Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Abdulbaqi IM, Darwis Y, Assi RA, Khan NAK
    Drug Des Devel Ther, 2018;12:795-813.
    PMID: 29670336 DOI: 10.2147/DDDT.S158018
    Introduction: Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers.

    Methods: Colchicine-loaded transethosomes (TEs) were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats' back skin.

    Results: The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel.

    Conclusion: These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration.

    Matched MeSH terms: Administration, Cutaneous
  2. Abdullah GZ, Abdulkarim MF, Mallikarjun C, Mahdi ES, Basri M, Sattar MA, et al.
    Pak J Pharm Sci, 2013 Jan;26(1):75-83.
    PMID: 23261730
    Micro-emulsions and sometimes nano-emulsions are well known candidates to deliver drugs locally. However, the poor rheological properties are marginally affecting their acceptance pharmaceutically. This work aimed to modify the poor flow properties of a nano-scaled emulsion comprising palm olein esters as the oil phase and ibuprofen as the active ingredient for topical delivery. Three Carbopol ® resins: 934, 940 and Ultrez 10, were utilized in various concentrations to achieve these goals. Moreover, phosphate buffer and triethanolamine solutions pH 7.4 were used as neutralizing agents to assess their effects on the gel-forming and swelling properties of Carbopol ® 940. The addition of these polymers caused the produced nano-scaled emulsion to show a dramatic droplets enlargement of the dispersed globules, increased intrinsic viscosity, consistent zeta potential and transparent-to-opaque change in appearance. These changes were relatively influenced by the type and the concentration of the resin used. Carbopol ® 940 and triethanolamine appeared to be superior in achieving the proposed tasks compared to other materials. The higher the pH of triethanolamine solution, the stronger the flow-modifying properties of Carbopol ® 940. Transmission electron microscopy confirmed the formation of a well-arranged gel network of Carbopol ® 940, which was the major cause for all realized changes. Later in vitro permeation studies showed a significant decrease in the drug penetration, thus further modification using 10% w/w menthol or limonene as permeation promoters was performed. This resulted in in vitro and in vivo pharmacodynamics properties that are comparably higher than the reference chosen for this study.
    Matched MeSH terms: Administration, Cutaneous
  3. Ahmad Z, Zafar N, Mahmood A, Sarfraz RM, Latif R, Gad HA
    Pharm Dev Technol, 2023 Nov;28(9):896-906.
    PMID: 37873604 DOI: 10.1080/10837450.2023.2272863
    Fast dissolving microneedles (F-dMN) are quite a novel approach delivering specific drug molecules directly into the bloodstream, bypassing the first-pass effect. The present study reported an F-dMN patch to enhance systemic delivery of simvastatin in a patient-friendly manner. The F-dMN patch was developed using polyvinyl pyrrolidone and polyvinyl alcohol and characterized using light microscopy, SEM, XRD, FTIR, mechanical strength, drug content (%), an ex-vivo penetration study, an ex-vivo drug release study, a skin irritation test, and a pharmacokinetics study. The optimized F-dMN patch exhibited excellent elongation of 35.17%, good tensile strength of 9.68  MPa, an appropriate moisture content of 5.65%, and good penetrability up to 560 µm. Moreover, it showed 93.4% of the drug content within the needles and 81.75% in-vitro release. Histopathological findings and a skin irritation study proved that the F-dMN patch was biocompatible and did not cause any sort of irritation on animal skin. Pharmacokinetic parameters of F-dMN patches were improved (Cmax 6.974 µg/ml, tmax 1 hr and AUC 19. 518 µg.h/ml) as compared to tablet Simva 20 mg solution (Cmax 2.485 µg/ml, tmax 1.4 hr and AUC 11.199 µg.h/ml), thus confirming bioavailability enhancement. Moreover, stability studies confirmed the stability of the developed F-dMN patch, as investigated by axial needle fracture force and drug content.
    Matched MeSH terms: Administration, Cutaneous
  4. Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, et al.
    Int J Pharm, 2020 Sep 25;587:119673.
    PMID: 32739388 DOI: 10.1016/j.ijpharm.2020.119673
    Transdermal drug delivery using microneedles is increasingly gaining interest due to the issues associated with oral drug delivery routes. Gastrointestinal route exposes the drug to acid and enzymes present in the stomach, leading to denaturation of the compound and resulting in poor bioavailability. Microneedle transdermal drug delivery addresses the problems linked to oral delivery and to relieves the discomfort of patients associated with injections to increase patient compliance. Microneedles can be broadly classified into five types: solid microneedles, coated microneedles, dissolving microneedles, hollow microneedles, and hydrogel-forming microneedles. The materials used for the preparation of microneedles dictate the different applications and features present in the microneedle. Polymeric microneedle arrays present an improved method for transdermal administration of drugs as they penetrate the skin stratum corneum barrier with minimal invasiveness. The review summarizes the importance of polymeric microneedle and discussed some of the most important therapeutic drugs in research, mainly protein drugs, vaccines and small molecule drugs in regenerative medicine.
    Matched MeSH terms: Administration, Cutaneous
  5. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
    Matched MeSH terms: Administration, Cutaneous
  6. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN
    J Pharm Biomed Anal, 2007 Jan 17;43(2):549-57.
    PMID: 16978823
    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug-polymer interaction of the matrix.
    Matched MeSH terms: Administration, Cutaneous
  7. Chellathurai MS, Ling VWT, Palanirajan VK
    Turk J Pharm Sci, 2021 Feb 25;18(1):96-103.
    PMID: 33634684 DOI: 10.4274/tjps.galenos.2020.21033
    Objectives: Microneedle transdermal patches are a combination of hypodermic needles and transdermal patches used to overcome the individual limitations of both injections and patches. The objective of this study was to design a minimally invasive, biodegradable polymeric recombinant human keratinocyte growth factor (rHuKGF) microneedle array and evaluate the prepared biodegradable microneedles using in vitro techniques.

