Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. Rohani A, Zamree I, Lim LH, Rahini H, David L, Kamilan D
    PMID: 17333767
    The bioefficacy of indoor residual-sprayed deltamethrin wettable granule (WG) formulation at 25 mg a.i./m2 and 20 mg a.i./m2 for the control of malaria was compared with the current dose of 20 mg/m2 deltamethrin wettable powder (WP) in aboriginal settlements in Kuala Lipis, Pahang, Malaysia. The malaria vector has been previously identified as Anopheles maculatus. The assessment period for the 20 mg/m2 dosage was six months, but for the 25 mg/m2 dosage, the period was 9 months. Collections of mosquitoes using the bare-leg techniques were carried out indoors and outdoors from 7:00 PM to 7:00 AM. All mosquitoes were dissected for sporozoites and parity. Larval collections were carried out at various locations to assess the extent and distribution of breeding of vectors. A high incidence of human feeds was detected during May 2005 and a low incidence during January 2005 for all the study areas. Our study showed that deltamethrin WG at 25 mg/m2 suppressed An. maculatus biting activity. More An. maculatus were caught in outdoor landing catches than indoor landing catches for all the study areas. The results indicate that 25 mg/m2 WG is good for controlling malaria for up to 9 months. Where residual spraying is envisaged, the usual two spraying cycles per year with 20 mg/m2 deltamethrin may be replaced with 25 mg/m2 deltamethrin WG every 9 months.
    Matched MeSH terms: Air Pollution, Indoor
  2. Lim FL, Hashim Z, Than LT, Md Said S, Hisham Hashim J, Norbäck D
    PLoS One, 2015;10(4):e0124905.
    PMID: 25923543 DOI: 10.1371/journal.pone.0124905
    A prevalence study was conducted among office workers in Malaysia (N= 695). The aim of this study was to examine associations between asthma, airway symptoms, rhinitis and house dust mites (HDM) and cat allergy and HDM levels in office dust. Medical data was collected by a questionnaire. Skin prick tests were performed for HDM allergens (Dermatophagoides pteronyssinus, Dermatophagoides farinae) and cat allergen Felis domesticus. Indoor temperature and relative air humidity (RH) were measured in the offices and vacuumed dust samples were analyzed for HDM allergens. The prevalence of D. pteronyssinus, D. farinae and cat allergy were 50.3%, 49.0% and 25.5% respectively. Totally 9.6% had doctor-diagnosed asthma, 15.5% had current wheeze and 53.0% had current rhinitis. The Der p 1 (from D. pteronyssinus) and Der f 1 (from D. farinae) allergens levels in dust were 556 ng/g and 658 ng/g respectively. Statistical analysis was conducted by multilevel logistic regression, adjusting for age, gender, current smoking, HDM or cat allergy, home dampness and recent indoor painting at home. Office workers with HDM allergy had more wheeze (p= 0.035), any airway symptoms (p= 0.032), doctor-diagnosed asthma (p= 0.005), current asthma (p= 0.007), current rhinitis (p= 0.021) and rhinoconjuctivitis (p< 0.001). Cat allergy was associated with wheeze (p= 0.021), wheeze when not having a cold (p= 0.033), any airway symptoms (p= 0.034), doctor-diagnosed asthma (p= 0.010), current asthma (p= 0.020) and nasal allergy medication (p= 0.042). Der f 1 level in dust was associated with daytime breathlessness (p= 0.033) especially among those with HDM allergy. Der f 1 levels were correlated with indoor temperature (p< 0.001) and inversely correlated with RH (p< 0.001). In conclusion, HDM and cat allergies were common and independently associated with asthma, airway symptoms and rhinitis. Der f 1 allergen can be a risk factor for daytime breathlessness.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  3. Mariana A, Ho TM, Sofian-Azirun M, Wong AL
    PMID: 11414418
    Allergy to house dust mites (HDM) is an important cause of asthma and rhinitis in Malaysia. This study was carried out to evaluate the dust mite fauna in the Klang Valley. Dust samples were collected from 20 houses from March 1994 to February 1995. Thirty-three dust samples from mattresses were examined monthly for the occurrence of HDM. A total of 22 species in 9 families of HDM was identified. The most common and densely populated species was Blomia tropicalis with an average density of 8,934 mites/g of dust. Dermatophagoides pteronyssinus was the next in abundance, followed by Malayoglyphus intermedius. All houses surveyed were found to be infested with HDM and every house had at least 6 species of HDM. B. tropicalis and D. pteronyssinus were found in all mattresses. HDM in the Klang Valley were found to be highly prevalent and present in high densities. In this study, counts of D. pteronyssinus was found to exceed the proposed exposure threshold of 500 mites/g dust, for triggering acute asthma. Although counts of B. tropicalis exceeded D. pteronyssinus, no conclusion could be made because there is currently no exposure threshold for triggering acute asthma, for this species. Monthly distribution of B. tropicalis and D. pteronyssinus showed 2 peaks and 4 peaks, respectively. The major peak for D. pteronysinus was in January 1995 whereas for B. tropicalis, the major peak was more variable and occurred between November 1994 to January 1995. Both the species showed minor peak in April 1994.
