Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. MUHAMMAD SYUKRI HANAFI BASRI, MOHAMMAD AIZAT BASIR, AHMAD FAIZAL AHMAD FUAD
    MyJurnal
    Life jacket is one of the safety appliances that can be found on the ship that provide buoyancy and prevention against drowning. Before the ship can sail, every element of safety of the vessel should be confirmed. Despite the establishment of standards for life jacket, both local and international, there have been cases of drowning associated with the usage of life jackets by the passengers of passenger boat/vessels for open-deck situation. Moreover, deficiency of information on safety instruction is reason the passengers are lack of personal safety information during on board. Thus, the evaluation on safety standard of life jackets and passenger vessel are vital for assessing the provision of the life jacket on board passenger vessel with respect to compatibility between life jacket and passenger vessel. In this paper, A Vessel Life Jacket Compatibility Mobile Apps (VELIT) was developed using software development methodology called Rational Unified Process (RUP) to automate the safety assessment process based on model called LCI (Life Jacket Compatibility Index). VELIT apps synchronized the safety assessment aspect and which allow user to compute the element in the model and produce the result of the safety assessment in real time. The VELIT apps are expected to be used in maritime area especially for ship safety assessment process.
    Matched MeSH terms: Aircraft
  2. NURFARAHIN IDRUS, NORIZAN MOHAMED
    MyJurnal
    Airline industry is one of the largest industries in the world of transport because it is the most important transport in the global transport system. The airline industry has played a very important role in the economic development in Malaysia. Due to the increase in its operating business, the demand for air travel increases day by day. Hence, this study focused on the number of passengers using air transport in Malaysia. The monthly data from January 2005 to December 2015 were obtained from Malaysia Airport Holdings Berhad (MAHB) in Sepang, Selangor. The data is divided into 2 parts, which are in sample data from January 2005 to December 2014 and out sample data from January 2015 to December 2015. The study was conducted to predict airline passengers in Malaysia using the Box-Jenkins model and Artificial Neural Network (ANN) model. Both models were studied to choose the best model. Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) were used to measure the performance of both models. SARIMA was selected as the best model for Box-Jenkins with MAPE and MSE were 7.3458388 and 2.67011 respectively while Multilayer Feed Forward Neural Network (MFFNN) with seven input variables, with MAPE and MSE, 7.251 and 0.0006 respectively were selected as the best model for Multilayer Feed Forward Neural Network (FFNN). In conclusion, these studies have proven that the Multilayer Feed Forward Neural Network (FFNN) model is the best model for considering airplanes in Malaysia compared to the SARIMA model.
    Matched MeSH terms: Aircraft
  3. Fornace KM, Drakeley CJ, William T, Espino F, Cox J
    Trends Parasitol, 2014 Nov;30(11):514-9.
    PMID: 25443854 DOI: 10.1016/j.pt.2014.09.001
    The potential applications of unmanned aerial vehicles (UAVs), or drones, have generated intense interest across many fields. UAVs offer the potential to collect detailed spatial information in real time at relatively low cost and are being used increasingly in conservation and ecological research. Within infectious disease epidemiology and public health research, UAVs can provide spatially and temporally accurate data critical to understanding the linkages between disease transmission and environmental factors. Using UAVs avoids many of the limitations associated with satellite data (e.g., long repeat times, cloud contamination, low spatial resolution). However, the practicalities of using UAVs for field research limit their use to specific applications and settings. UAVs fill a niche but do not replace existing remote-sensing methods.
    Matched MeSH terms: Aircraft/standards*
  4. Bhuvan KC, Shrestha R, Leggat PA, Ravi Shankar P, Shrestha S
    Travel Med Infect Dis, 2021;43:102103.
    PMID: 34111566 DOI: 10.1016/j.tmaid.2021.102103
    Matched MeSH terms: Aircraft
  5. Kiyu Dawie A
    Med J Malaysia, 1986 Jun;41(2):123-33.
