Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
    Matched MeSH terms: Actins/metabolism
  2. Fong LY, Ng CT, Zakaria ZA, Baharuldin MT, Arifah AK, Hakim MN, et al.
    Phytother Res, 2015 Oct;29(10):1501-8.
    PMID: 26171791 DOI: 10.1002/ptr.5404
    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.
    Matched MeSH terms: Actins
  3. Zainudin S, Rajanthran SK, Azizan N, Hayati F, Ginawoi J, Suhaimi KA, et al.
    Oxf Med Case Reports, 2020 Oct;2020(10):omaa086.
    PMID: 33133619 DOI: 10.1093/omcr/omaa086
    Leiomyoma is a smooth muscle tumour that can arise in any part of the body especially the uterus. Even though it is traditionally linked with hormonal influence, it can also develop in extrauterine organs with a slight female predominance. It is indistinguishable with gastrointestinal stromal tumour (GIST) histologically. We report a case of a 30-year-old gentleman who presented with a huge painful mass in the right iliac fossa. Computed tomography revealed a 10 × 10 cm homogeneous mass arising from the terminal ileum; he subsequently underwent an open right hemicolectomy. Histology showed a well-circumscribed lesion composed of interlacing bundles of smooth muscle fibres of the submucosa with positive smooth muscle actin and H-Caldesmon stains but negative for DOG-1 and CD117 (c-kit) stains which were consistent with leiomyoma. Despite its rarity, this hormone-related tumour needs to be considered regardless of gender. Immunohistochemistry is paramount as it is histologically identical to GIST.
    Matched MeSH terms: Actins
  4. Jasim HA, Misnan R, Yadzir ZHM, Abdullah N, Bakhtiar F, Arip M, et al.
    Iran J Allergy Asthma Immunol, 2021 Feb 11;20(1):76-87.
    PMID: 33639634 DOI: 10.18502/ijaai.v20i1.5414
    Crab allergy is reported as a serious form of food allergy in many countries. This study was aimed to identify the major allergens of the local mud crab, Scylla tranquebarica (S. tranquebarica), and subsequently, determine the effect of vinegar treatments on the crab allergens. Crab muscles were treated with synthetic and natural vinegar. Crab proteins were then extracted from the untreated and vinegar-treated crabs. All extracts were then fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and analyzed by immunoblotting; using sera from crab-allergic patients. The crab proteins were then further fractionated by two-dimensional electrophoresis (2-DE)and analyzed by mass spectrometry (MS). The untreated crab had 38 protein bands, while that was only a few bands between 18 to 73 kDa for the vinegar-treated crabs. Immunoblotting of untreated crab revealed 20 IgE-binding bands, whereas the vinegar-treated crabs could only retain a few IgE-binding bands. Five major allergens were identified with molecular weightsof38, 42, 49, 63, and 73 kDa in the untreated crab. In contrast, the vinegar-treated crabs had only a few major allergens with molecular weights of 38, 42, and 73 kDa. MS identified the 43 and 49 kDa as arginine kinase, while the 38, 63, and 73 kDa were identified as tropomyosin, actin, and hemocyanin, respectively. Inconclusion, we found three common major allergens for S. tranquebarica including tropomyosin, arginine kinase, and actin, and one novel allergen known as hemocyanin. All the major allergens could retain minimal allergenic capability in vinegar-treated crabs, suggesting that vinegar treatments might be useful to reduce crab allergenicity. These data would assist the clinicians in the management of crab-allergic patients worldwide.
    Matched MeSH terms: Actins
  5. Ishak SD, Razali SA, Kamarudin MS, Abol-Munafi AB
    Data Brief, 2020 Aug;31:105916.
    PMID: 32642522 DOI: 10.1016/j.dib.2020.105916
    The enzyme glucose-6-phosphate dehydrogenase (G6PD) catalyses the metabolite glucose-6-phosphate in producing NADPH during the first phase of pentose-phosphate pathway thus provides reducing power to all cells for cellular growth, antioxidant defence, and biosynthetic reactions in all living organism. The deliberate inclusion of starch as carbohydrate source in commercial feed however may affect the G6PD hepatic activity in cultured fish. We designed a set of primers to target G6PD gene in the popular Malaysian aquaculture species, Tor tambroides. For this dataset, the molecular characteristics of obtained T. tambroides G6PD (TtG6PD) nucleotide sequence was analysed using multiple alignments and phylogenetic analyses of the deduced amino acids. The set of primers obtained were then used in a study to evaluate the effect of different dietary carbohydrate inclusion levels on the hepatic TtG6PD mRNA expression of the T. tambroides fingerlings. Four groups of fish were given a dietary treatment of 15%, 20%, 25% and 30% starch at the optimal inclusion level of 23.4% for 10 weeks. The TtG6PD mRNA transcripts were measured using real-time-PCR assays and its expression normalized against β-actin, which acts as the internal control gene. This article provides supportive data in relation between hepatic TtG6PD mRNA gene expression in T. tambroides and how it is influenced by its dietary carbohydrate intake. These data will also assist in further nutritional genomic studies of carbohydrate and energy utilization for all species in the mahseer family.