    Matched MeSH terms: Air Pollution, Indoor
  4. Veysi R, Heibati B, Jahangiri M, Kumar P, Latif MT, Karimi A
    Environ Monit Assess, 2019 Jan 05;191(2):50.
    PMID: 30612195 DOI: 10.1007/s10661-018-7182-5
    The ambient air of hospitals contains a wide range of biological and chemical pollutants. Exposure to these indoor pollutants can be hazardous to the health of hospital staff. This study aims to evaluate the factors affecting indoor air quality and their effect on the respiratory health of staff members in a busy Iranian hospital. We surveyed 226 hospital staff as a case group and 222 office staff as a control group. All the subjects were asked to fill in a standard respiratory questionnaire. Pulmonary function parameters were simultaneously measured via a spirometry test. Environmental measurements of bio-aerosols, particulate matter, and volatile organic compounds in the hospital and offices were conducted. T-tests, chi-square tests, and multivariable logistic regressions were used to analyze the data. The concentration of selected air pollutants measured in the hospital wards was more than those in the administrative wards. Parameters of pulmonary functions were not statistically significant (p > 0.05) between the two groups. However, respiratory symptoms such as coughs, phlegm, phlegmatic coughs, and wheezing were more prevalent among the hospital staff. Laboratory staff members were more at risk of respiratory symptoms compared to other occupational groups in the hospital. The prevalence of sputum among nurses was significant, and the odds ratio for the presence of phlegm among nurses was 4.61 times greater than office staff (p = 0.002). The accumulation of indoor pollutants in the hospital environment revealed the failure of hospital ventilation systems. Hence, the design and implementation of an improved ventilation system in the studied hospital is recommended.
    Matched MeSH terms: Air Pollution, Indoor
  5. Nor NSM, Yip CW, Ibrahim N, Jaafar MH, Rashid ZZ, Mustafa N, et al.
    Sci Rep, 2021 01 28;11(1):2508.
    PMID: 33510270 DOI: 10.1038/s41598-021-81935-9
    The rapid spread of the SARS-CoV-2 in the COVID-19 pandemic had raised questions on the route of transmission of this disease. Initial understanding was that transmission originated from respiratory droplets from an infected host to a susceptible host. However, indirect contact transmission of viable virus by fomites and through aerosols has also been suggested. Herein, we report the involvement of fine indoor air particulates with a diameter of ≤ 2.5 µm (PM2.5) as the virus's transport agent. PM2.5 was collected over four weeks during 48-h measurement intervals in four separate hospital wards containing different infected clusters in a teaching hospital in Kuala Lumpur, Malaysia. Our results indicated the highest SARS-CoV-2 RNA on PM2.5 in the ward with number of occupants. We suggest a link between the virus-laden PM2.5 and the ward's design. Patients' symptoms and numbers influence the number of airborne SARS-CoV-2 RNA with PM2.5 in an enclosed environment.
    Matched MeSH terms: Air Pollution, Indoor
  6. Nor Mohd Razif Noraini, Leman, A.M., Ahmad Sayuti ZainalAbidin, Ruslina Mohd. Jazar, LailaShuhada Mat Zin, Rasdan Ismail, et al.
