Displaying publications 1 - 20 of 406 in total

Abstract:
Sort:
  1. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, et al.
    mBio, 2014 Aug 26;5(5):e01044-14.
    PMID: 25161186 DOI: 10.1128/mBio.01044-14
    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) was recognized in Europe and worldwide in the late 1990s. Within a decade, several genetically and geographically distinct CA-MRSA lineages carrying the small SCCmec type IV and V genetic elements and the Panton-Valentine leukocidin (PVL) emerged around the world. In Europe, the predominant CA-MRSA strain belongs to clonal complex 80 (CC80) and is resistant to kanamycin/amikacin and fusidic acid. CC80 was first reported in 1993 but was relatively rare until the late 1990s. It has since been identified throughout North Africa, the Middle East, and Europe, with recent sporadic reports in sub-Saharan Africa. While strongly associated with skin and soft tissue infections, it is rarely found among asymptomatic carriers. Methicillin-sensitive S. aureus (MSSA) CC80 strains are extremely rare except in sub-Saharan Africa. In the current study, we applied whole-genome sequencing to a global collection of both MSSA and MRSA CC80 isolates. Phylogenetic analyses strongly suggest that the European epidemic CA-MRSA lineage is derived from a PVL-positive MSSA ancestor from sub-Saharan Africa. Moreover, the tree topology suggests a single acquisition of both the SCCmec element and a plasmid encoding the fusidic acid resistance determinant. Four canonical SNPs distinguish the derived CA-MRSA lineage and include a nonsynonymous mutation in accessory gene regulator C (agrC). These changes were associated with a star-like expansion into Europe, the Middle East, and North Africa in the early 1990s, including multiple cases of cross-continent imports likely driven by human migrations.

    IMPORTANCE: With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.

    Matched MeSH terms: Africa, Northern
  2. Von Schimonsky DM, Bichuette ME, Mahnert V
    Zootaxa, 2014;3889(3):442-6.
    PMID: 25544278 DOI: 10.11646/zootaxa.3889.3.6
    The small pseudoscorpion family Pseudochiridiidae Chamberlin, 1923 comprises two genera and 12 extant species recorded from Asia (Burma, Christmas Island, Indonesia, India, Nepal, Malaysia, New Guinea, Philippines, Nicobars and Sumba), eastern, central and southern Africa (Chad, D.R. Congo, Kenya, South Africa, Tanzania), Madagascar, Seychelles (Aldabra), North America (Florida) and the Caribbean Islands of Dominican Republic and Cuba (Harvey 2013, Barba & Barroso 2013); one unidentified species is mentioned for the fauna of Mexico (Ceballos 2004). A fossil species has been described from Dominican amber by Judson (2007), who predicted the presence of this family in South America. 
    Matched MeSH terms: Africa, Southern; South Africa
  3. Tan MK, Wahab RBHA
    Zootaxa, 2018 Apr 20;4413(1):193-196.
    PMID: 29690128 DOI: 10.11646/zootaxa.4413.1.9
    There are now more than 28,000 described orthopterans globally (Cigliano et al., 2018) and this figure is likely to increase in the future. The same is true for Southeast Asia, where we are still at a stage of discovering species new to science, and this is partly an artefact of incomplete sampling (Tan et al., 2017a). In one of the most popular biodiversity hotspots, i.e., Borneo, is the Kuala Belalong Field Studies Centre. It is located in the primary lowland and ridge dipterocarp forests of the Ulu Temburong National Park, Brunei Darussalam. Recent collection of orthopterans in the area led to the discovery of several new species of katydids (Tan et al., 2017b; Tan Wahab, 2017a) and crickets (Tan et al., 2017c; Tan Wahab, 2017b). Here, we describe another new species of katydid, from the genus Tapiena Bolívar, 1906. Tapiena currently consists of 26 species (Tan et al., 2015) and is distributed around Asia and even Africa. In Borneo, only one species is known: Tapiena incisa Karny, 1923 from Sarawak (see Karny, 1923). The new species Tapiena paraincisa sp. nov. represents the second species described from Borneo.
    Matched MeSH terms: Africa
  4. Jaschhof M, Jaschhof C
    Zootaxa, 2018 Feb 15;4379(4):529-538.
