Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Fakurazi S, Sharifudin SA, Arulselvan P
    Molecules, 2012 Jul 10;17(7):8334-50.
    PMID: 22781444 DOI: 10.3390/molecules17078334
    The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
    Matched MeSH terms: Aldehydes
  2. Gnanaraj C, Shah MD, Song TT, Iqbal M
    Biomed Pharmacother, 2017 Aug;92:1010-1022.
    PMID: 28609838 DOI: 10.1016/j.biopha.2017.06.014
    Plants have been consumed in medicinal practices for centuries. Lygodium microphyllum (Cav.) R.Br. (Lygodiaceae), also known as Old World Climbing Fern, is a medicinal plant used by local communities in Sabah for skin and dysentery ailments. This study aims to test aqueous extract of L. microphyllum leaves for hepatoprotective and immunosuppressive activity in rats. Animal studies were carried out to evaluate hepatoprotection of aqueous extract of L. microphyllum at different doses (200, 400 and 600mg/kg b.w.) against carbon tetrachloride (CCl4)-mediated liver injury and histopathological alterations. Total phenolic content in aqueous extract of L. microphyllum leaves was 206.38±9.62mg gallic acid equivalent/g. The inhibitory concentration (IC50) for free radical scavenging activity of L. microphyllum was reached at a concentration of 65μg/ml.L. microphyllum was able to prevent the increase in levels of serum alanine aminotransferase, serum aspartate aminotransferase and hepatic malondialdehyde formation in a dose-dependent manner. Immunohistochemical results evidenced the suppression of oxidative stress markers (4-hydroxynonenal, 8-hydroxydeoxyguanosine) and pro-inflammatory cytokines (Tumor Necrosis Factor-α, Interleukin-6, Prostaglandin E2). Histopathological and hepatocyte ultrastructural alterations showed protective effects by L. microphyllum against CCl4-mediated oxidative stress. Hepatoprotective mechanism of L. microphyllum can be attributed to its antioxidative effects through protection of ultrastructural organelles.
    Matched MeSH terms: Aldehydes/metabolism
  3. Chong YH, Ho GS
    Am J Clin Nutr, 1970 Mar;23(3):261-6.
    PMID: 5436634 DOI: 10.1093/ajcn/23.3.261
    Matched MeSH terms: Aldehydes
  4. Neda, G.D., Rabeta, M.S., Ong, M.T.
    MyJurnal
    Aqueous and methanol extracts of the flowers of Clitoria ternatea (CT), a popularly
    plant consumed for blue colour in Nasi Kerabu was selected to explore its cytotoxic
    effect on six types of normal and cancer-origin cell lines. These included the hormone-dependent breast cancer cell line (MCF-7), non-hormone-dependent breast cancer cell
    line (MDA-MB-231), human ovary cancer cell line (Caov-3), human cervical cancer cell line (Hela), human liver cancer cell line (HepG2) and human foreskin fibroblast cell line (Hs27). The anti-proliferation activities of the extracts were examined by employing colorimetric MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay through time periods of 24, 48 and 72 hours. Preliminary results showed that the water extracted of CT had significant effects (p < 0.05) against MCF-7 with an IC50 value of 175.35 µg/ml. Furthermore, the aqueous and methanolic extracts were investigated by Gas Chromatogram-Mass spectrometry (GC-MS). The GC-MS chromatogram analysis of the water extracted had shown five peaks that represented components in the water extract namely mome inositol (38.7%) and pentanal (14.3%). Fifteen chemical constituents were identified in the methanol extract and the major chemical constituents were mome inositol (33.6%), cyclohexen, 1-methyl-4-(1-methylethylideme)- (7.1%), acetic acid, cyano- (6.5%) and hirsutene (5.7%). Heavy metals tested were at very low levels. The analysis conducted on the flowers provides a strong basis for emphasizing the medicinal and nutritional value of CT.
    Matched MeSH terms: Aldehydes
  5. Hasan HA, Abdulmalek E, Rahman MBA, Shaari KB, Yamin BM, Chan KW
    Chem Cent J, 2018 Dec 20;12(1):145.