    MyJurnal
    This study has been conducted in a new constructed building of NIOSH Malaysia located at Bandar Baru Bangi, Selangor. The goal of the case study is focusing on the level of Indoor Air Contaminants (IAC) including chemical contaminants within three consequent stages which are before furniture install, after furniture install and during one month occupancy. This study was divided the sampling area into two main facilities which are training and office setting. The contaminants has been measured consist of sixparameters such as Carbon Dioxide (CO2), Carbon Monoxide (CO), Total Volatile Organic Compounds (TVOC), Formaldehyde, Respirable Particulates (PM10) and Ozone. The result of Carbon Monoxide (CO), Total Volatile Organic Compound (TVOC), Respirable Particulates (PM10) and Ozone show an increasing trend across the three sampling stages. The Formaldehyde show an increasing trend in the first and second stages but were reduced significantly the last stage of sampling. These finding indicates that furniture and fittings installed might be a potential sources of indoor air contaminants. The management should be aware to their indoor air status to protect the occupant from the risk of unwanted exposure especially during the early stage of building occupancy.
    Matched MeSH terms: Air Pollution, Indoor
  7. Choo, C.M., Quah, B.S., Rostenberghe, H.V., Choo, K.E.
    MyJurnal
    A case control study was conducted to identify the risk factors for acute lower respiratory tract infections (ALRI) in hospitalised children in Kelantan. One hun-dred and twenty children aged one month to five years hospitalised for ALRI were matched by age with 120 children as controls. Data on demography and expo-sure to putative risk factors were collected by interview-ing parents or caretakers. Anthropometric measure-ments were also carried out to assess the nutritional sta-tus of the children. For each risk factor studied, the odds ratios for exposure and disease were calculated by using univariate analysis followed by multiple logistic regression analysis to determine those factors which remained significant.
    The presence of sibling(s) who coughed at home (OR 12.1, 95% CI 5.2-28.1), crowding in bedroom (OR 4.4, 95% CI 2.1-9.0), weight-for-age < 3rd percentile (OR 9.0, 95% CI 3.1-25.8), lack of breast feeding (OR 9.4, 95% CI 2.3-38.4) and incomplete immunisation (OR 4.5, 95% CI 1.7-12.1) were significant indepen-dent risk factors for ALRI. Other factors like poverty, maternal education level, male sex, low birth weight, history of atopy, family history of asthma and indoor air pollution were not associated with an increased risk of ALRI.
    This study showed that poor nutritional status, inap-propriate child care practices and poor living conditions, particularly those related to crowding, predispose to ALRI in Kelantanese children necessitating hospital admission. A change in these factors may reduce the morbidity and mortality of childhood ALRI in Kelantan.
    Matched MeSH terms: Air Pollution, Indoor
  8. Radaideh JA, Alazba AA, Amin MN, Shatnawi ZN, Amin MT
    Sains Malaysiana, 2016;45:59-69.
    Indoor air quality assessment in residential areas of Al-Hofuf city/Eastern region of Saudi Arabia is investigated through a multi-week multiple sites sampling survey. Critical air pollution indicators, including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2) and total volatile organic compounds (TVOC) as well as temperatures were measured and analyzed during the study period from January to May 2014. Three site-types - roadside, urban and rural - were selected and within each site type, six locations were selected to study the varying indoor/outdoor air quality. The results indicated that NO2 and CO concentrations increased at the starting hours of the day. SO2 concentrations were relatively low and constant. In addition, a strong association between outdoor and indoor air quality was found. Measurements showed that indoor/outdoor ratio for TVOC ranged from 0.8 to 0.99. For CO2, NO2 and SO2, this was 0.92-1.15, 0.5-0.7 and 0.52-0.9, respectively. Finally, the effects of activated carbon (AC) were investigated to assess the extent of the improvement in the indoor air quality. The analysis of data obtained indicated that using locally prepared AC from date stones was an effective way to reduce the indoor air pollution with an overall efficiency of 85.5, while the use of industrial granular AC reduced the air pollutants with an efficiency of less than 0.6. In addition, AC was exposed to an exhaust gas flow to evaluate its elimination potential for high concentrated pollutants. The obtained results demonstrated that AC was also functioning as an efficient absorbent with an overall removal efficiency of 77.8%, even when it was exposed to high concentrations.