    Matched MeSH terms: Actins
  6. Tan YH, Alias Z
    Trop Biomed, 2020 Sep 01;37(3):744-755.
    PMID: 33612787 DOI: 10.47665/tb.37.3.744
    The study was aimed to investigate the expression of cytosolic and thiolated proteins of Musca domestica larvae under oxidative stress. Proteins from acute treatment of hydrogen peroxide (LC50 = 21.52% (v/v)) on 3rd stage larvae of housefly were extracted and purified using an activated Thiol Sepharose® for thiolated protein purification. Two dimensional gel electrophoresis was used for visualizing and analyzing expression of cytosolic and thiolated proteins. Protein spots with more than 5 fold of expression change were identified using liquid chromatography- tandem mass spectrometry (LC-MS/MS). The cytosolic proteins were actin, tropomyosin, ubiquitin, arginine kinase, pheromone binding protein/general odorant binding protein, and ATP: guanidino phosphotransferase. The thiolated proteins with more than 5 fold change in expression as an effect to the acute treatment were fructose bisphosphate aldolase, short chain dehydrogenase and lactate/malate dehydrogenase. The proteins identified in the study should provide vital information for future reference in oxidative stress defence and response occurring in houseflies.
    Matched MeSH terms: Actins
  7. Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM
    Int J Pharm, 2021 Mar 01;596:120213.
    PMID: 33493599 DOI: 10.1016/j.ijpharm.2021.120213
    Wound healing is a complicated process that takes a long time to complete. The three-layer nanofiber wound dressing containing melatonin is highly expected to show remarkable wound repair by reducing the wound healing time. In this study, chitosan (Cs)-polycaprolactone (PCL)/ polyvinylalcohol (PVA)-melatonin (MEL)/ chitosan-polycaprolactone three-layer nanofiber wound dressing was prepared by electrospinning for melatonin sustained release. The characteristics of the wound dressing were further evaluated. The wound dressing had a high water uptake after 24 h (401%), and the water contact angle results showed that it had hydrophilicity effect that supported the cell attachment. The wound healing effect of wound dressing was examined using a full-thickness excisional model of rat skin by the local administration of MEL. The gene expressions of transforming growth factor-beta (TGF-β1), alpha-smooth muscle actin (α-SMA), collagen type I (COL1A1), and collagen type III (COL3A1) were further studied. The histopathological evaluation showed the complete regeneration of the epithelial layer, remodeling of wounds, collagen synthesis, and reduction in inflammatory cells. The NF + 20% MEL significantly increased TGF-β1, COL1A1, COL3A1, and α-SMA mRNA expressions. This wound dressing may have a considerable potential as a wound dressing to accelerate the wound healing.
    Matched MeSH terms: Actins
  8. Khairul Osman, Norashikin Md.Saad, Ezlan Elias, Siti Fatimah Ibrahim, Jamaludin Mohamed, Proomwichit, Proom
    MyJurnal
    A study was conducted to determine the radioprotective effects of Citrullus vulgaris on the lymphocyte sub-membrane particularly the actin layer. A total of 30 adult male Sprague-Dawley rats were divided into three equal groups of positive control, negative control and treatment. The positive and negative control groups were force fed with 40 ml/kg body weight of normal saline while the treatment group received 40 g/kg body weight of fresh juice of C. vulgaris daily. After a week the positive control and treatment groups were irradiated with 90 rad gamma radiation. Viable lymphocytes were determined using propidium iodine and acridine orange stain and observed under a fluorescent microscope. The percentage of viable lymphocytes of the treatment group (71.0%; p = 0.03) was significantly higher than the positive control group. The results showed that C. vulgaris possessed radioprotective effects because the lymphocyte actin was not damaged. The radioprotection effects could be due to the presence of antioxidants in C. vulgaris.
    Matched MeSH terms: Actins
  9. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY
    PeerJ, 2018;6:e4940.
    PMID: 29888137 DOI: 10.7717/peerj.4940
    Background: The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom's sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established.

    Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.

    Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.

    Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.

    Matched MeSH terms: Actins
  10. Thiagarajan S, Arapoc DJ, Husna Shafie N, Keong YY, Bahari H, Adam Z, et al.
    PMID: 30956678 DOI: 10.1155/2019/2821597
    Lung cancer is the leading cause of cancer related deaths worldwide with about 40% occurring in developing countries. The two varieties of Momordica charantia, which are Chinese and Indian bitter melon, have been subjected to antiproliferative activity in human non-small cell lung cells A549. The A549 cells were treated with hot and cold aqueous extraction for both the bitter melon varieties, and the antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic mechanism of action on A549 human lung cancer cells was evaluated first morphologically using Hoechst 33358, and cytoskeleton staining using Filamentous-actin (F-actin) cytoskeleton FICT and DAPI followed by caspase-3/7, reactive oxygen species (ROS), and p53 activity. Chinese hot aqueous extraction (CHA) exhibited potent antiproliferative activity against A549 human lung cancer cells. The morphological analysis of mitochondria destruction and the derangement of cytoskeleton showed apoptosis-inducing activity. CHA increased the caspase-3/7 activity by 1.6-fold and the ROS activity by 5-fold. Flow cytometric analysis revealed 34.5% of apoptotic cells significantly (p<0.05) compared to cisplatin-treated A549 human cancer cells. CHA is suggested to induce apoptosis due to their rich bioactive chemical constituents. These findings suggest that the antiproliferative effect of CHA was due to apoptosis via ROS-mediated mitochondria injury.
    Matched MeSH terms: Actins
  11. Farah Wahida I, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:190-1.
    PMID: 15468882
    This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
    Matched MeSH terms: Actins/genetics
  12. Gholami K, Loh SY, Salleh N, Lam SK, Hoe SZ
    PLoS One, 2017;12(6):e0176368.
    PMID: 28591185 DOI: 10.1371/journal.pone.0176368
    Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies.
    Matched MeSH terms: Actins/biosynthesis
  13. Fong LY, Ng CT, Yong YK, Hakim MN, Ahmad Z
    Vascul. Pharmacol., 2019 06;117:15-26.
    PMID: 30114509 DOI: 10.1016/j.vph.2018.08.005
    Endothelial hyperpermeability represents an initiating step in early atherosclerosis and it often occurs as a result of endothelial barrier dysfunction. Asiatic acid, a major triterpene isolated from Centella asiatica (L.) Urban, has previously been demonstrated to protect against tumor necrosis factor (TNF)-α-induced endothelial barrier dysfunction. The present study aimed to investigate the mechanisms underlying the barrier protective effect of asiatic acid in human aortic endothelial cells (HAECs). The localization of F-actin, diphosphorylated myosin light chain (diphospho-MLC), adherens junctions (AJs) and tight junctions (TJs) was studied using immunocytochemistry techniques and confocal microscopy. Their total protein expressions were examined using western blot analysis. The endothelial permeability was assessed using In Vitro Vascular Permeability Assay kits. In addition, intracellular redistribution of the junctional proteins was evaluated using subcellular fractionation kits. We show that asiatic acid stabilized F-actin and diphospho-MLC at the cell periphery and prevented their rearrangement stimulated by TNF-α. However, asiatic acid failed to