Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, et al.
    J Hazard Mater, 2021 03 05;405:124138.
    PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138
    Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
    Matched MeSH terms: Air Pollution, Indoor
  2. Yap HS, Roberts AC, Luo C, Tan Z, Lee EH, Thach TQ, et al.
    Indoor Air, 2021 11;31(6):2239-2251.
    PMID: 34096640 DOI: 10.1111/ina.12863
    Space is a resource that is constantly being depleted, especially in mega-cities. Underground workspaces (UGS) are increasingly being included in urban plans and have emerged as an essential component of vertical cities. While progress had been made on the engineering aspects associated with the development of high-quality UGS, public attitudes toward UGS as work environments (ie, the public's design concerns with UGS) are relatively unknown. Here, we present the first large-scale study examining preferences and attitudes toward UGS, surveying close to 2000 participants from four cities in three continents (Singapore, Shanghai, London, and Montreal). Contrary to previous beliefs, air quality (and not lack of windows) is the major concern of prospective occupants. Windows, temperature, and lighting emerged as additional important building performance aspects for UGS. Early adopters (ie, individuals more willing to accept UGS and thus more likely to be the first occupants) across all cities prioritized air quality. Present results suggest that (perceived) air quality is a key building performance aspect for UGS that needs to be communicated to prospective occupants as this will improve their attitudes and views toward UGS. This study highlights the importance of indoor air quality for the public.
    Matched MeSH terms: Air Pollution, Indoor*
  3. Vilcins D, Christofferson RC, Yoon JH, Nazli SN, Sly PD, Cormier SA, et al.
    Ann Glob Health, 2024;90(1):9.
    PMID: 38312715 DOI: 10.5334/aogh.4363
    BACKGROUND: The United Nations has declared that humans have a right to clean air. Despite this, many deaths and disability-adjusted life years are attributed to air pollution exposure each year. We face both challenges to air quality and opportunities to improve, but several areas need to be addressed with urgency.

    OBJECTIVE: This paper summarises the recent research presented at the Pacific Basin Consortium for Environment and Health Symposium and focuses on three key areas of air pollution that are important to human health and require more research.

    FINDINGS AND CONCLUSION: Indoor spaces are commonly places of exposure to poor air quality and are difficult to monitor and regulate. Global climate change risks worsening air quality in a bi-directional fashion. The rising use of electric vehicles may offer opportunities to improve air quality, but it also presents new challenges. Government policies and initiatives could lead to improved air and environmental justice. Several populations, such as older people and children, face increased harm from air pollution and should become priority groups for action.

    Matched MeSH terms: Air Pollution, Indoor*
  4. Veysi R, Heibati B, Jahangiri M, Kumar P, Latif MT, Karimi A
    Environ Monit Assess, 2019 Jan 05;191(2):50.
    PMID: 30612195 DOI: 10.1007/s10661-018-7182-5
    The ambient air of hospitals contains a wide range of biological and chemical pollutants. Exposure to these indoor pollutants can be hazardous to the health of hospital staff. This study aims to evaluate the factors affecting indoor air quality and their effect on the respiratory health of staff members in a busy Iranian hospital. We surveyed 226 hospital staff as a case group and 222 office staff as a control group. All the subjects were asked to fill in a standard respiratory questionnaire. Pulmonary function parameters were simultaneously measured via a spirometry test. Environmental measurements of bio-aerosols, particulate matter, and volatile organic compounds in the hospital and offices were conducted. T-tests, chi-square tests, and multivariable logistic regressions were used to analyze the data. The concentration of selected air pollutants measured in the hospital wards was more than those in the administrative wards. Parameters of pulmonary functions were not statistically significant (p > 0.05) between the two groups. However, respiratory symptoms such as coughs, phlegm, phlegmatic coughs, and wheezing were more prevalent among the hospital staff. Laboratory staff members were more at risk of respiratory symptoms compared to other occupational groups in the hospital. The prevalence of sputum among nurses was significant, and the odds ratio for the presence of phlegm among nurses was 4.61 times greater than office staff (p = 0.002). The accumulation of indoor pollutants in the hospital environment revealed the failure of hospital ventilation systems. Hence, the design and implementation of an improved ventilation system in the studied hospital is recommended.