    Matched MeSH terms: Air Pollution, Indoor
  9. Cai GH, Hashim JH, Hashim Z, Ali F, Bloom E, Larsson L, et al.
    Pediatr Allergy Immunol, 2011 May;22(3):290-7.
    PMID: 21457336 DOI: 10.1111/j.1399-3038.2010.01127.x
    While there is a large variation of prevalence of asthma symptoms worldwide, what we do know is that it is on the rise in developing countries. However, there are few studies on allergens, moulds and mycotoxin exposure in schools in tropical countries. The aims were to measure selected fungal DNA, furry pet allergens and mycotoxins in dust samples from schools in Malaysia and to study associations with pupils' respiratory health effects. Eight secondary schools and 32 classrooms in Johor Bahru, Malaysia were randomly selected. A questionnaire with standardized questions was used for health assessment in 15 randomly selected pupils from each class. The school buildings were inspected and both indoor and outdoor climate were measured. Dust samples were collected by cotton swabs and Petri dishes for fungal DNA, mycotoxins and allergens analysis. The participation rate was 96% (462/480 invited pupils), with a mean age of 14 yr (range 14-16). The pupils mostly reported daytime breathlessness (41%), parental asthma or allergy (22%), pollen or pet allergy (21%) and doctor-diagnosed asthma (13%) but rarely reported night-time breathlessness (7%), asthma in the last 12 months (3%), medication for asthma (4%) or smoking (5%). The inspection showed that no school had any mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures. The mean building age was 16 yr (range 3-40) and the mean indoor and outdoor CO(2) levels were 492 ppm and 408 ppm, respectively. The mean values of indoor and outdoor temperature and relative humidity were the same, 29°C and 70% respectively. In cotton swab dust samples, the Geometric Mean (GM) value for total fungal DNA and Aspergillus/Penicillium (Asp/Pen) DNA in swab samples (Cell Equivalents (CE)/m(2)) was 5.7*10(8) and 0.5*10(8), respectively. The arithmetic mean (CE/m(2)) for Aspergillus versicolor DNA was 8780, Stachybotrys chartarum DNA was 26 and Streptomyces DNA was 893. The arithmetic means (pg/m(2)) for the mycotoxins sterigmatocystin and verrucarol were 2547 and 17, respectively. In Petri dish dust samples, the GM value for total fungal DNA and Asp/Pen DNA (CE/m(2) per day) was 9.2*10(6) and 1.6*10(6), respectively. The arithmetic mean (CE/m(2) per day) for A. versicolor DNA was 1478, S. chartarum DNA was 105 and Streptomyces DNA was 1271, respectively. The GM value for cat (Fel d1) allergen was 5.9 ng/m(2) per day. There were positive associations between A. versicolor DNA, wheeze and daytime breathlessness and between Streptomyces DNA and doctor-diagnosed asthma. However, the associations were inverse between S. chartarum DNA and daytime breathlessness and between verrucarol and daytime breathlessness. In conclusion, fungal DNA and cat allergen contamination were common in schools from Malaysia and there was a high prevalence of respiratory symptoms among pupils. Moreover, there were associations between levels of some fungal DNA and reported respiratory health in the pupils.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  10. Abdul Rahman HI, Shah SA, Alias H, Ibrahim HM
    Asian Pac J Cancer Prev, 2008 Oct-Dec;9(4):649-52.
    PMID: 19256754
    BACKGROUND: In Malaysia, acute leukemia is the most common cancer among children below the age of 15. A case-control study was here conducted for cases from the Klang Valley, Malaysia, who received treatment at the National University of Malaysia Hospital (HUKM) and Kuala Lumpur General Hospital (GHKL). The main objective was to determine any association with environmental factors.

    METHODS: Case subjects were children aged below 15 years and diagnosed with acute leukemia in HUKM and GHKL between January 1, 2001 and May 30, 2007. Control subjects were children aged below 15 years who were diagnosed with any non-cancerous acute illnesses in these hospitals. A total of 128 case subjects and 128 control subjects were enrolled in this study. The information was collected using a structured questionnaire and a global positioning system (GPS) device. All factors were analyzed using unmatched logistic regression.

