cairns) for 8 wk. Of 16 species trapped in significant numbers, 14 were trapped with CL and RK, all in significantly greater numbers with CL traps than RK traps (at least in higher population locations). This included the pest species Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (CL catches ca. 5× > RK), Bactrocera neohumeralis (Hardy) (Diptera: Tephritidae) and Bactrocera bryoniae (Tryon) (Diptera: Tephritidae) (CL catches ca. 3× > RK), and Bactrocera frauenfeldi (Schiner) (Diptera: Tephritidae) (in Cairns-CL catches ca. 1.6× > RK). Seven species were trapped with AA, and all were also caught in CL and RK traps in significantly greater numbers, with the exception of B. frauenfeldi. For this species, catches were not statistically different with CL, RK, and AA in Lockhart, and RK and AA in Cairns. Seven species were trapped with ZN, two at this lure only, and the remainder also with CL or RK but in significantly greater numbers. This is the first quantitative comparison of the relative attractiveness of CL, RK, AA, and ZN against multiple species, and supports the long-held but untested assumption that CL is broadly more attractive lure than RK.
    Matched MeSH terms: Acetone
  13. Tehubijuluw H, Subagyo R, Yulita MF, Nugraha RE, Kusumawati Y, Bahruji H, et al.
    PMID: 33712959 DOI: 10.1007/s11356-021-13285-y
    Red mud as industrial waste from bauxite was utilized as a precursor for the synthesis of mesoporous ZSM-5. A high concentration of iron oxide in red mud was successfully removed using alkali fusion treatment. Mesoporous ZSM-5 was synthesized using cetyltrimethylammonium bromide (CTABr) as a template via dual-hydrothermal method, and the effect of crystallization time was investigated towards the formation of mesopores. Characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated the formation of cubic crystallite ZSM-5 with high surface area and mesopore volume within 6 h of crystallization. Increasing the crystallization time revealed the evolution of highly crystalline ZSM-5; however, the surface area and mesoporosity were significantly reduced. The effect of mesoporosity was investigated on the adsorption of methylene blue (MB). Kinetic and thermodynamic analysis of MB adsorption on mesoporous ZSM-5 was carried out at a variation of adsorption parameters such as the concentration of MB solution, the temperatures of solution, and the amount of adsorbent. Finally, methanol, 1-butanol, acetone, hydrochloric acid (HCl), and acetonitrile were used as desorbing agents to investigate the reusability and stability of mesoporous ZSM-5 as an adsorbent for MB removal.
    Matched MeSH terms: Acetone
  14. Swamy MK, Sinniah UR, Akhtar MS
    PMID: 26783409 DOI: 10.1155/2015/506413
    We investigated the effect of different solvents (ethyl acetate, methanol, acetone, and chloroform) on the extraction of phytoconstituents from Lantana camara leaves and their antioxidant and antibacterial activities. Further, GC-MS analysis was carried out to identify the bioactive chemical constituents occurring in the active extract. The results revealed the presence of various phytocompounds in the extracts. The methanol solvent recovered higher extractable compounds (14.4% of yield) and contained the highest phenolic (92.8 mg GAE/g) and flavonoid (26.5 mg RE/g) content. DPPH radical scavenging assay showed the IC50 value of 165, 200, 245, and 440 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. The hydroxyl scavenging activity test showed the IC50 value of 110, 240, 300, and 510 μg/mL for methanol, ethyl acetate, acetone, and chloroform extracts, respectively. Gram negative bacterial pathogens (E. coli and K. pneumoniae) were more susceptible to all extracts compared to Gram positive bacteria (M. luteus, B. subtilis, and S. aureus). Methanol extract had the highest inhibition activity against all the tested microbes. Moreover, methanolic extract of L. camara contained 32 bioactive components as revealed by GC-MS study. The identified major compounds included hexadecanoic acid (5.197%), phytol (4.528%), caryophyllene oxide (4.605%), and 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z)- (3.751%).