attenuate cytochalasin D-induced increased permeability. Besides, asiatic acid abrogated TNF-α-induced structural reorganization of vascular endothelial (VE)-cadherin and β-catenin by preserving their reticulum structures at cell-cell contact areas. In addition, asiatic acid also inhibited TNF-α-induced redistribution of occludin and zona occludens (ZO)-1 in different subcellular fractions. In conclusion, the barrier-stabilizing effect of asiatic acid might be associated with preservation of AJs and prevention of TJ redistribution caused by TNF-α. This study provides evidence to support the potential use of asiatic acid in the prevention of early atherosclerosis, which is initiated by endothelial barrier dysfunction.
    Matched MeSH terms: Actins/metabolism
  14. Ng CT, Fong LY, Sulaiman MR, Moklas MA, Yong YK, Hakim MN, et al.
    J Interferon Cytokine Res, 2015 Jul;35(7):513-22.
    PMID: 25830506 DOI: 10.1089/jir.2014.0188
    Interferon-gamma (IFN-γ) is known to potentiate the progression of inflammatory diseases, such as inflammatory bowel disease and atherosclerosis. IFN-γ has been found to disrupt the barrier integrity of epithelial and endothelial cell both in vivo and in vitro. However, the mechanisms of IFN-γ underlying increased endothelial cell permeability have not been extensively elucidated. We reported that IFN-γ exhibits a biphasic nature in increasing endothelial permeability. The changes observed in the first phase (4-8 h) involve cell retraction and rounding in addition to condensed peripheral F-actin without a significant change in the F-/G-actin ratio. However, cell elongation, stress fiber formation, and an increased F-/G-actin ratio were noticed in the second phase (16-24 h). Consistent with our finding from the permeability assay, IFN-γ induced the formation of intercellular gaps in both phases. A delayed phase of increased permeability was observed at 12 h, which paralleled the onset of cell elongation, stress fiber formation, and increased F-/G-actin ratio. In addition, IFN-γ stimulated p38 mitogen-activated protein (MAP) kinase phosphorylation over a 24 h period. Inhibition of p38 MAP kinase by SB203580 prevented increases in paracellular permeability, actin rearrangement, and increases in the F-/G-actin ratio caused by IFN-γ. Our results suggest that p38 MAP kinase is activated in response to IFN-γ and causes actin rearrangement and altered cell morphology, which in turn mediates endothelial cell hyperpermeability. The F-/G-actin ratio might be involved in the regulation of actin distribution and cell morphology rather than the increased permeability induced by IFN-γ.
    Matched MeSH terms: Actins/metabolism
  15. Kwan SH, Abdul Aziz NHK, Ismail MN
    Protein Pept Lett, 2020;27(1):48-59.
    PMID: 31362651 DOI: 10.2174/0929866526666190730121711
    BACKGROUND: Channa striata are speculated to contain bioactive proteins with the ability to enhancing wound healing. It is commonly consumed after surgery for a faster recovery of the wound.

    OBJECTIVE: To identify the bioactive proteins and evaluate their ability in cell proliferation and angiogenesis promotion.

    MATERIAL AND METHODS: Freeze-Dried Water Extracts (FDWE) and Spray-Dried Water Extracts (SDWE) of C. striata were tested with MTT assay using EA.hy926 endothelial cell line and ex-vivo aortic ring assay. Later the proteins were fractionated and analysed using an LC-QTOF mass spectrometer. The data generated were matched with human gene database for protein similarity and pathway identification.