    PMID: 3821607
    From January 1980 to December 1982, there were 222 MEDEVAC patients admitted to Mid Hospital, out of whom 206 had their case notes available for this study. The median age of the 206 patients MEDEVAC was 24.5 years and the male to female ratio was 1.2 : 1. The Kenyah, Iban, Punans, Kelabit, Kayan and Murut ethnic groups contributed most of the cases. There was some seasonal variation in the number of MEDEVAC done, the high months being July and December and the low periods in May/June and October/November. Most of the MEDEVAC were requested by ground staff at the remote rural clinics and also district hospitals. The median duration of stay of the patients was 9.7 days. The top five causes for MEDEVAC were: bronchopneumonia; accidental falls; gastroenteritis; peptic ulcers; and appendicitis. 7.8% of the MEDEVAC died in hospital. The management of cases ranged from conservative management to blood transfusions to surgical interventions. Based on the criteria set, 63.6% of the MEDEVAC were considered justified.
    Matched MeSH terms: Aircraft*
  6. Meier DR, Samper ER
    South. Med. J., 1989 Jul;82(7):885-91.
    PMID: 2665130
    The rapid increase in the use of helicopters for hospital transport during the 1980s is the culmination of several hundred years of military medical innovation. Mass battefield casualties spurred both technologic and medical changes necessary for today's sophisticated helicopter systems in use worldwide, particularly in the United States. The Napoleonic Era and the American Civil War provided the framework for the evolution of today's state-of-the-art emergency medical techniques. The use of airplanes to evacuate the wounded eventually led to using helicopters for rescue missions in World War II. The combat experiences of the United States in Korea, the British in Malaya, and the French in Indochina proved that rotary-wing aircraft were invaluable in reducing battlefield death rates. Any skepticism about the efficacy of helicopter medical evacuation was erased during the Vietnam conflict. As an integral part of the modern battlefield, these specialized aircraft became a necessity. The observations and experience of American servicemen and medical personnel in Vietnam established the foundation for the acceptance of helicopter transport in modern hospital systems.
    Matched MeSH terms: Aircraft/history*
  7. Ng WL, Abdullah N
    Singapore Med J, 2020 Feb;61(2):81-85.
    PMID: 32152640 DOI: 10.11622/smedj.2020016
    INTRODUCTION: Medical emergencies occur at a rate of one in 604‒753 flights. Doctors travelling on commercial flights may encounter an in-flight medical emergency requiring their assistance. There is a paucity of studies on how confident primary care doctors are in managing in-flight medical emergencies. This study aimed to determine the knowledge, confidence and attitude of primary care doctors in managing in-flight medical emergencies.

    METHODS: A cross-sectional study was conducted on all primary care doctors working in government health clinics in Kuala Lumpur, Malaysia, from October 2016 to November 2016. A self-reported questionnaire was used, which included questions on demographic information, knowledge of in-flight medicine, and the attitude and confidence of primary care doctors in managing in-flight medical emergencies.

    RESULTS: 182 doctors completed the questionnaire (92.9% response rate). The mean knowledge score was 8.9 out of a maximum score of 20. Only 11.5% of doctors felt confident managing in-flight medical emergencies. The majority (69.2%) would assist in an in-flight medical emergency, but the readiness to assist was reduced if someone else was already helping or if they were not familiar with the emergency. Total knowledge score was positively associated with confidence in managing in-flight medical emergencies (p = 0.03).

    CONCLUSION: Only one in ten primary care doctors in this study felt confident managing in-flight medical emergencies. A higher total knowledge score of in-flight medical emergencies was positively associated with greater confidence in managing them. Educational programmes to address this gap in knowledge may be useful to improve doctors' confidence in managing in-flight medical emergencies.

    Matched MeSH terms: Aircraft*
  8. Abdalla AN, Ali K, Paw JKS, Rifai D, Faraj MA
    Sensors (Basel), 2018 Jun 30;18(7).