    Matched MeSH terms: Acetone
  15. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR
    PMID: 28424737 DOI: 10.1155/2017/1517683
    This study evaluates the phytochemistry, antioxidant, and antimicrobial effects of Plectranthus amboinicus leaves extracted in different solvents. The methanol extract contained the highest total phenolic (94.37 ± 1.24 mg GAE/g) and flavonoid contents (26.90 ± 1.35 mg RE/g) and exhibited the highest DPPH scavenging activity (90.13 ± 3.32%) followed by the acetone extract (80.23 ± 3.26%) at 500 μg/mL concentration. Similarly, the highest ferric ion reduction potential (849.63 ± 30.95 μM of Fe (II)/g dry weight) was exhibited by the methanol extract followed by the acetone extract (695.92 ± 25.44 μM of Fe (II)/g dry weight). The methanol extract showed greater antimicrobial activity against all the tested pathogens (Bacillus subtilis, Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans). However, both hexane and acetone extracts failed to inhibit E. coli. S. aureus and C. albicans were more susceptible to all the extracts. Further, GC-MS analysis confirmed the occurrence of a total 46 phytocompounds in different solvent extracts. Some of the major compounds included carvacrol (37.7%), tetracontane (16.6%), squalene (15.6%), tetrapentacontane (13.7%), and Phytol (12.9%). In conclusion, extraction solvents influenced the recovery of phytocompounds and the highest pharmacological activities of the methanol extract could be correlated to the presence of additional bioactive compounds.
    Matched MeSH terms: Acetone
  16. Basri DF, Tan LS, Shafiei Z, Zin NM
    PMID: 22203875 DOI: 10.1155/2012/632796
    The galls of Quercus infectoria are commonly used in Malay traditional medicine to treat wound infections after childbirth. In India, they are employed traditionally as dental applications such as that in treatment of toothache and gingivitis. The aim of the present study was to evaluate the antibacterial activity of galls of Quercus infectoria Olivier against oral bacteria which are known to cause dental caries and periodontitis. Methanol and acetone extracts were screened against two Gram-positive bacteria (Streptococcus mutans ATCC 25175 and Streptococcus salivarius ATCC 13419) and two Gram-negative bacteria (Porphyromonas gingivalis ATCC 33277 and Fusobacterium nucleatum ATCC 25586). The screening test of antibacterial activity was performed using agar-well diffusion method. Subsequently, minimum inhibitory concentration (MIC) was determined by using twofold serial microdilution method at a concentration ranging between 0.01 mg/mL and 5 mg/mL. Minimum bactericidal concentration (MBC) was obtained by subculturing microtiter wells which showed no changes in colour of the indicator after incubation. Both extracts showed inhibition zones which did not differ significantly (P < 0.05) against each tested bacteria. Among all tested bacteria, S. salivarius was the most susceptible. The MIC ranges for methanol and acetone extracts were the same, between 0.16 and 0.63 mg/mL. The MBC value, for methanol and acetone extracts, was in the ranges 0.31-1.25 mg/mL and 0.31-2.50 mg/mL, respectively. Both extracts of Q. infectoria galls exhibited similar antibacterial activity against oral pathogens. Thus, the galls may be considered as effective phytotherapeutic agents for the prevention of oral pathogens.
    Matched MeSH terms: Acetone
  17. Madihah MS, Ariff AB, Khalil MS, Suraini AA, Karim MI
    Folia Microbiol (Praha), 2001;46(3):197-204.
    PMID: 11702403
    A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch by Clostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent, i.e. 1.5-2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for alpha-amylase and glucoamylase were found to be at 5.3 and 4.0-4.4, respectively. alpha-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0-8.0 after a 1-d incubation at 37 degrees C. Since C. acetobutylicum alpha-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, the C. acetobutylicum glucoamylase was only stable at pH 4-5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37 degrees C.
    Matched MeSH terms: Acetone/metabolism*
  18. Tan XY, Misran A, Daim LDJ, Lau BYC
    Food Chem, 2021 May 01;343:128471.
    PMID: 33143964 DOI: 10.1016/j.foodchem.2020.128471
    Four different methods were evaluated to extract proteins from "Musang King" durian pulps and subsequently proteins with different abundance between fresh and long term frozen storage were identified using two-dimensional polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analyses. The acetone-phenol method was found to produce good protein yields and gave the highest gel resolution and reproducibility. Differential protein analyses of the durian pulp revealed that 15 proteins were down-regulated and three other proteins were up-regulated after a year of frozen storage. Isoflavone reductase-like protein, S-adenosyl methionine synthase, and cysteine synthase isoform were up-regulated during frozen storage. The down-regulation of proteins in frozen durian pulps indicated that frozen storage has affected proteins in many ways, especially in their functions related to carbohydrate and energy metabolisms, cellular components, and transport processes. This study will enable future detailed investigations of proteins associated with quality attributes of durians to be studied.