    PMID: 30570683 DOI: 10.1186/s13065-018-0509-z
    BACKGROUND: Although the development of antibiotic and antioxidant manufacturing, the problem of bacterial resistance and food and/or cosmetics oxidation still needs more efforts to design new derivatives which can help to minimize these troubles. Benzimidazo[1,2-c]quinazolines are nitrogen-rich heterocyclic compounds that possess many pharmaceutical properties such as antimicrobial, anticonvulsant, immunoenhancer, and anticancer.

    RESULTS: A comparative study between two methods, (microwave-assisted and conventional heating approaches), was performed to synthesise a new quinazoline derivative from 2-(2-aminophenyl)-1H-benzimidazole and octanal to produce 6-heptyl-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline (OCT). The compound was characterised using FTIR, 1H and 13C NMR, DIMS, as well as X-ray crystallography. The most significant peak in the 13C NMR spectrum is C-7 at 65.5 ppm which confirms the cyclisation process. Crystal structure analysis revealed that the molecule grows in the monoclinic crystal system P21/n space group and stabilised by an intermolecular hydrogen bond between the N1-H1A…N3 atoms. The crystal packing analysis showed that the molecule adopts zig-zag one dimensional chains. Fluorescence study of OCT revealed that it produces blue light when expose to UV-light and its' quantum yield equal to 26%. Antioxidant activity, which included DPPH· and ABTS·+ assays was also performed and statistical analysis was achieved via a paired T-test using Minitab 16 software with P 

    Matched MeSH terms: Aldehydes
  6. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: Aldehydes
  7. Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, et al.
    PMID: 33786878 DOI: 10.1002/bab.2155
    A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
    Matched MeSH terms: Aldehydes
  8. Jiang X, Li Y, Feng JL, Nik Nabil WN, Wu R, Lu Y, et al.
    Front Cell Dev Biol, 2020;8:598620.
    PMID: 33392189 DOI: 10.3389/fcell.2020.598620
    The re-proliferation of quiescent cancer cells is considered to be the primary contributor to prostate cancer (Pca) recurrence and progression. In this study, we investigated the inhibitory effect of safranal, a monoterpene aldehyde isolated from Crocus sativus (saffron), on the re-proliferation of quiescent Pca cells in vitro and in vivo. The results showed that safranal efficiently blocked the re-activation of quiescent Pca cells by downregulating the G0/G1 cell cycle regulatory proteins CDK2, CDK4, CDK6, and phospho-Rb at Ser807/811 and elevating the levels of cyclin-dependent kinase inhibitors, p21 and p27. Further investigation on the underlying mechanisms revealed that safranal suppressed the mRNA and protein expression levels of Skp2, possibly through the deregulation of the transcriptional activity of two major transcriptional factors, E2F1 and NF-κB subunits. Moreover, safranal inhibited AKT phosphorylation at Ser473 and deregulated both canonical and non-canonical NF-κB signaling pathways. Safranal suppressed the tumor growth of quiescent Pca cell xenografts in vivo. Furthermore, safranal-treated tumor tissues exhibited a reduction in Skp2, E2F1, NF-κB p65, p-IκBα (Ser32), c-MYC, p-Rb (Ser807), CDK4, CDK6, and CDK2 and an elevation of p27 and p21 protein levels. Therefore, our findings demonstrate that safranal suppresses cell cycle re-entry of quiescent Pca cells in vitro and in vivo plausibly by repressing the transcriptional activity of two major transcriptional activators of Skp2, namely, E2F1 and NF-κB, through the downregulation of AKT phosphorylation and NF-κB signaling pathways, respectively.
    Matched MeSH terms: Aldehydes
  9. Nadiveedhi MR, Nuthalapati P, Gundluru M, Yanamula MR, Kallimakula SV, Pasupuleti VR, et al.
    ACS Omega, 2021 Feb 02;6(4):2934-2948.