    RESULTS: The analysis showed that the occurrence of acute leukemia among children was strongly determined by the following factors: family income (odds ratio (OR) 0.19, 95% confidence interval (CI): 0.09-0.42), father with higher social contact (OR 7.61, 95% CI: 3.78-15.4), number of elder siblings (OR 0.36, 95% CI: 0.18-0.77), father who smokes (OR 2.78, 95% CI: 1.49-5.16), and the distance of the house from a power line (OR 2.30, 95% CI: 1.18-4.49).

    CONCLUSIONS: Some socioeconomic, demographic, and environmental factors are strong predictors of the occurrence of acute leukemia among children in Klang Valley, Malaysia. In terms of environmental factors, it is recommended that future housing areas should be developed at least 200 m away from power lines.
    Matched MeSH terms: Air Pollution, Indoor/statistics & numerical data*
  11. Norbäck D, Hashim JH, Hashim Z, Ali F
    Sci Total Environ, 2017 Aug 15;592:153-160.
    PMID: 28319702 DOI: 10.1016/j.scitotenv.2017.02.215
    This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m3 and 2.0μg/m3, respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m3, respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m3 (median<1μg/m3). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m3, respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m3.
    Matched MeSH terms: Air Pollution, Indoor/adverse effects*
  12. Tan SY, Praveena SM, Abidin EZ, Cheema MS
    Environ Sci Pollut Res Int, 2018 Dec;25(34):34623-34635.
    PMID: 30315534 DOI: 10.1007/s11356-018-3396-x
    This study aimed to determine bioavailable heavy metal concentrations (As, Cd, Co, Cu, Cr, Ni, Pb, Zn) and their potential sources in classroom dust collected from children's hand palms in Rawang (Malaysia). This study also aimed to determine the association between bioavailable heavy metal concentration in classroom dust and children's respiratory symptoms. Health risk assessment (HRA) was applied to evaluate health risks (non-carcinogenic and carcinogenic) due to heavy metals in classroom dust. The mean of bioavailable heavy metal concentrations in classroom dust found on children's hand palms was shown in the following order: Zn (1.25E + 01 μg/g) > Cu (9.59E-01 μg/g) > Ni (5.34E-01 μg/g) > Cr (4.72E-02 μg/g) > Co (2.34E-02 μg/g) > As (1.77E-02 μg/g) > Cd (9.60E-03 μg/g) > Pb (5.00E-03 μg/g). Hierarchical cluster analysis has clustered 17 sampling locations into three clusters, whereby cluster 1 (S3, S4, S6, S15) located in residential areas and near to roads exposed to vehicle emissions, cluster 2 (S10, S12, S9, S7) located near Rawang town and cluster 3 (S13, S16, S1, S2, S8, S14, S11, S17, S5) located near industrial, residential and plantation areas. Emissions from vehicles, plantations and industrial activities were found as the main sources of heavy metals in classroom dust in Rawang. There is no association found between bioavailable heavy metal concentrations and respiratory symptoms, except for Cu (OR = 0.03). Health risks (non-carcinogenic and carcinogenic risks) indicated that there are no potential non-carcinogenic and carcinogenic risks of heavy metals in classroom dust toward children health.
    Matched MeSH terms: Air Pollution, Indoor/analysis*
  13. Nazariah SS, Juliana J, Abdah MA
    Glob J Health Sci, 2013 Jul;5(4):93-105.
    PMID: 23777726 DOI: 10.5539/gjhs.v5n4p93
    In the last few years, air within homes have been indicates by various and emerging body as more serious polluted than those outdoor. Prevalence of respiratory inflammation among school children aged 8 and 10 years old attending national primary schools in urban and rural area were conducted in Klang Valley. Two population studies drawn from the questionnaires were used to investigate the association between indoor particulate matter (PM2.5 & PM10) in a home environment and respiratory implication through the understanding of biological responses. Approximately 430 healthy school children of Standard 2 and Standard 5 were selected. Indication of respiratory symptoms using adaptation questionnaire from American Thoracic Society (1978). Sputum sample collection taken for biological analysis. IL-6 then was analyse by using ELISA techniques. Indoor PM2.5 and PM10 were measured using Dust Trak Aerosol Monitor. The mean concentration of PM2.5 (45.38 µg/m3) and PM10 (80.07 µg/m3) in urban home environment is significantly higher compared to those in rural residential area (p=0.001). Similar trend also shows by the prevalence of respiratory symptom. Association were found with PM2.5 and PM10 with the level of IL-6 among school children. A greater exposure to PM2.5 and PM10 are associated with higher expression of IL-6 level suggesting that the concentration of indoor particulate in urban density area significantly influence the health of children.