    Materials and Methods: Biodegradable polymeric microneedle arrays were fabricated out of poly lactic-co-glycolic acid (PLGA) using the micromolding technique under aseptic conditions, and the morphology of the microneedles was characterized using light microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to rule out drug-polymer interactions. Standard procedures were used to analyze the prepared microneedle arrays for in vitro drug release and to perform a microneedle insertion test. Enzyme-linked immunosorbent assay was used to quantify rHuKGF.

    Results: The PLGA polymer was safe for use in the fabrication of rHuKGF microneedles as there was no interaction between the drug and the polymer. The fabricated rHuKGF microneedle arrays had fully formed microneedles with a height of 600 µm and a base of 300 µm. The drug from the microneedle patch was released in vitro within 30 minutes. The strength of the microneedles in the patch was good, as they were able to reach a depth of 381±3.56 µm into parafilm without any structural change or fracture.

    Conclusion: Microneedle transdermal patches were successfully prepared for rHuKGF, and their evaluation suggested excellent quality and uniformity of patch characteristics. This can have potential applications in the therapeutic arena, offering advantages in terms of reduced dosing frequency, improved patient compliance, and bioavailability.

    Matched MeSH terms: Administration, Cutaneous
  8. Chik Z, Johnston A, Tucker AT, Kirby K, Alam CA
    Int J Clin Pharmacol Ther, 2009 Apr;47(4):262-8.
    PMID: 19356392
    Circulating concentrations of endogenous compounds such as testosterone, complicate the analysis of pharmacokinetic parameters when these compounds are administered exogenously. This study examines the influence of three correction methods of accounting for endogenous concentrations on the determination of bioequivalence between two testosterone formulations.
    Matched MeSH terms: Administration, Cutaneous
  9. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Administration, Cutaneous
  10. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al.
    J Pharm Sci, 2017 07;106(7):1736-1751.
    PMID: 28412398 DOI: 10.1016/j.xphs.2017.03.042
    Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
    Matched MeSH terms: Administration, Cutaneous
  11. Chowdhury MR, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    Int J Pharm, 2021 May 15;601:120582.
    PMID: 33872711 DOI: 10.1016/j.ijpharm.2021.120582
    Human skin contains numerous antigen-presenting cells that are a potential target for several immune-based therapies, including vaccination and cancer immunotherapy. However, the outermost layer of the skin-the stratum corneum-acts as a major physical barrier against the permeation of antigens that have a molecular weight > 500 Da. In this study, an ionic liquid-assisted delivery system (ILDS) was developed, which enabled the successful transdermal delivery of an antigenic protein, ovalbumin (OVA), with a toll-like receptor agonist, imiquimod, as an adjuvant, to stimulate a specific immune response. Both the ionic liquids and ILDS were completely biocompatible for topical or transdermal application for therapeutic purposes. The skin permeation of the antigenic protein and adjuvant was found to be significantly enhanced because of the incorporation of a surface-active ionic liquid in the ILDS. An in vivo immunization study showed that there was a high level of OVA-specific IgG antibody production because of the enhanced permeation of the antigen and adjuvant across and into the skin. In a preclusive anticancer study, vaccination through ILDS showed stronger tumor-growth inhibition compared to control group. These results indicated that the ILDS could be a promising strategy for transdermal immunization as future therapeutics.
    Matched MeSH terms: Administration, Cutaneous
  12. D'Souza UJ, Narayana K, Zain A, Raju S, Nizam HM, Noriah O
    Folia Morphol (Warsz), 2006 Feb;65(1):6-10.
    PMID: 16783728
    The effects of exposure to low doses of paraquat, a herbicide, via the dermal route were studied on the spermatozoa of Sprague-Dawley rats. Paraquat (1, 1'-dimethyl-4, 4'-bipyridinium dichloride) was administered once a day for five days, at intervals of 24 h at 0, 6, 15 and 30 mg/kg, and the rats were sacrificed on days 7, 14, 28, and 42 after the last exposure. The sperm suspensions were obtained by mincing the caudae epididymes and ductus deferens for the purpose of performing a sperm morphology test, sperm count and analysis of sperm mortality and sperm motility, as per the standard procedures. The sperm count was decreased (p < 0.05) only on days 7 and 14 but sperm abnormalities increased on all days (p < 0.05). Sperm mortality increased at higher dose-levels (p < 0.05) except on day 42, and motility was affected by 30 mg/kg only on day 42. In conclusion, paraquat is a genotoxic and cytotoxic agent to germ cells in the male rat.
