Displaying all 3 publications

Abstract:
Sort:
  1. Jamain Z, Omar NF, Khairuddean M
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825211 DOI: 10.3390/molecules25173780
    A series of liquid crystal molecules with two Schiff base linking units and a cinnamaldehyde core with different terminal groups were synthesized and characterized. The intermediates of 4-heptyloxybenzaldehyde (1a) and 4-dodeyloxybenzaldehyde (1b) were synthesized through the alkylation of 4-hydroxybenzaldehyde with a series of bromoalkane. A condensation reaction of cinnamaldehyde, 1,4-phenylenediamine and a series of substituted benzaldehydes with different terminal groups such as bromo, chloro, hydroxy, cinnamaldehyde, hydrogen, methoxy, heptyloxy and dodecyloxy produced a series of new cinnamaldehyde-based compounds, 2-9, respectively. All these compounds were characterized using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and CHN elemental analysis. The liquid crystal properties of these compounds were determined using polarized optical microscopy (POM), and their transitions were further confirmed using differential scanning calorimetry (DSC). Compounds with chloro, bromo, methoxy, heptyloxy, and dodecyloxy substituents are mesogenic compounds with nematic phase behavior. However, the other compounds were found to be non-mesogenic without any mesophase transitions. The structure-property relationship was investigated in order to study the effect of different terminal groups and Schiff base linking units on the liquid crystalline behavior of these compounds.
    Matched MeSH terms: Acrolein/chemistry
  2. Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, et al.
    Fitoterapia, 2016 Jul;112:116-31.
    PMID: 27259370 DOI: 10.1016/j.fitote.2016.05.016
    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal.
    Matched MeSH terms: Acrolein/chemistry
  3. Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M
    PLoS One, 2016;11(8):e0161707.
    PMID: 27560927 DOI: 10.1371/journal.pone.0161707
    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
    Matched MeSH terms: Acrolein/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links