    PMID: 29966367 DOI: 10.3390/s18072108
    Eddy current testing (ECT) is an accurate, widely used and well-understood inspection technique, particularly in the aircraft and nuclear industries. The coating thickness or lift-off will influence the measurement of defect depth on pipes or plates. It will be an uncertain decision condition whether the defects on a workpiece are cracks or scratches. This problem can lead to the occurrence of pipe leakages, besides causing the degradation of a company’s productivity and most importantly risking the safety of workers. In this paper, a novel eddy current testing error compensation technique based on Mamdani-type fuzzy coupled differential and absolute probes was proposed. The general descriptions of the proposed ECT technique include details of the system design, intelligent fuzzy logic design and Simulink block development design. The detailed description of the proposed probe selection, design and instrumentation of the error compensation of eddy current testing (ECECT) along with the absolute probe and differential probe relevant to the present research work are presented. The ECECT simulation and hardware design are proposed, using the fuzzy logic technique for the development of the new methodology. The depths of the defect coefficients of the probe’s lift-off caused by the coating thickness were measured by using a designed setup. In this result, the ECECT gives an optimum correction for the lift-off, in which the reduction of error is only within 0.1% of its all-out value. Finally, the ECECT is used to measure lift-off in a range of approximately 1 mm to 5 mm, and the performance of the proposed method in non-linear cracks is assessed.
    Matched MeSH terms: Aircraft
  9. Lim E, Lan BL, Ooi EH, Low HL
    Sci Rep, 2020 08 12;10(1):13626.
    PMID: 32788610 DOI: 10.1038/s41598-020-70614-w
    This study investigates the effects of aircraft cabin pressure on intracranial pressure (ICP) elevation of a pneumocephalus patient. We propose an experimental setup that simulates the intracranial hydrodynamics of a pneumocephalus patient during flight. It consists of an acrylic box (skull), air-filled balloon [intracranial air (ICA)], water-filled balloon (cerebrospinal fluid and blood) and agarose gel (brain). The cabin was replicated using a custom-made pressure chamber. The setup can measure the rise in ICP during depressurization to levels similar to that inside the cabin at cruising altitude. ΔICP, i.e. the difference between mean cruising ICP and initial ICP, was found to increase with ICA volume and ROC. However, ΔICP was independent of the initial ICP. The largest ΔICP was 5 mmHg; obtained when ICA volume and ROC were 20 ml and 1,600 ft/min, respectively. The postulated ICA expansion and the subsequent increase in ICP in pneumocephalus patients during flight were successfully quantified in a laboratory setting. Based on the quantitative and qualitative analyses of the results, an ICA volume of 20 ml and initial ICP of 15 mmHg were recommended as conservative thresholds that are required for safe air travel among pneumocephalus patients. This study provides laboratory data that may be used by doctors to advise post-neurosurgical patients if they can safely fly.
    Matched MeSH terms: Aircraft*
  10. Corrado R, Lacorata G, Palatella L, Santoleri R, Zambianchi E
    Sci Rep, 2017 04 11;7:46291.
    PMID: 28397797 DOI: 10.1038/srep46291
    The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
    Matched MeSH terms: Aircraft
  11. Kadri U, Crivelli D, Parsons W, Colbourne B, Ryan A
    Sci Rep, 2017 10 24;7(1):13949.
    PMID: 29066744 DOI: 10.1038/s41598-017-14177-3
    Analysis of data, recorded on March 8th 2014 at the Comprehensive Nuclear-Test-Ban Treaty Organisation's hydroacoustic stations off Cape Leeuwin Western Australia, and at Diego Garcia, reveal unique pressure signatures that could be associated with objects impacting at the sea surface, such as falling meteorites, or the missing Malaysian Aeroplane MH370. To examine the recorded signatures, we carried out experiments with spheres impacting at the surface of a water tank, where we observed almost identical pressure signature structures. While the pressure structure is unique to impacting objects, the evolution of the radiated acoustic waves carries information on the source. Employing acoustic-gravity wave theory we present an analytical inverse method to retrieve the impact time and location. The solution was validated using field observations of recent earthquakes, where we were able to calculate the eruption time and location to a satisfactory degree of accuracy. Moreover, numerical validations confirm an error below 0.02% for events at relatively large distances of over 1000 km. The method can be developed to calculate other essential properties such as impact duration and geometry. Besides impacting objects and earthquakes, the method could help in identifying the location of underwater explosions and landslides.