    Matched MeSH terms: Administration, Cutaneous
  13. D'Souza UJ, Zain A, Raju S
    Mutat Res, 2005 Mar 7;581(1-2):187-90.
    PMID: 15725618
    The genotoxic effect of the herbicide paraquat was studied in rat bone-marrow by means of the micronucleus assay. Paraquat at dose levels of 6, 15 and 30 mg/kg body weight was given to rats in a single application via the dermal route. Marrow was collected at 24, 48 and 72 h after the application. The micronucleus assay was done as recommended by standard procedures. Paraquat gave rise to an increase in the number of micronuclei in a dose-dependent manner. The number of micronucleated polychromatic erythrocytes showed a maximum at 48 h and the toxicity was further prolonged, as there was no complete recovery at 72 h. These findings suggest a genotoxic effect of paraquat even after exposure via dermal application.
    Matched MeSH terms: Administration, Cutaneous
  14. Devaraj NK, Aneesa AR, Abdul Hadi AM, Shaira N
    Med J Malaysia, 2019 04;74(2):187-189.
    PMID: 31079135
    Topical corticosteroids are common medications prescribed for skin problems encountered in the primary care or dermatology clinic settings. As skin conditions comprise of around 20% of cases seen in primary care, this article written to guide readers, especially non-dermatologists on the appropriate potency of topical corticosteroids to be chosen for skin problems of patients and to list the side effects both local and systemic.
    Matched MeSH terms: Administration, Cutaneous
  15. Firdaus Hayati, Meryl Grace Lansing, Nornazirah Azizan
    MyJurnal
    Dear editor, We read with great interest the article by Go ZL et al., which was published in your esteemed journal1. The authors had reported an unusual and yet important case of cutaneous manifestations of malignancy. Being the only and initial presentation of Hodgkin’s lymphoma, prurigo nodularis can manifest as a benign dermatological appearance in the underlying sinister condition. We want to again highlight the importance of this bizarre cutaneous presentation which can counterfeit the actual and occult villain.
    Matched MeSH terms: Administration, Cutaneous
  16. Fong Yen W, Basri M, Ahmad M, Ismail M
    ScientificWorldJournal, 2015;2015:495271.
    PMID: 25853145 DOI: 10.1155/2015/495271
    Galantamine hydrobromide is formulated in tablets and capsules prescribed through oral delivery for the treatment of Alzheimer's disease. However, oral delivery of drugs can cause severe side effects such as nausea, vomiting, and gastrointestinal disturbance. Transdermal delivery of galantamine hydrobromide could avoid these unwanted side effects. In this work, galantamine hydrobromide was formulated in gel drug reservoir which was then fabricated in the transdermal patch. The in vitro drug release studies revealed that the drug release from the donor chamber to receptor chamber of Franz diffusion cell was affected by the amount of polymer, amount of neutralizer, amount of drug, types of permeation enhancer, and amount of permeation enhancer. Visual observations of the gels showed that all formulated gels are translucent, homogeneous, smooth, and stable. These gels have pH in the suitable range for skin. The gel also showed high drug content uniformity. Hence, this formulation can be further used in the preparation of transdermal patch drug delivery system.
    Matched MeSH terms: Administration, Cutaneous
  17. Gan DEY, Choy RXY, Sellappan H, Hayati F, Azizan N
    Oman Med J, 2021 Mar;36(2):e239.
    PMID: 33768970 DOI: 10.5001/omj.2021.21
    Perivascular epithelioid cell tumors (PEComas) are a family of rare mesenchymal tumors with discrete histological and immunohistochemical characteristics. Even rarer among them are cutaneous and subcutaneous PEComas. We describe a 34-year-old woman who presented with a large anterior abdominal subcutaneous lesion showing intact overlying skin and no obvious invasion of the abdominal musculature. A wide local excision was performed. Histopathology revealed a solitary tumor measuring 75 × 55 × 90 mm with epithelioid cells in nests with thin fibrovascular septa and spindle cells. Resection margins were clear with no invasion to the skin or rectus sheath. Tumor cells were positive for HMB-45 but negative for other markers. This is the largest subcutaneous PEComa reported to date.
    Matched MeSH terms: Administration, Cutaneous
  18. Goh CF, Boyd BJ, Craig DQM, Lane ME
    Expert Opin Drug Deliv, 2020 09;17(9):1321-1334.
    PMID: 32634033 DOI: 10.1080/17425247.2020.1792440
    BACKGROUND: Drug crystallization following application of transdermal and topical formulations may potentially compromise the delivery of drugs to the skin. This phenomenon was found to be limited to the superficial layers of the stratum corneum (~7 µm) in our recent reports and tape stripping of the skin samples was necessary. It remains a significant challenge to profile drug crystallization in situ without damaging the skin samples.