    PMID: 29689964 DOI: 10.11646/zootaxa.4379.4.5
    A new genus of Winnertziini (Cecidomyiidae: Winnertziinae) named Bernadottea gen. nov. is introduced to absorb four new species from various different parts of the Old World: B. natalensis sp. nov. from South Africa, B. honshuensis sp. nov. from Japan, and B. pahangensis sp. nov. and B. selangorensis sp. nov. from Malaysia. Bernadottea are distinguished from previously known Winnertziini by the unusually complex genitalia of males, and from most members of this tribe by the absence of the fourth medial vein (M4). Another feature of Bernadottea is their rare occurrence in samples of Winnertziini taken by hand or by traps, a circumstance presumably expressing their scarcity in nature, at least at ground level. The new taxa are described based on the morphology of males, while females and larvae remain unknown.
    Matched MeSH terms: South Africa
  5. Li JJ, Rahayu DL, Ng PKL
    Zootaxa, 2018 Sep 19;4482(3):451-490.
    PMID: 30313809 DOI: 10.11646/zootaxa.4482.3.2
    The identity of the tree-spider crab, Parasesarma leptosoma (Hilgendorf, 1869) (family Sesarmidae), which is believed to be widely distributed in the Indo-West Pacific, is reassessed and shown to be a species-complex with nine species, seven of which are here described as new. Parasesarma leptosoma sensu stricto is now restricted to South and East Africa; and P. limbense (Rathbun, 1914) from Sulawesi, which had been regarded as a junior synonym, is here recognized as a valid species. The following species are described as new: P. gecko n. sp. from Vanuatu, Fiji, Guam and Japan; P. macaco n. sp. from Taiwan and the Philippines; P. kui n. sp. from Taiwan; P. parvulum n. sp. from the Philippines; P. gracilipes n. sp. from Indonesian Papua; P. purpureum n. sp. from Malaysia; and P. tarantula n. sp. from Sulawesi, Indonesia. The nine species of the Parasesarma leptosoma species-complex can be separated by the different shapes of their carapaces, the form of the dactylar tubercles on the male chelipeds, proportions of their ambulatory legs and the structure of the male first gonopod.
    Matched MeSH terms: Africa, Eastern
  6. Kment P, Carapezza A, Jindra Z, Kondorosy E
    Zootaxa, 2017 Jan 25;4226(1):zootaxa.4226.1.2.
    PMID: 28187629 DOI: 10.11646/zootaxa.4226.1.2
    The generic name Lanchnophorus Reuter, 1887, deemed for a long time to be unavailable as incorrect original spelling of Lachnophorus (in fact Lachnophorus Distant, 1903 is an unjustified emendation of the former), is restored as a valid name of the genus. Lachnesthus Bergroth, 1915, syn. nov. (new name for the preoccupied Lachnophorus Distant, 1903) is considered junior synonym of Lanchnophorus. The following nomenclatural changes are proposed: Lanchnophorus flavus (Scudder, 1971) comb. nov. = Lachnesthus chinai Scudder, nomen nudum; Lanchnophorus guttulatus Reuter, 1887, comb. restit. = Lachnophorus albidomaculatus Distant, 1913, syn. nov. = Lachnesthus rodriguezensis China, 1925, syn. nov.; Lanchnophorus leucospilus (Walker, 1872) comb. nov.; Lanchnophorus merula (Distant, 1903) comb. nov.; and Lanchnophorus singalensis (Dohrn, 1860) comb. nov. Three new species are described: Lanchnophorus gaoqingae Kment & Jindra sp. nov. from China (Yunnan), Lanchnophorus seminitens Kment & Carapezza sp. nov. from Socotra Island (Yemen), and Lanchnophorus webbi Kondorosy sp. nov. from India: Tamil Nadu. Bibliographies and known distribution of all the included species are reviewed. The following new country and state records are provided: L. flavus from Central African Republic, Ethiopia, Ghana, Mali, Malawi, Niger, Zambia and Zimbabwe; L. leucospilus from China (Yunnan) and Laos, L. merula from India (Kerala/Tamil Nadu) and Thailand; L. singalensis from Angola, Benin, Mozambique, Namibia, Senegal, Sierra Leone, Tanzania, Togo, Uganda, Zambia, Zimbabwe, China (Hainan), Iran (Sistan and Ba-luchestan), Oman, Pakistan, India (Himachal Pradesh, Karnataka, Kerala, Rajasthan), Malaysia, Philippines, and Thailand.