    Matched MeSH terms: Air Pollution, Indoor
  5. Tian Y
    J Health Popul Nutr, 2023 Nov 08;42(1):125.
    PMID: 37941052 DOI: 10.1186/s41043-023-00465-4
    The creation of a welcoming hospital atmosphere is necessary to improve patient wellbeing and encourage healing. The goal of this study was to examine the variables affecting hospitalised patients' comfort. The study procedure included a thorough search of the Web of Science and Scopus databases, as well as the use of software analytic tools to graphically map enormous literature data, providing a deeper understanding of the linkages within the literature and its changing patterns. Insights from a range of disciplines, including engineering, psychology, immunology, microbiology, and environmental science, were included into our study using content analysis and clustering approaches. The physical environment and the social environment are two crucial factors that are related to patient comfort. The study stress the need of giving patient comfort a top priority as they heal, especially by tackling indoor air pollution. Our research also emphasises how important hospital care and food guidelines are for improving patient comfort. Prioritising patients who need specialised care and attention, especially those who have suffered trauma, should be the focus of future study. Future research in important fields including trauma, communication, hospital architecture, and nursing will be built on the findings of this study. To enhance research in these crucial areas, worldwide collaboration between experts from other nations is also advised. Although many studies stress the significance of patient comfort, few have drawn conclusions from a variety of disciplines, including medicine, engineering, immunology, microbiology, and environmental science, the most crucial issue of thoroughly researching the improvement of patient comfort has not been addressed. Healthcare workers, engineers, and other professions will benefit greatly from this study's investigation of the connection between hospital indoor environments and patient comfort.
    Matched MeSH terms: Air Pollution, Indoor*
  6. Tan SY, Praveena SM, Abidin EZ, Cheema MS
    Environ Sci Pollut Res Int, 2018 Dec;25(34):34623-34635.
    PMID: 30315534 DOI: 10.1007/s11356-018-3396-x
    This study aimed to determine bioavailable heavy metal concentrations (As, Cd, Co, Cu, Cr, Ni, Pb, Zn) and their potential sources in classroom dust collected from children's hand palms in Rawang (Malaysia). This study also aimed to determine the association between bioavailable heavy metal concentration in classroom dust and children's respiratory symptoms. Health risk assessment (HRA) was applied to evaluate health risks (non-carcinogenic and carcinogenic) due to heavy metals in classroom dust. The mean of bioavailable heavy metal concentrations in classroom dust found on children's hand palms was shown in the following order: Zn (1.25E + 01 μg/g) > Cu (9.59E-01 μg/g) > Ni (5.34E-01 μg/g) > Cr (4.72E-02 μg/g) > Co (2.34E-02 μg/g) > As (1.77E-02 μg/g) > Cd (9.60E-03 μg/g) > Pb (5.00E-03 μg/g). Hierarchical cluster analysis has clustered 17 sampling locations into three clusters, whereby cluster 1 (S3, S4, S6, S15) located in residential areas and near to roads exposed to vehicle emissions, cluster 2 (S10, S12, S9, S7) located near Rawang town and cluster 3 (S13, S16, S1, S2, S8, S14, S11, S17, S5) located near industrial, residential and plantation areas. Emissions from vehicles, plantations and industrial activities were found as the main sources of heavy metals in classroom dust in Rawang. There is no association found between bioavailable heavy metal concentrations and respiratory symptoms, except for Cu (OR = 0.03). Health risks (non-carcinogenic and carcinogenic risks) indicated that there are no potential non-carcinogenic and carcinogenic risks of heavy metals in classroom dust toward children health.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  7. Syazwan A, Rafee BM, Hafizan J, Azman A, Nizar A, Izwyn Z, et al.
    PMID: 22570579 DOI: 10.2147/RMHP.S26567
    To meet the current diversified health needs in workplaces, especially in nonindustrial workplaces in developing countries, an indoor air quality (IAQ) component of a participatory occupational safety and health survey should be included.