    PMID: 33553912 DOI: 10.1021/acsomega.0c05302
    A series of novel α-furfuryl-2-alkylaminophosphonates have been efficiently synthesized from the one-pot three-component classical Kabachnik-Fields reaction in a green chemical approach by addition of an in situ generated dialkylphosphite to Schiff's base of aldehydes and amines by using environmental and eco-friendly silica gel supported iodine as a catalyst by microwave irradiation. The advantage of this protocol is simplicity in experimental procedures and products were resulted in high isolated yields. The synthesized α-furfuryl-2-alkylaminophosphonates were screened to in vitro antioxidant and plant growth regulatory activities and some are found to be potent with antioxidant and plant growth regulatory activities. These in vitro studies have been further supported by ADMET (absorption, distribution, metabolism, excretion, and toxicity), quantitative structure-activity relationship, molecular docking, and bioactivity studies and identified that they were potentially bound to the GLN340 amino acid residue in chain C of 1DNU protein and TYR597 amino acid residue in chain A of 4M7E protein, causing potential exhibition of antioxidant and plant growth regulatory activities. Eventually, title compounds are identified as good blood-brain barrier (BBB)-penetrable compounds and are considered as proficient central nervous system active and neuroprotective antioxidant agents as the neuroprotective property is determined with BBB penetration thresholds.
    Matched MeSH terms: Aldehydes
  10. Iqbal M, Shah MD, Vun-Sang S, Okazaki Y, Okada S
    Biomed Pharmacother, 2021 Jul;139:111636.
    PMID: 33957566 DOI: 10.1016/j.biopha.2021.111636
    This study was designed to reveal the protective effects of dietary supplementation of curcumin against renal cell tumours and oxidative stress induced by renal carcinogen iron nitrilotriacetate (Fe-NTA) in ddY male mice. The results showed that mice treated with a renal carcinogen, Fe-NTA, a 35% renal cell tumour incidence was noticed, whereas renal cell tumour occurrence was elevated to 80% in Fe-NTA promoted and N-diethylnitrosamine (DEN)-initiated mice as compared with saline- treated mice. No incidence of tumours has been observed in DEN-initiated non-promoted mice. Diet complemented with 0.5% and 1.0% curcumin fed prior to, during and after treatment with Fe-NTA in DEN-initiated animals, tumour incidence was reduced dose-dependently to about 45% and 30% respectively. Immunohistochemical studies also revealed the increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in kidney tissue of mice treated with an intraperitoneal injection of Fe-NTA (6.0 mg Fe/kg body weight.). Furthermore, Fe-NTA treatment of mice also resulted in significant elevation of malondialdehyde (MDA), serum urea, and creatinine and decreases renal glutathione. However, the changes in most of these parameters were attenuated dose-dependently by prophylactic treatment of animals with 0.5% and 1% curcumin diet, this may be due to its antioxidative impact of curcumin. These results suggest that intake of curcumin is beneficial for the prevention of renal cell tumours and oxidative stress damage mediated by renal carcinogen, Fe-NTA.
    Matched MeSH terms: Aldehydes
  11. Saswati, Adão P, Majumder S, Dash SP, Roy S, Kuznetsov ML, et al.
    Dalton Trans, 2018 Aug 21;47(33):11358-11374.
    PMID: 30059099 DOI: 10.1039/c8dt01668b
    The synthesis and characterization of an oxidovanadium(iv) [VIVO(L)(acac)] (1) and of two dioxidovanadium(v) [VVO2(L')] (2) and [VVO2(L)] (2a) complexes of the Schiff base formed from the reaction of 4-(p-fluorophenyl) thiosemicarbazone with pyridine-2-aldehyde (HL) are described. The oxidovanadium(iv) species [VIVO(L)(acac)] (1) was synthesized by the reaction of VIVO(acac)2 with the thiosemicarbazone HL in refluxing ethanol. The recrystallization of [VIVO(L)(acac)] (1) in DMF, CH3CN or EtOH gave the same product i.e. the dioxidovanadium(v) complex [VVO2(L)] (2a); however, upon recrystallization of 1 in DMSO a distinct compound [VVO2(L')] (2) was formed, wherein the original ligand L- is transformed to a rearranged one, L'-. In the presence of DMSO the ligand in complex 1 is found to undergo methylation at the carbon centre attached to imine nitrogen (aldimine) and transformed to the corresponding VVO2-species through in situ reaction. The synthesized HL and the metal complexes were characterized by elemental analysis, IR, UV-Vis, NMR and EPR spectroscopy. The molecular structure of [VVO2(L')] (2) was determined by single crystal X-ray crystallography. The methylation of various other ligands and complexes prepared from different vanadium precursors under similar reaction conditions was also attempted and it was confirmed that the imine methylation observed is both ligand and metal precursor specific. Complexes 1 and 2 show in vitro insulin-like activity against insulin responsive L6 myoblast cells, higher than VIVO(acac)2, with complex 1 being more potent. In addition, the in vitro cytotoxicity studies of HL, and of complexes 1 and 2 against the MCF-7 and Vero cell lines were also done. The ligand is not cytotoxic and complex 2 is significantly more cytotoxic than 1. DAPI staining experiments indicate that an increase in the time of incubation and an increase of concentration of the complexes lead to the increase in cell death.