    Matched MeSH terms: Africa
  7. A Valerio A, Austin AD, Masner L, Johnson NF
    Zookeys, 2013.
    PMID: 23878506 DOI: 10.3897/zookeys.314.3475
    The genera Odontacolus Kieffer and Cyphacolus Priesner are among the most distinctive platygastroid wasps because of their laterally compressed metasomal horn; however, their generic status has remained unclear. We present a morphological phylogenetic analysis comprising all 38 Old World and four Neotropical Odontacolus species and 13 Cyphacolus species, which demonstrates that the latter is monophyletic but nested within a somewhat poorly resolved Odontacolus. Based on these results Cyphacolus syn. n. is placed as a junior synonym of Odontacolus which is here redefined. The taxonomy of Old World Odontacolus s.str. is revised; the previously known species Odontacolus longiceps Kieffer (Seychelles), Odontacolus markadicus Veenakumari (India), Odontacolus spinosus (Dodd) (Australia) and Odontacolus hackeri (Dodd) (Australia) are re-described, and 32 new species are described: Odontacolus africanus Valerio & Austin sp. n. (Congo, Guinea, Kenya, Madagascar, Mozambique, South Africa, Uganda, Zimbabwe), Odontacolus aldrovandii Valerio & Austin sp. n. (Nepal), Odontacolus anningae Valerio & Austin sp. n. (Cameroon), Odontacolus australiensis Valerio & Austin sp. n. (Australia), Odontacolus baeri Valerio & Austin sp. n. (Australia), Odontacolus berryae Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus bosei Valerio & Austin sp. n. (India, Malaysia, Sri Lanka), Odontacolus cardaleae Valerio & Austin sp. n. (Australia), Odontacolus darwini Valerio & Austin sp. n. (Thailand), Odontacolus dayi Valerio & Austin sp. n. (Indonesia), Odontacolus gallowayi Valerio & Austin sp. n. (Australia), Odontacolus gentingensis Valerio & Austin sp. n. (Malaysia), Odontacolus guineensis Valerio & Austin sp. n. (Guinea), Odontacolus harveyi Valerio & Austin sp. n. (Australia), Odontacolus heratyi Valerio & Austin sp. n. (Fiji), Odontacolus heydoni Valerio & Austin sp. n. (Malaysia, Thailand), Odontacolus irwini Valerio & Austin sp. n. (Fiji), Odontacolus jacksonae Valerio & Austin sp. n. (Cameroon, Guinea, Madagascar), Odontacolus kiau Valerio & Austin sp. n. (Papua New Guinea), Odontacolus lamarcki Valerio & Austin sp. n. (Thailand), Odontacolus madagascarensis Valerio & Austin sp. n. (Madagascar), Odontacolus mayri Valerio & Austin sp. n. (Indonesia, Thailand), Odontacolus mot Valerio & Austin sp. n. (India), Odontacolus noyesi Valerio & Austin sp. n. (India, Indonesia), Odontacolus pintoi Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus schlingeri Valerio & Austin sp. n. (Fiji), Odontacolus sharkeyi Valerio & Austin sp. n. (Thailand), Odontacolus veroae Valerio & Austin sp. n. (Fiji), Odontacolus wallacei Valerio & Austin sp. n. (Australia, Indonesia, Malawi, Papua New Guinea), Odontacolus whitfieldi Valerio & Austin sp. n. (China, India, Indonesia, Sulawesi, Malaysia, Thailand, Vietnam), Odontacolus zborowskii Valerio & Austin sp. n. (Australia), and Odontacolus zimi Valerio & Austin sp. n. (Madagascar). In addition, all species of Cyphacolus are here transferred to Odontacolus: Odontacolus asheri (Valerio, Masner & Austin) comb. n. (Sri Lanka), Odontacolus axfordi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus bhowaliensis (Mani & Mukerjee) comb. n. (India), Odontacolus bouceki (Austin & Iqbal) comb. n. (Australia), Odontacolus copelandi (Valerio, Masner & Austin) comb. n. (Kenya, Nigeria, Zimbabwe, Thailand), Odontacolus diazae (Valerio, Masner & Austin) comb. n. (Kenya), Odontacolus harteni (Valerio, Masner & Austin) comb. n. (Yemen, Ivory Coast, Paskistan), Odontacolus jenningsi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus leblanci (Valerio, Masner & Austin) comb. n. (Guinea), Odontacolus lucianae (Valerio, Masner & Austin) comb. n. (Ivory Coast, Madagascar, South Africa, Swaziland, Zimbabwe), Odontacolus normani (Valerio, Masner & Austin) comb. n. (India, United Arab Emirates), Odontacolus sallyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tessae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tullyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus veniprivus (Priesner) comb. n. (Egypt), and Odontacolus watshami (Valerio, Masner & Austin) comb. n. (Africa, Madagascar). Two species of Odontacolus are transferred to the genus Idris Förster: Idris longispinosus (Girault) comb. n. and Idris amoenus (Kononova) comb. n., and Odontacolus doddi Austin syn. n. is placed as a junior synonym of Odontacolus spinosus (Dodd). Odontacolus markadicus, previously only known from India, is here recorded from Brunei, Malaysia, Sri Lanka, Thailand and Vietnam. The relationships, distribution and biology of Odontacolus are discussed, and a key is provided to identify all species.