    Matched MeSH terms: Air Pollution, Indoor
  8. Syazwan A, Rafee BM, Juahir H, Azman A, Nizar A, Izwyn Z, et al.
    Drug Healthc Patient Saf, 2012;4:107-26.
    PMID: 23055779 DOI: 10.2147/DHPS.S33400
    To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial workplace setting.
    Matched MeSH terms: Air Pollution, Indoor
  9. Suppian R, Vegandraj S, Kandaiya S
    Int J Rad Appl Instrum A, 1992 Jul;43(7):937-8.
    PMID: 1321104
    Pumping air through a soft tissue which acts as a membrane is a relatively easy and quick method to collect and measure radon/thoron and its daughter nuclides in air. Analysis of the activity of the radionuclides can be calculated using an alpha counter which has been calibrated. In this method the activity of radon/thoron cannot be separated from the activity of radionuclides already present in the aerosol or dust particles.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  10. Sui, Sien Leong, Lihan, Samuel, Hwa, Chuan Chia
    MyJurnal
    The abuse of antibiotics usage in bird industry has resulted in the emerging antibiotic resistant Enterococci worldwide which has posed a threat clinically to human health. The present study was to screen and identify the potential virulence agents in antibiotic resistance E. faecalis in bird industry in Borneo. Enterococcus bacteria collected from the birds’ faeces and indoor air inside ten birdhouses were identified to species level and their antibiotic resistance was checked using antibiotic susceptibility discs. Specific primers using PCR assay were intended for the detection of four potential virulence genes (ace, AS, efaA, gelE). Out of the thirty-seven Enterococci faecal bacteria, the prevailing bacteria found were Enterococcus qallinacum (51%), Enterococcus faecalis (35%) and Enterococcus harae (8%). The airborne bacteria were reported as Enterococcus faecalis (5%) and Enterococcus qallinacum (1%). Twenty-seven percent of isolates were reported to have Multiple Antibiotic Resistance (MAR) index ≥ 0.2 with 9 distinct resistance patterns formed. E. faecalis showed higher resistance to vancomycin. Virulence genes were successfully reported in the 15 E. faecalis isolates. Sixty-seven percent of isolates were detected positive for four virulence genes, 27% possessed three (AS, efaA, gelE) genes and 6% possessed two (ace, AS) genes. Antibiotic resistance and virulence genes detection were significantly correlated. These virulence genes or antibiotic resistance genes were important in the pathogenesis of E. faecalis infections.
    Matched MeSH terms: Air Pollution, Indoor
  11. Shoffian Amin Jaafar, Suhaily Amran, Mohd Norhafsham Maghpor, Ahmad Sayuti Zainal, Nurzuhairah Jamil, Naemah Tajul Arus, et al.
    MyJurnal
    Indoor air quality is a term which refers to the air quality in and around buildings and structures, in which it
    is related to the health and comfort of those who are in the building. The study aims to identify the relationship
    between environmental factors with microbe growth by investigating the concentration of airborne bacteria and
    fungi at National Institute of Occupational Safety and Health (NIOSH) and to determine whether indoor bacteria and
    fungi concentration were associated with environmental factors such as temperature relative humidity and carbon
    dioxide concentration. This research was conducted concurrently with indoor air quality sampling as per requirement
    under the Malaysian Code of Practice of Indoor Air Quality (COP IAQ). The COP IAQ requires minimum of one
    sample to be taken from each area. If an area consists of a few separated rooms, each room is sampled and measured
    independently. Also this approach was used to determine whether there is a difference of indoor bacteria and fungi
    in different microenvironments. Results show that there is a significant correlation between humidity and bacteria
    concentration and fungi concentration; and between temperature and bacteria concentration. However, there is no
    significant correlation between temperature and fungi concentration. This study has also established significant
    difference on bacteria concentration and fungi concentration between microenvironments.