    Matched MeSH terms: Air Pollution, Indoor/adverse effects*; Air Pollution, Indoor/statistics & numerical data
  14. Norbäck D, Markowicz P, Cai GH, Hashim Z, Ali F, Zheng YW, et al.
    PLoS One, 2014;9(2):e88303.
    PMID: 24523884 DOI: 10.1371/journal.pone.0088303
    There are few studies on associations between respiratory health and allergens, fungal and bacterial compounds in schools in tropical countries. The aim was to study associations between respiratory symptoms in pupils and ethnicity, chemical microbial markers, allergens and fungal DNA in settled dust in schools in Malaysia. Totally 462 pupils (96%) from 8 randomly selected secondary schools in Johor Bahru, Malaysia, participated. Dust was vacuumed from 32 classrooms and analysed for levels of different types of endotoxin as 3-hydroxy fatty acids (3-OH), muramic acid, ergosterol, allergens and five fungal DNA sequences. Multiple logistic regression was applied. Totally 13.1% pupils reported doctor's diagnosed asthma, 10.3% wheeze and 21.1% pollen or pet allergy. Indian and Chinese children had less atopy and asthma than Malay. Carbon dioxide levels were low (380-690 ppm). No cat (Fel d1), dog (Can f 1) or horse allergens (Ecu cx) were detected. The levels of Bloomia tropicalis (Blo t), house dust mite allergens (Der p 1, Der f 1, Der m 1) and cockroach allergens (Per a 1 and Bla g 1) were low. There were positive associations between levels of Aspergillus versicolor DNA and daytime breathlessness, between C14 3-OH and respiratory infections and between ergosterol and doctors diagnosed asthma. There were negative (protective) associations between levels of C10 3-OH and wheeze, between C16 3-OH and day time and night time breathlessness, between cockroach allergens and doctors diagnosed asthma. Moreover there were negative associations between amount of fine dust, total endotoxin (LPS) and respiratory infections. In conclusion, endotoxin at school seems to be mainly protective for respiratory illness but different types of endotoxin could have different effects. Fungal contamination measured as ergosterol and Aspergillus versicolor DNA can be risk factors for respiratory illness. The ethnical differences for atopy and asthma deserve further attention.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  15. Rawi NA, Jalaludin J, Chua PC
    Biomed Res Int, 2015;2015:248178.
    PMID: 25984527 DOI: 10.1155/2015/248178
    Indoor air quality (IAQ) has been the object of several studies due to its adverse health effects on children. Methods. A cross-sectional comparative study was carried out among Malay children in Balakong (2 studied preschools) and Bangi (2 comparative preschools), Selangor, with the aims of determining IAQ and its association with respiratory health. 61 and 50 children aged 5-6 years were selected as studied and comparative groups. A questionnaire was used to obtain an exposure history and respiratory symptoms. Lung function test was carried out. IAQ parameters obtained include indoor concentration of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), temperature, air velocity (AV), and relative humidity. Results. There was a significant difference between IAQ in studied and comparative preschools for all parameters measured (P < 0.001) except for CO2 and AV. Studied preschools had higher PM and CO concentration. FVC, FEV1, FVC% and FEV1% predicted values were significantly lower among studied group. Exposures to PM, VOCs, and CO were associated with wheezing. Conclusion. The finding concluded that exposures to poor IAQ might increase the risk of getting lung function abnormality and respiratory problems among study respondents.
    Matched MeSH terms: Air Pollution, Indoor/adverse effects*
  16. Azizi BHO, Zulkifli HI, Kasim S
    J Asthma, 1995;32(6):413-8.