    Matched MeSH terms: South Africa
  8. Taekul C, Johnson NF, Masner L, Polaszek A, Rajmohana K
    Zookeys, 2010.
    PMID: 21594118 DOI: 10.3897/zookeys.50.485
    The genus Platyscelio Kieffer (Hymenoptera: Platygastridae, Scelioninae) is a widespread group in the Old World, found from West Africa to northern Queensland, Australia. The species concepts are revised and a key to world species is presented. The genus is comprised of 6 species, including 2 known species which are redescribed: Platyscelioafricanus Risbec (Benin, Cameroon, Central African Republic, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Kenya, Mozambique, Nigeria, Sierra Leone, South Africa, Tanzania, Togo, Uganda, Yemen, Zimbabwe); and Platysceliopulchricornis Kieffer (Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, Papua New Guinea, Philippines, Solomon Islands, Taiwan, Thailand, Vanuatu, Vietnam). Five species-group names are considered to be junior synonyms of Platysceliopulchricornis: Platyscelioabnormis Crawford syn. n., Platysceliodunensis Mukerjee syn. n., Platysceliomirabilis Dodd syn. n., Platysceliopunctatus Kieffer syn. n., and Platysceliowilcoxi Fullaway. The following species are hypothesized and described as new taxa: Platyscelioarcuatus Taekul & Johnson, sp. n. (Western Australia); Platysceliomysterium Taekul & Johnson, sp. n. (Zimbabwe, Botswana, South Africa); Platysceliomzantsi Taekul & Johnson, sp. n. (South Africa); and Platysceliostriga Taekul & Johnson, sp. n. (Western Australia).
    Matched MeSH terms: South Africa
  9. Deeleman-Reinhold CL, Miller J, Floren A
    Zookeys, 2016.
    PMID: 26877691 DOI: 10.3897/zookeys.556.6174
    Depreissia is a little known genus comprising two hymenopteran-mimicking species, one found in Central Africa and one in the north of Borneo. The male of Depreissia decipiens is redescribed, the female is described for the first time. The carapace is elongated, dorsally flattened and rhombus-shaped, the rear of the thorax laterally depressed and transformed, with a pair of deep pits; the pedicel is almost as long as the abdomen. The male palp is unusual, characterized by the transverse deeply split membranous tegulum separating a ventral part which bears a sclerotized tegular apophysis and a large dagger-like retrodirected median apophysis. The female epigyne consists of one pair of large adjacent spermathecae and very long copulatory ducts arising posteriorly and rising laterally alongside the spermathecae continuing in several vertical and horizontal coils over the anterior surface. Relationships within the Salticidae are discussed and an affinity with the Cocalodinae is suggested. Arguments are provided for a hypothesis that Depreissia decipiens is not ant-mimicking as was previously believed, but is a mimic of polistinine wasps. The species was found in the canopy in the Kinabalu area only, in primary and old secondary rainforest at 200-700 m.a.s.l. Overlap of canopy-dwelling spider species with those in the understorey are discussed and examples of species richness and endemism in the canopy are highlighted. Canopy fogging is a very efficient method of collecting for most arthropods. The canopy fauna adds an extra dimension to the known biodiversity of the tropical rainforest. In southeast Asia, canopy research has been neglected, inhibiting evaluation of comparative results of this canopy project with that from other regions. More use of fogging as a collecting method would greatly improve insight into the actual species richness and species distribution in general.