    Matched MeSH terms: Aircraft
  12. Kadri U
    Sci Rep, 2019 Jan 29;9(1):912.
    PMID: 30696934 DOI: 10.1038/s41598-018-37626-z
    Recent analysis of data, recorded on March 8th 2014 at the Comprehensive Nuclear-Test-Ban Treaty Organisation's hydroacoustic stations off Cape Leeuwin Western Australia, and at Diego Garcia, has led to the development of an inverse model for locating impacting objects on the sea surface. The model employs the phase velocity of acoustic-gravity waves that radiate during the impact, and only considers their propagation in the water layer. Here, we address a significant characteristic of acoustic-gravity waves: the ability to penetrate through the sea-bottom, which modifies the propagation speed and thus the arrival time of signals at the hydrophone station. Therefore, we revisit some signals that are associated with the missing Malaysian Aeroplane MH370, and illustrate the role of sea-bottom elasticity on determining impact locations.
    Matched MeSH terms: Aircraft
  13. Clery D
    Science, 2014 May 30;344(6187):964-5.
    PMID: 24876476 DOI: 10.1126/science.344.6187.964
    Matched MeSH terms: Aircraft*
  14. Normile D
    Science, 2014 May 30;344(6187):963-5.
    PMID: 24876475 DOI: 10.1126/science.344.6187.963
    Matched MeSH terms: Aircraft*
  15. Hewitt CN, MacKenzie AR, Di Carlo P, Di Marco CF, Dorsey JR, Evans M, et al.
    Proc Natl Acad Sci U S A, 2009 Nov 3;106(44):18447-51.
    PMID: 19841269 DOI: 10.1073/pnas.0907541106
    More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
    Matched MeSH terms: Aircraft
  16. Navarro MA, Atlas EL, Saiz-Lopez A, Rodriguez-Lloveras X, Kinnison DE, Lamarque JF, et al.
    Proc Natl Acad Sci U S A, 2015 Nov 10;112(45):13789-93.
    PMID: 26504212 DOI: 10.1073/pnas.1511463112
    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.
    Matched MeSH terms: Aircraft
  17. Ahmad Sobri S, Whitehead D, Mohamed M, Mohamed JJ, Mohamad Amini MH, Hermawan A, et al.
    Polymers (Basel), 2020 Oct 23;12(11).
    PMID: 33114223 DOI: 10.3390/polym12112461
    Carbon fibre-reinforced polymer (CFRP) composite materials play an increasingly important role in modern manufacturing, and they are among the more prominent materials used in aircraft manufacturing today. However, CFRP is highly prone to delamination and other damage when drilled due to it being extremely strong with a good strength-to-weight ratio and high thermal conductivity. Because of this problem and CFRP's growing importance in aircraft manufacture, research has focused on the entry and exit holes as indicators of damage occurrence during drilling of screws, rivets, and other types of holes. The inside of the hole was neglected in past research and a proper way to quantify the internal side of a hole by combining the entry and exit hole should be included. To fill this gap and improve the use of CFRP, this paper reports a novel technique to measure the holes by using the extension of the adjusted delamination factor (SFDSR) for drilling thick CFRP composites in order to establish the influence of machining input variables on key output measures, i.e., delamination and other damages. The experimental results showed a significant difference in interpretation of the damage during the analysis. Improvement was made by providing better perspectives of identifying hole defects.