    PMID: 7592244 DOI: 10.3109/02770909409077752
    We performed a hospital-based study to examine a hypothesis that indoor air pollution was associated with acute asthma in young children living in Kuala Lumpur City. A total of 158 children aged 1 month to 5 years hospitalized for the first time for asthma were recruited as cases. Controls were 201 children of the same age group who were hospitalized for causes other than a respiratory illness. Information was obtained from mothers using a standardized questionnaire. Univariate analysis identified two indoor pollution variables as significant factors. Sharing a bedroom with an adult smoker and exposure to mosquito coil smoke at least three nights in a week were both associated with increased risk for asthma. Logistic regression analysis confirmed that sharing a bedroom with an adult smoker (OR = 1.91, 95% CI 1.13, 3.21) and exposure to mosquito coil smoke (OR = 1.73, 95% CI 1.02, 2.93) were independent risk factors. Other factors independently associated with acute asthma were previous history of allergy, history of asthma in first-degree relatives, low birth weight, and the presence of a coughing sibling. There was no association between asthma and exposure to kerosene stove, wood stove, aerosol mosquito repellent, type of housing, or crowding. We conclude that indoor air pollution is an avoidable factor in the increasing morbidity due to asthma in children in a tropical environment.
    Matched MeSH terms: Air Pollution, Indoor/adverse effects*
  17. Lim FL, Hashim Z, Than LTL, Md Said S, Hashim JH, Norbäck D
    Int J Tuberc Lung Dis, 2019 11 01;23(11):1171-1177.
    PMID: 31718753 DOI: 10.5588/ijtld.18.0668
    OBJECTIVE: To examine the associations between endotoxin and (1,3)-β-glucan concentrations in office dust and respiratory symptoms and airway inflammation among 695 office workers in Malaysia.METHODS: Health data were collected using a questionnaire, sensitisation testing and measurement of fractional exhaled nitric oxide (FeNO). Indoor temperature, relative air humidity (RH) and carbon dioxide (CO₂) were measured in the offices and settled dust was vacuumed and analysed for endotoxin and (1,3)-β-glucan concentrations. Associations were analysed by two level multiple logistic regression.RESULTS: Overall, 9.6% of the workers had doctor-diagnosed asthma, 15.5% had wheeze, 18.4% had daytime attacks of breathlessness and 25.8% had elevated FeNO (≥25 ppb). The median levels in office dust were 11.3 EU/mg endotoxin and 62.9 ng/g (1,3)-β-glucan. After adjusting for personal and home environment factors, endotoxin concentration in dust was associated with wheeze (P = 0.02) and rhinoconjunctivitis (P = 0.007). The amount of surface dust (P = 0.04) and (1,3)-β-glucan concentration dust (P = 0.03) were associated with elevated FeNO.CONCLUSION: Endotoxin in office dust could be a risk factor for wheeze and rhinoconjunctivitis among office workers in mechanically ventilated offices in a tropical country. The amount of dust and (1,3)-β-glucan (a marker of indoor mould exposure) were associated with Th2 driven airway inflammation.
    Matched MeSH terms: Air Pollution, Indoor/analysis
  18. Norbäck D, Hashim JH, Hashim Z, Sooria V, Ismail SA, Wieslander G
    Int J Hyg Environ Health, 2017 06;220(4):697-703.
    PMID: 28254266 DOI: 10.1016/j.ijheh.2017.01.016
    BACKGROUND: There are few studies on ocular effects of indoor mould exposure in schools, especially in the tropics OBJECTIVE: To study associations between eye symptoms and tear film break up time (BUT) in students and demographic data and fungal DNA in schools.

    METHODS: A school environment study was performed among randomly selected students in eight randomly selected secondary schools in Penang, Malaysia. Information on eye symptoms and demographic data was collected by a standardised questionnaire. BUT was measured by two methods, self-reported BUT (SBUT) and by the non-invasive Tearscope (NIBUT). Dust was collected by vacuuming in 32 classrooms and analysed for five fungal DNA sequences. Geometric mean (GM) for total fungal DNA was 7.31*104 target copies per gram dust and for Aspergillus/Penicillium DNA 3.34*104 target copies per gram dust. Linear mixed models and 3-level multiple logistic regression were applied adjusting for demographic factors.