    Matched MeSH terms: Air Pollution, Indoor
  12. Sasnila Pakpahan, Bambang Wispriyono, Budi Hartono, Juliana Jalaludin
    MyJurnal
    Introduction: School environment represents an important microenvironment for students who spend 6-8 hours in classrooms. Indoor air quality is linked to several respiratory diseases in the school age group. This research aims to study indoor air quality of schools at different environmental characteristic and assess its health risks to students. Methods: This research measured air quality (PM2.5, PM10, CO2 , and HCHO) in three junior high schools and followed by health risk assessment. Results: This research found that the mean or median level of indoor PM2.5 and PM10 in all three schools exceeded the standard value with health risks (HQ> 1) for PM2.5 in all three schools and PM10 in two schools. Whereas carbon dioxide and formaldehyde concentrations were still safe and did not inflict health risks (HQ < 1). The scenario for managing the health risk of PM2.5 and PM10 exposure was to control the exposure at a safe threshold of PM2.5 0.035 mg/m3 ; 0.043 mg/m3 and PM10 0.144 mg/m3 for most of the population at normal school time. Conclusion: It was concluded that the level of indoor particulate matters indicates poor indoor air quality in all three schools at different environmental characteristic and inflicts health risk on students so that the health risk management is required.
    Matched MeSH terms: Air Pollution, Indoor
  13. Salamone F, Belussi L, Danza L, Galanos T, Ghellere M, Meroni I
    Sensors (Basel), 2017 May 04;17(5).
    PMID: 28471398 DOI: 10.3390/s17051021
    The article describes the results of the project "open source smart lamp" aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ) of the built environment. A first version of this smart object, built following a do-it-yourself (DIY) approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ), by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ), indoor lighting quality (ILQ) and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ.
    Matched MeSH terms: Air Pollution, Indoor
  14. Sakai N, Yamamoto S, Matsui Y, Khan MF, Latif MT, Ali Mohd M, et al.
    Sci Total Environ, 2017 May 15;586:1279-1286.
    PMID: 28236484 DOI: 10.1016/j.scitotenv.2017.02.139
    Volatile Organic Compounds (VOCs) in indoor air were investigated at 39 private residences in Selangor State, Malaysia to characterize the indoor air quality and to identify pollution sources. Twenty-two VOCs including isomers (14 aldehydes, 5 aromatic hydrocarbons, acetone, trichloroethylene and tetrachloroethylene) were collected by 2 passive samplers for 24h and quantitated using high performance liquid chromatography and gas chromatography mass spectrometry. Source profiling based on benzene/toluene ratio as well as statistical analysis (cluster analysis, bivariate correlation analysis and principal component analysis) was performed to identify pollution sources of the detected VOCs. The VOCs concentrations were compared with regulatory limits of air quality guidelines in WHO/EU, the US, Canada and Japan to clarify the potential health risks to the residents. The 39 residences were classified into 2 groups and 2 ungrouped residences based on the dendrogram in the cluster analysis. Group 1 (n=30) had mainly toluene (6.87±2.19μg/m3), formaldehyde (16.0±10.1μg/m3), acetaldehyde (5.35±4.57μg/m3) and acetone (11.1±5.95μg/m3) at background levels. Group 2 (n=7) had significantly high values of formaldehyde (99.3±10.7μg/m3) and acetone (35.8±12.6μg/m3), and a tendency to have higher values of acetaldehyde (23.7±13.5μg/m3), butyraldehyde (3.35±0.41μg/m3) and isovaleraldehyde (2.30±0.39μg/m3). The 2 ungrouped residences showed particularly high concentrations of BTX (benzene, toluene and xylene: 235μg/m3 in total) or acetone (133μg/m3). The geometric mean value of formaldehyde (19.2μg/m3) exceeded an 8-hour regulatory limit in Canada (9μg/m3), while those in other compounds did not exceed any regulatory limits, although a few residences exceeded at least one regulatory limit of benzene or acetaldehyde. Thus, the VOCs in the private residences were effectively characterized from the limited number of monitoring, and the potential health risks of the VOCs exposure, particularly formaldehyde, should be considered in the study area.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  15. Saad SM, Andrew AM, Shakaff AY, Saad AR, Kamarudin AM, Zakaria A
    Sensors (Basel), 2015;15(5):11665-84.
    PMID: 26007724 DOI: 10.3390/s150511665
    Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN--a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room's conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.