    RESULTS: Both samples have shown positive cell proliferation and pro-angiogenic activity. Four essential proteins/genes were identified, which are collagen type XI, actin 1, myosin light chain and myosin heavy chain. The pathways discovered that related to these proteins are integrin pathway, Slit-Robo signalling pathway and immune response C-C Chemokine Receptor-3 signalling pathway in eosinophils, which contribute towards wound healing mechanism.

    CONCLUSIONS: The results presented have demonstrated that C. striata FDWE and SDWE protein fractions contain bioactive proteins that are highly similar to human proteins and thus could be involved in the wound healing process via specific biological pathways.

    Matched MeSH terms: Actins/chemistry
  16. Teh HF, Neoh BK, Wong YC, Kwong QB, Ooi TE, Ng TL, et al.
    J Agric Food Chem, 2014 Aug 13;62(32):8143-52.
    PMID: 25032485 DOI: 10.1021/jf500975h
    Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA₄ but opposite to the GA₃ profile such that as ABA levels increase the resulting elevated ABA/GA₃ ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles.
    Matched MeSH terms: Actins/genetics; Actins/metabolism
  17. Tan JJ, Azmi SM, Yong YK, Cheah HL, Lim V, Sandai D, et al.
    PLoS One, 2014;9(5):e96800.
    PMID: 24802273 DOI: 10.1371/journal.pone.0096800
    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
    Matched MeSH terms: Actins/genetics; Actins/metabolism
  18. Khoo JJ, Gunn A
    Malays J Pathol, 2005 Jun;27(1):9-16.
    PMID: 16676687
    AIM: To study the clinical features, histology and immunohistochemical properties of gastrointestinal stromal tumours (GISTs); and establish any parameters that can help prognosticate the malignant potential.
    METHODS: Twenty-six patients with GISTs who were seen in Sultanah Aminah Hospital Johor, Malaysia from 1999 to 2003 were selected for study. Patient, clinical characteristics and outcome based on surgical records were analysed. Tumour variables (tumour size, cellularity, mitotic count, necrosis and haemorrhage) were compared between very low to low risk groups and intermediate to high risk groups. The immunohistochemical properties of GISTs were also studied.
    RESULTS: Patients with GISTs presented mainly with pain, palpable mass or gastrointestinal tract bleeding. The tumours were seen in stomach (50%) followed by small intestine (38.5%) and rectum (11.5%). In the period of study, six patients had metastasis, mainly in the liver or peritoneum. Immunoreactivity for CD117, CD34, vimentin, S100, neuron specific enolase, alpha-smooth-muscle-actin and desmin were observed in 100%, 76.9%, 61.5%, 46.1%, 80.8%, 11.5% and 0% of tumours respectively. The behaviour of GISTs was largely dependent on tumour size and number of mitosis. Necrosis and haemorrhage were seen in tumours with high risk potential.
    Matched MeSH terms: Actins/immunology; Actins/metabolism
  19. Nur Fariha MM, Chua KH, Tan GC, Lim YH, Hayati AR
    Cell Biol Int, 2012;36(12):1145-53.
    PMID: 22957758 DOI: 10.1042/CBI20120044
    Cell-based therapy using stem cells has emerged as one of the pro-angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion-derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin-matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic-endogenic-associated genes (VEGF, bFGF, PGF, HGF, Ang-1, PECAM-1, eNOS, Ve-cad, CD34, VEGFR-2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang-1, eNOS, VEGFR-2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct-4, Nanog (3), FZD9, ABCG-2 and BST-1. The induced cells were positive for PECAM-1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin-matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell-based therapy for pro-angiogenic purpose.
    Matched MeSH terms: Actins/analysis; Actins/genetics
  20. Amornsudthiwat P, Mongkolnavin R, Kanokpanont S, Panpranot J, Wong CS, Damrongsakkul S
    Colloids Surf B Biointerfaces, 2013 Nov 1;111:579-86.
    PMID: 23893032 DOI: 10.1016/j.colsurfb.2013.07.009
    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.
    Matched MeSH terms: Actins/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links