    METHODS: This work reports the application of an X-ray microbeam via synchrotron SAXS/WAXS analysis to monitor drug crystallization in the skin, especially in the deeper skin layers. Confocal Raman spectroscopy (CRS) was employed to examine drug distribution in the skin to complement the detection of drug crystallization using SAXS/WAXS analysis.

    RESULTS: Following application of saturated drug solutions (ibuprofen, diclofenac acid, and salts), CRS depth profiles confirmed that the drugs generally were delivered to a depth of ~15 - 20 µm in the skin. This was compared with the WAXS profiles that measured drug crystal diffraction at a depth of up to ~25 µm of the skin.

    CONCLUSION: This study demonstrates the potential of synchrotron SAXS/WAXS analysis for profiling of drug crystallization in situ in the deeper skin layers without pre-treatment for the skin samples. [Figure: see text].

    Matched MeSH terms: Administration, Cutaneous
  19. Goh CF, Lane ME
    Int J Pharm, 2014 Oct 1;473(1-2):607-16.
    PMID: 25091375 DOI: 10.1016/j.ijpharm.2014.07.052
    Diclofenac (DF) was first synthesized in the 1960's and is currently available as ophthalmic, oral, parenteral, rectal and skin preparations. This review focuses on the administration of DF to the skin. As a member of the non-steroidal anti-inflammatory (NSAID) group of drugs the primary indications of DF are for the management of inflammation and pain but it is also used to treat actinic keratosis. The specific aims of this paper are to: (i) provide an overview of the pharmacokinetics and metabolism of DF following oral and topical administration; (ii) examine critically the various formulation approaches which have been investigated to enhance dermal delivery of DF; and (iii) identify new formulation strategies for enhanced DF skin penetration.
    Matched MeSH terms: Administration, Cutaneous
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links