    Matched MeSH terms: Air Pollution, Indoor
  16. Rohani A, Zamree I, Lim LH, Rahini H, David L, Kamilan D
    PMID: 17333767
    The bioefficacy of indoor residual-sprayed deltamethrin wettable granule (WG) formulation at 25 mg a.i./m2 and 20 mg a.i./m2 for the control of malaria was compared with the current dose of 20 mg/m2 deltamethrin wettable powder (WP) in aboriginal settlements in Kuala Lipis, Pahang, Malaysia. The malaria vector has been previously identified as Anopheles maculatus. The assessment period for the 20 mg/m2 dosage was six months, but for the 25 mg/m2 dosage, the period was 9 months. Collections of mosquitoes using the bare-leg techniques were carried out indoors and outdoors from 7:00 PM to 7:00 AM. All mosquitoes were dissected for sporozoites and parity. Larval collections were carried out at various locations to assess the extent and distribution of breeding of vectors. A high incidence of human feeds was detected during May 2005 and a low incidence during January 2005 for all the study areas. Our study showed that deltamethrin WG at 25 mg/m2 suppressed An. maculatus biting activity. More An. maculatus were caught in outdoor landing catches than indoor landing catches for all the study areas. The results indicate that 25 mg/m2 WG is good for controlling malaria for up to 9 months. Where residual spraying is envisaged, the usual two spraying cycles per year with 20 mg/m2 deltamethrin may be replaced with 25 mg/m2 deltamethrin WG every 9 months.
    Matched MeSH terms: Air Pollution, Indoor
  17. Rawi NA, Jalaludin J, Chua PC
    Biomed Res Int, 2015;2015:248178.
    PMID: 25984527 DOI: 10.1155/2015/248178
    Indoor air quality (IAQ) has been the object of several studies due to its adverse health effects on children. Methods. A cross-sectional comparative study was carried out among Malay children in Balakong (2 studied preschools) and Bangi (2 comparative preschools), Selangor, with the aims of determining IAQ and its association with respiratory health. 61 and 50 children aged 5-6 years were selected as studied and comparative groups. A questionnaire was used to obtain an exposure history and respiratory symptoms. Lung function test was carried out. IAQ parameters obtained include indoor concentration of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), temperature, air velocity (AV), and relative humidity. Results. There was a significant difference between IAQ in studied and comparative preschools for all parameters measured (P < 0.001) except for CO2 and AV. Studied preschools had higher PM and CO concentration. FVC, FEV1, FVC% and FEV1% predicted values were significantly lower among studied group. Exposures to PM, VOCs, and CO were associated with wheezing. Conclusion. The finding concluded that exposures to poor IAQ might increase the risk of getting lung function abnormality and respiratory problems among study respondents.
    Matched MeSH terms: Air Pollution, Indoor/adverse effects*
  18. Radaideh JA, Alazba AA, Amin MN, Shatnawi ZN, Amin MT
    Sains Malaysiana, 2016;45:59-69.
    Indoor air quality assessment in residential areas of Al-Hofuf city/Eastern region of Saudi Arabia is investigated through a multi-week multiple sites sampling survey. Critical air pollution indicators, including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2) and total volatile organic compounds (TVOC) as well as temperatures were measured and analyzed during the study period from January to May 2014. Three site-types - roadside, urban and rural - were selected and within each site type, six locations were selected to study the varying indoor/outdoor air quality. The results indicated that NO2 and CO concentrations increased at the starting hours of the day. SO2 concentrations were relatively low and constant. In addition, a strong association between outdoor and indoor air quality was found. Measurements showed that indoor/outdoor ratio for TVOC ranged from 0.8 to 0.99. For CO2, NO2 and SO2, this was 0.92-1.15, 0.5-0.7 and 0.52-0.9, respectively. Finally, the effects of activated carbon (AC) were investigated to assess the extent of the improvement in the indoor air quality. The analysis of data obtained indicated that using locally prepared AC from date stones was an effective way to reduce the indoor air pollution with an overall efficiency of 85.5, while the use of industrial granular AC reduced the air pollutants with an efficiency of less than 0.6. In addition, AC was exposed to an exhaust gas flow to evaluate its elimination potential for high concentrated pollutants. The obtained results demonstrated that AC was also functioning as an efficient absorbent with an overall removal efficiency of 77.8%, even when it was exposed to high concentrations.