    Matched MeSH terms: Africa, Central
  10. Hee AK, Wee SL, Nishida R, Ono H, Hendrichs J, Haymer DS, et al.
    Zookeys, 2015.
    PMID: 26798266 DOI: 10.3897/zookeys.540.6028
    An FAO/IAEA-sponsored coordinated research project on integrative taxonomy, involving close to 50 researchers from at least 20 countries, culminated in a significant breakthrough in the recognition that four major pest species, Bactrocera dorsalis, Bactrocera philippinensis, Bactrocera papayae and Bactrocera invadens, belong to the same biological species, Bactrocera dorsalis. The successful conclusion of this initiative is expected to significantly facilitate global agricultural trade, primarily through the lifting of quarantine restrictions that have long affected many countries, especially those in regions such as Asia and Africa that have large potential for fresh fruit and vegetable commodity exports. This work stems from two taxonomic studies: a revision in 1994 that significantly increased the number of described species in the Bactrocera dorsalis species complex; and the description in 2005 of Bactrocera invadens, then newly incursive in Africa. While taxonomically valid species, many biologists considered that these were different names for one biological species. Many disagreements confounded attempts to develop a solution for resolving this taxonomic issue, before the FAO/IAEA project commenced. Crucial to understanding the success of that initiative is an accounting of the historical events and perspectives leading up to the international, multidisciplinary collaborative efforts that successfully achieved the final synonymization. This review highlights the 21 year journey taken to achieve this outcome.
    Matched MeSH terms: Africa
  11. Dayrat B, Goulding TC, Apte D, Aslam S, Bourke A, Comendador J, et al.
    Zookeys, 2020;972:1-224.
    PMID: 33071542 DOI: 10.3897/zookeys.972.52853
    The genus Peronia Fleming, 1822 includes all the onchidiid slugs with dorsal gills. Its taxonomy is revised for the first time based on a large collection of fresh material from the entire Indo-West Pacific, from South Africa to Hawaii. Nine species are supported by mitochondrial (COI and 16S) and nuclear (ITS2 and 28S) sequences as well as comparative anatomy. All types available were examined and the nomenclatural status of each existing name in the genus is addressed. Of 31 Peronia species-group names available, 27 are regarded as invalid (twenty-one synonyms, sixteen of which are new, five nomina dubia, and one homonym), and four as valid: Peronia peronii (Cuvier, 1804), Peronia verruculata (Cuvier, 1830), Peronia platei (Hoffmann, 1928), and Peronia madagascariensis (Labbé, 1934a). Five new species names are created: P. griffithsi Dayrat & Goulding, sp. nov., P. okinawensis Dayrat & Goulding, sp. nov., P. setoensis Dayrat & Goulding, sp. nov., P. sydneyensis Dayrat & Goulding, sp. nov., and P. willani Dayrat & Goulding, sp. nov.Peronia species are cryptic externally but can be distinguished using internal characters, with the exception of P. platei and P. setoensis. The anatomy of most species is described in detail here for the first time. All the secondary literature is commented on and historical specimens from museum collections were also examined to better establish species distributions. The genus Peronia includes two species that are widespread across the Indo-West Pacific (P. verruculata and P. peronii) as well as endemic species: P. okinawensis and P. setoensis are endemic to Japan, and P. willani is endemic to Northern Territory, Australia. Many new geographical records are provided, as well as a key to the species using morphological traits.
    Matched MeSH terms: South Africa
  12. Chan BKK, Tsao YF, Ganmanee M
    Zookeys, 2020;914:1-31.
    PMID: 32132853 DOI: 10.3897/zookeys.914.49328
    Octomeris is a chthamalid intertidal barnacle with eight shell plates. There are currently two species of such barnacles: O. brunnea Darwin, 1854 (type locality in the Philippines), common in the Indo-Pacific region, and O. angulosa Sowerby, 1825, only recorded in South Africa. Octomeris intermedia Nilsson-Cantell, 1921, identified from the Mergui Archipelago in Myanmar, was considered to be conspecific with O. brunnea by Hiro (1939) based on samples collected in Taiwan. The morphological differences in shell and opercular plates between O. brunnea and O. intermedia are believed to be intra-specific variations due to different degrees of shell erosion. In the present study, the genetic and morphological differentiations of Octomeris in the Indo-Pacific region were examined. This study found two molecular clades (with inter-specific differences) based on the divergence in the COI genes, and the species also have distinct geographical distributions. The Octomeris brunnea clade covers samples collected from the Philippines and Taiwan waters and the other clade, which we argue is O. intermedia, is distributed in Phuket and Krabi, Thailand and Langkawi, Malaysia. Phuket and Krabi are located approximately 300 km south of the Mergui Archipelago, the type locality of O. intermedia. The morphology of samples collected from Thailand fits the type description of O. intermedia in Nilsson-Cantell (1921). Our study concludes that O. intermedia is a valid species based on morphological and molecular evidence.