    RESULTS: A total of 368 students (58%) participated and 17.4% reported weekly eye symptoms the last 3 months. The median SBUT and TBUT were 15 and 12s, respectively. Students wearing glasses (OR 2.41, p=0.01) and with a history of atopy (OR=2.67; p=0.008) had more eye symptoms. Girls had less eye symptoms than boys (OR=0.34; p=0.006) Indoor carbon dioxide in the classrooms was low (range 380-720ppm), temperature was 25-30°C and relative air humidity 70-88%. Total fungal DNA in vacuumed dust was associated with shorter SBUT (4s shorter per 105 target copies per gram dust; p=0.04) and NIBUT (4s shorter per 105 target copies per gram dust; p<0.001). Aspergillus/Penicillium DNA was associated with shorter NIBUT (5s shorter per 105 target copies per gram dust; p=0.01).

    CONCLUSION: Fungal contamination in schools in a tropical country can be a risk factor for impaired tear film stability among students.

    Matched MeSH terms: Air Pollution, Indoor/analysis*
  19. Abdullah Mohd Noh, Nordin Ayoub, Siti Zurina Mat Noor, Norhafizah Zahari, Mardhiyati Mohd Yunus
    MyJurnal
    Radon exists naturally in the air. It can accumulate inside the buildings which may affect the indoor air quality. Radon is a radioactive gas that produces alpha particles during decay time. The alpha particles might cause harm to the human lungs and stomach. Inhalation of radon is one of the causes of lung cancer disease. Samples of inhaled radon in different rooms at the workplace were taken hourly through a passive diffusion chamber. The detection method was done using Alpha Spectrometry. The short term measurement was applied in the study to monitor the average weekly radon reading in different rooms in the Medical Imaging Laboratory of the University of Selangor (UNISEL). All tested rooms showed the existence of radon gas with different concentrations. Some of them showed the maximum reading of radon concentration which was higher than the radon action level of 148Bq/m3 or 4pCi/l. Their weekly average of radon concentration is contributing almost 50% of the accumulated radon concentration in the laboratory. It is highly recommended that monitoring the concentration of radon in indoor air is performed to ensure it is at a safe and healthy level.
    Matched MeSH terms: Air Pollution, Indoor
  20. Jeevananthan C, Muhamad NA, Jaafar MH, Hod R, Ab Ghani RM, Md Isa Z, et al.
    BMJ Open, 2020 11 04;10(11):e039623.
    PMID: 33148753 DOI: 10.1136/bmjopen-2020-039623
    INTRODUCTION: The current global pandemic of the virus that emerged from Hubei province in China has caused coronavirus disease in 2019 (COVID-19), which has affected a total number of 900 036 people globally, involving 206 countries and resulted in a cumulative of 45 693 deaths worldwide as of 3 April 2020. The mode of transmission is identified through airdrops from patients' body fluids such as during sneezing, coughing and talking. However, the relative importance of environmental effects in the transmission of the virus has not been vastly studied. In addition, the role of temperature and humidity in air-borne transmission of infection is presently still unclear. This study aims to identify the effect of temperature, humidity and air quality in the transmission of SARS-CoV-2.

    METHODS AND ANALYSIS: We will systematically conduct a comprehensive literature search using various databases including PubMed, EMBASE, Scopus, CENTRAL and Google Scholar to identify potential studies. The search will be performed for any eligible articles from the earliest published articles up to latest available studies in 2020. We will include all the observational studies such as cohort case-control and cross-sectional studies that explains or measures the effects of temperature and/or humidity and/or air quality and/or anthropic activities that is associated with SARS-CoV-2. Study selection and reporting will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Meta-Analysis of Observational Studies in Epidemiology guideline. All data will be extracted using a standardised data extraction form and quality of the studies will be assessed using the Newcastle-Ottawa Scale guideline. Descriptive and meta-analysis will be performed using a random effect model in Review Manager File.

    ETHICS AND DISSEMINATION: No primary data will be collected, and thus no formal ethical approval is required. The results will be disseminated through a peer-reviewed publication and conference presentation.

    PROSPERO REGISTRATION NUMBER: CRD42020176756.

    Matched MeSH terms: Air Pollution, Indoor
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links