    Matched MeSH terms: Air Pollution, Indoor
  19. Othman M, Latif MT, Matsumi Y
    Ecotoxicol Environ Saf, 2019 Apr 15;170:739-749.
    PMID: 30583285 DOI: 10.1016/j.ecoenv.2018.12.042
    It is important to assess indoor air quality in school classrooms where the air quality may significantly influence school children's health and performance. This study aims to determine the concentrations of PM2.5 and dust chemical compositions in indoor and outdoor school classroom located in Kuala Lumpur City Centre. The PM2.5 concentration was measured from 19th September 2017-16th February 2018 using an optical PM2.5 sensor. Indoor and outdoor dust was also collected from the school classrooms and ion and trace metal concentrations were analysed using ion chromatography (IC) and inductively couple plasma-mass spectrometry (ICP-MS) respectively. This study showed that the average indoor and outdoor 24 h PM2.5 was 11.2 ± 0.45 µg m-3 and 11.4 ± 0.44 µg m-3 respectively. The 8 h PM2.5 concentration ranged between 3.2 and 28 µg m-3 for indoor and 3.2 and 19 µg m-3 for outdoor classrooms. The highest ion concentration in indoor dust was Ca2+ with an average concentration of 38.5 ± 35.0 µg g-1 while for outdoor dust SO42- recorded the highest ion concentration with an average concentration of 30.6 ± 9.37 µg g-1. Dominant trace metals in both indoor and outdoor dust were Al, Fe and Zn. Principle component analysis-multiple linear regression (PCA-MLR) demonstrated that the major source of indoor dust was road dust (69%), while soil dominated the outdoor dust (74%). Health risk assessment showed that the hazard quotient (HQ) value for non-carcinogenic trace metals was indoor and outdoor dust through dermal and inhalation pathways, but not the ingestion pathway. This study suggests indoor contributions of PM2.5 concentrations are due to the activities of the school children while the compositions of indoor and outdoor dust are greatly influenced by the soil/earth source plus industrial and traffic contribution.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  20. Othman M, Latif MT, Yee CZ, Norshariffudin LK, Azhari A, Halim NDA, et al.
    Ecotoxicol Environ Saf, 2020 May;194:110432.
    PMID: 32169727 DOI: 10.1016/j.ecoenv.2020.110432
    It is important to have good indoor air quality, especially in indoor office environments, in order to enhance productivity and maintain good work performance. This study investigated the effects of indoor office activities on particulate matter of less than 2.5 μm (PM2.5) and ozone (O3) concentrations, assessing their potential impact on human health. Measurements of indoor PM2.5 and O3 concentrations were taken every 24 h during the working days in five office environments located in a semi-urban area. As a comparison, the outdoor concentrations were derived from the nearest Continuous Air Quality Monitoring Station. The results showed that the average 24 h of indoor and outdoor PM2.5 concentrations were 3.24 ± 0.82 μg m-3 and 17.4 ± 3.58 μg m-3 respectively, while for O3 they were 4.75 ± 4.52 ppb and 21.5 ± 5.22 ppb respectively. During working hours, the range of PM2.5 concentrations were 1.00 μg m-3 to 6.10 μg m-3 while for O3 they were 0.10 ppb to 38.0 ppb. The indoor to outdoor ratio (I/O) for PM2.5 and O3 was <1, thus indicating a low infiltration of outdoor sources. The value of the hazard quotient (HQ) for all sampling buildings was <1 for both chronic and acute exposures, indicating that the non-carcinogenic risks are negligible. Higher total cancer risk (CR) value for outdoors (2.67E-03) was observed compared to indoors (4.95E-04) under chronic exposure while the CR value for acute exposure exceeded 1.0E-04, thus suggesting a carcinogenic PM2.5 risk for both the indoor and outdoor environments. The results of this study suggest that office activities, such as printing and photocopying, affect indoor O3 concentrations while PM2.5 concentrations are impacted by indoor-related contributions.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links