    Matched MeSH terms: Aircraft
  18. Rizal S, Ikramullah, Gopakumar DA, Thalib S, Huzni S, Abdul Khalil HPS
    Polymers (Basel), 2018 Nov 28;10(12).
    PMID: 30961241 DOI: 10.3390/polym10121316
    Natural fiber composites have been widely used for various applications such as automotive components, aircraft components and sports equipment. Among the natural fibers Typha spp have gained considerable attention to replace synthetic fibers due to their unique nature. The untreated and alkali-treated fibers treated in different durations were dried under the sun for 4 h prior to the fabrication of Typha fiber reinforced epoxy composites. The chemical structure and crystallinity index of composites were examined via FT-IR and XRD respectively. The tensile, flexural and impact tests were conducted to investigate the effect of the alkali treated Typha fibers on the epoxy composite. From the microscopy analysis, it was observed that the fracture mechanism of the composite was due to the fiber and matrix debonding, fiber pull out from the matrix, and fiber damage. The tensile, flexural and impact strength of the Typha fiber reinforced epoxy composite were increased after 5% alkaline immersion compared to untreated Typha fiber composite. From these results, it can be concluded that the alkali treatment on Typha fiber could improve the interfacial compatibility between epoxy resin and Typha fiber, which resulted in the better mechanical properties and made the composite more hydrophobic. So far there is no comprehensive report about Typha fiber reinforcing epoxy composite, investigating the effect of the alkali treatment duration on the interfacial compatibility, and their effect on chemical and mechanical of Typha fiber reinforced composite, which plays a vital role to provide the overall mechanical performance to the composite.
    Matched MeSH terms: Aircraft
  19. Ruwaimana M, Satyanarayana B, Otero V, M Muslim A, Syafiq A M, Ibrahim S, et al.
    PLoS One, 2018;13(7):e0200288.
    PMID: 30020959 DOI: 10.1371/journal.pone.0200288
    Satellite data and aerial photos have proved to be useful in efficient conservation and management of mangrove ecosystems. However, there have been only very few attempts to demonstrate the ability of drone images, and none so far to observe vegetation (species-level) mapping. The present study compares the utility of drone images (DJI-Phantom-2 with SJ4000 RGB and IR cameras, spatial resolution: 5cm) and satellite images (Pleiades-1B, spatial resolution: 50cm) for mangrove mapping-specifically in terms of image quality, efficiency and classification accuracy, at the Setiu Wetland in Malaysia. Both object- and pixel-based classification approaches were tested (QGIS v.2.12.3 with Orfeo Toolbox). The object-based classification (using a manual rule-set algorithm) of drone imagery with dominant land-cover features (i.e. water, land, Avicennia alba, Nypa fruticans, Rhizophora apiculata and Casuarina equisetifolia) provided the highest accuracy (overall accuracy (OA): 94.0±0.5% and specific producer accuracy (SPA): 97.0±9.3%) as compared to the Pleiades imagery (OA: 72.2±2.7% and SPA: 51.9±22.7%). In addition, the pixel-based classification (using a maximum likelihood algorithm) of drone imagery provided better accuracy (OA: 90.0±1.9% and SPA: 87.2±5.1%) compared to the Pleiades (OA: 82.8±3.5% and SPA: 80.4±14.3%). Nevertheless, the drone provided higher temporal resolution images, even on cloudy days, an exceptional benefit when working in a humid tropical climate. In terms of the user-costs, drone costs are much higher, but this becomes advantageous over satellite data for long-term monitoring of a small area. Due to the large data size of the drone imagery, its processing time was about ten times greater than that of the satellite image, and varied according to the various image processing techniques employed (in pixel-based classification, drone >50 hours, Pleiades <5 hours), constituting the main disadvantage of UAV remote sensing. However, the mangrove mapping based on the drone aerial photos provided unprecedented results for Setiu, and was proven to be a viable alternative to satellite-based monitoring/management of these ecosystems. The improvements of drone technology will help to make drone use even more competitive in the future.
    Matched MeSH terms: Aircraft*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links