    Matched MeSH terms: Acetone/chemistry
  19. Satyaveanthan MV, Ng CL, Awang A, Lam KW, Hassan M
    Insect Mol Biol, 2023 Apr;32(2):143-159.
    PMID: 36454188 DOI: 10.1111/imb.12820
    In Southeast Asia, Conopomorpha cramerella (Snellen) which is commonly known as the cocoa pod borer (CPB) moth has been identified as the most detrimental pest of Theobroma cacao L. Apart from the various side effects on human health and non-target organisms, heavily relying on synthetic pyrethroid insecticides to control CPB infestations also increases the environmental contamination risks. Thus, developing biorational insecticides that minimally affect the non-target organism and environment by targeting the insect growth regulation process is needed to manage the pest population. In insects, juvenile hormones (JH) regulate critical biological events, especially metamorphosis, development and reproduction. Since the physiological roles of JH III vary among different organisms, the biochemical properties, especially substrate specificity and analogue inhibition, may also be different. Therefore, studies on the JH III biosynthetic pathway enzymes in both plants and insects are beneficial to discover more effective analogues. Bioinformatic analysis and biochemical characterization of a NADP+ -dependent farnesol dehydrogenase, an intermediate enzyme of the JH III pathway, from C. cramerella (CcFolDH), were described in this study. In addition, the farnesol analogues that may act as a potent analogue inhibitor for CcFolDH ware determined using in vitro enzymatic study. The phylogenetic analysis indicated that CcFolDH shared a close phylogenetic relationship to the honeybee's short-chain dehydrogenase/reductase. The 27 kDa CcFolDH has an NADP(H) binding domain with a typical Rossmann fold and is likely a homotetrameric protein in the solution. The enzyme had a greater preference for substrate trans, trans-farnesol and coenzyme NADP+ . In terms of analogue inhibitor inhibition, hexahydroxyfarnesyl acetone showed the highest inhibition (the lowest Ki ) compared to other farnesol analogues. Thus, hexahydroxyfarnesyl acetone would serve as the most potent active ingredient for future biorational pesticide management for C. cramerella infestation. Based on the bioinformatic analyses and biochemical characterizations conducted in this research, we proposed that rCcFolDH differs slightly from other reported farnesol dehydrogenases in terms of molecular weight, substrate preference, coenzymes utilization and analogue inhibitors selection.
    Matched MeSH terms: Acetone
  20. Pagthinathan, M., Ghazali, H.M., Yazid, A.M., Foo, H.L.
    MyJurnal
    Extracts from ‘kesinai’ (Streblus asper) leaves were investigated as a potential source of enzymes that can serve as an alternative to calf rennet in cheese making. Different types of extraction buffers were investigated namely sodium acetate buffer (pH 4.2-5.0), phosphate buffer (pH 6.0-7.0) and Tris-HCl buffer (pH 7.0-9.0). Finally, the milk-clotting enzyme was extracted using 100 mM Tris-HCl buffer (pH 7.4) with and without 5.0 mg/mL polyvinylpyrrolidone, 0.015 mL/mL Triton X-100 and 2 mM sodium metabisulphite. Purification was carried out using acetone precipitation, and ion-exchange and size-exclusion chromatographic techniques. Results showed that 100 mM Tris-HCl buffer (pH 7.4) was the most efficient extraction buffer among the buffers used in the extraction study. After the final purification step of size-exclusion chromatography, the enzyme was purified 3.3-fold with 42.3% of recovery. The enzyme showed an optimum temperature and pH at 60°C and pH 7.4, respectively. The enzyme was stable up to 70°C for one hour and the partially purified enzyme retained 83% and 96% of its original activity at pH 6.0 and 8.0, respectively. The molecular weight of the partially enzyme was estimated to be 75.8 kDa on SDS-PAGE. The milk-clotting activity of ‘kesinai’ enzyme was found to be lower than that of commercial Mucor rennet.
    Matched MeSH terms: Acetone
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links