    Matched MeSH terms: South Africa
  13. Zarnowski R, Jaromin A, Certik M, Czabany T, Fontaine J, Jakubik T, et al.
    Z Naturforsch C J Biosci, 2008 11 13;59(5-6):321-6.
    PMID: 18998394
    The oil of Adenanthera pavonina L. seeds was analysed by chromatographic and instrumental means. The oil was found to be rich in neutral lipids (86.2%), and low in polar lipids (13.8%). The neutral lipids consisted mainly of triacylglycerols (64.2%). Unsaturated fatty acids were found as high as 71%, while the percentage of saturated fatty acids was only 29%. GC and GC/MS analyses revealed linoleic, oleic and lignocerotic acid to be predominant among all fatty acids in the A. pavonina oil, whereas stigmasterol was the major steroid identified within this study. Subsequently, the oil was used for preparation of submicron oil-in-water (o/w) lipid emulsions. Lipid emulsions were formulated by using soybean lecithin (SL) to investigate their particle size, Zeta potential and stability at the different oil and SL ratios. The results obtained indicate possible applications of the tested oil in pharmaceutical and medical fields as drug and cosmetic active ingredient carriers.
    Matched MeSH terms: Africa
  14. Labadarios D, Walker AR, Blaauw R, Walker BF
    World Rev Nutr Diet, 1996;79:70-108.
    PMID: 9111811
    Matched MeSH terms: Africa/ethnology; South Africa
  15. World AIDS Day Newsl, 1994;?(2):3.
    PMID: 12287964
    PIP: Five positive and negative experiences of families dealing with AIDS are recounted. Imrat in Malaysia is an HIV-infected son who was not rejected by his family. Prudence of Botswana is an infected widow with five children who had a less positive experience with her in-laws, while Eric of Sweden considers his friends to constitute his family. His relationships with friends have only strengthened since his HIV-positive status became known. Mary of Zimbabwe, however, was infected with HIV by her husband. She was formerly angry at him for having brought home the virus, but they have since stop quarreling and are focusing upon building a stronger relationship. Finally, the brief story of Juan in Colombia is told. Thirty-two years old, married, and with a 17-month old daughter, Juan did not tell his wife that he was actively bisexual. Once infected with HIV, Juan's wife threw him out, more because he had sex with men than because of his HIV serostatus.
    Matched MeSH terms: Africa; Africa, Eastern; Africa, Southern; Africa South of the Sahara
  16. Marennikova SS, Shelukhina EM, Shenkman LS, Mal'tseva NN, Matsevich GR
    Vopr. Virusol., 1975 May-Jun.
    PMID: 169629
    The results of examinations of sera, blood and organs of different species of monkeys from some Asian and African countries for the presence of antibody to smallpox and viruses of the smallpox group. Significant titers of smallpox antibodies (antihemagglutinins virus-neutralizing and, in some cases, precipitating antibody) were found in a considerable number of monkeys shot near foci with human cases (Equatorial province of Zair Republic). In the same monkeys kidney tissues yielded 3 isolates of smallpox virus group two of which were indistinguishable in the laboratory tests from variola virus. On the basis of these data it is concluded that smallpox viruses circulate among wildlife monkeys in some areas of Equatorial Africa. Further studies along these lines are necessary.
    Matched MeSH terms: Africa
  17. Korenek J
    Vnitr Lek, 1970 Apr;16(4):371-8.
    PMID: 4910163
    Matched MeSH terms: Africa
  18. Sun B, Jia L, Liang B, Chen Q, Liu D
    Virol Sin, 2018 Oct;33(5):385-393.
    PMID: 30311101 DOI: 10.1007/s12250-018-0050-1
    Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.
    Matched MeSH terms: Africa/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links