    Matched MeSH terms: Aldehydes
  12. Malik A, Ashraf MAB, Khan MW, Zahid A, Shafique H, Waquar S, et al.
    Arch Environ Contam Toxicol, 2020 Apr;78(3):329-336.
    PMID: 31620805 DOI: 10.1007/s00244-019-00673-2
    The use of leaded gasoline adversely affects cardiovascular, nervous, and immune systems. Study projects to rule out different variables of prognostic importance in lead-exposed subjects. A total of 317 traffic wardens with 5 years of outdoor experience and Hb levels
    Matched MeSH terms: Aldehydes
  13. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology; Aldehydes/chemistry
  14. Hashmi S, Khan S, Shafiq Z, Taslimi P, Ishaq M, Sadeghian N, et al.
    Bioorg Chem, 2021 02;107:104554.
    PMID: 33383322 DOI: 10.1016/j.bioorg.2020.104554
    With the fading of 'one drug-one target' approach, Multi-Target-Directed Ligands (MTDL) has become a central idea in modern Medicinal Chemistry. The present study aimed to design, develop and characterize a novel series of 4-(Diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) and evaluates their biological activity against cholinesterase, carbonic anhydrases and α-glycosidase enzymes. The hCA I isoform was inhibited by these novel 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones (3a-p) in low nanomolar levels, the Ki of which differed between 407.73 ± 43.71 and 1104.11 ± 80.66 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 323.04 ± 56.88 to 991.62 ± 77.26 nM. Also, these novel 4-(diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) effectively inhibited AChE, with Ki values in the range of 121.74 ± 23.52 to 548.63 ± 73.74 nM. For BChE, Ki values were obtained with in the range of 132.85 ± 12.53 to 618.53 ± 74.23 nM. For α-glycosidase, the most effective Ki values of 3b, 3k, and 3g were with Ki values of 77.85 ± 10.64, 96.15 ± 9.64, and 124.95 ± 11.44 nM, respectively. We have identified inhibition mechanism of 3b, 3g, 3k, and 3n on α-glycosidase AChE, hCA I, hCA II, and BChE enzyme activities. Hydrazine-1-carbothioamide and hydroxybenzylidene moieties of compounds play an important role in the inhibition of AChE, hCA I, and hCA II enzymes. Hydroxybenzylidene moieties are critical for inhibition of both BChE and α-glycosidase enzymes. The findings of in vitro and in silico evaluations indicate 4-(diethylamino)-salicylaldehyde-based thiosemicarbazone scaffold to be a promising hit for drug development for multifactorial diseases like Alzheimer's disease.
    Matched MeSH terms: Aldehydes/chemistry
  15. Lipsa D, Barrero-Moreno J, Coelhan M
    Chemosphere, 2018 Jan;191:937-945.
    PMID: 29145138 DOI: 10.1016/j.chemosphere.2017.10.065
    Limonene oxidation products (LOPs) have gained interest on their harmful health effects over time. Recently, studies have shown that the selected LOPs: 4-oxopentanal (4-OPA), 3-isopropenyl-6-oxo-heptanal (IPOH) and 4-acetyl-1-methylcyclohexene (4-AMCH) have sensory irritation effects in mice and inflammatory effects in human lung cells. This study was therefore undertaken to investigate the potential capacity of 4-OPA, IPOH and 4-AMCH to cause cell membrane damage, oxidative stress and inflammation in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. Overall results suggest that 4-OPA, IPOH have cytotoxic effects on human lung cells that might be mediated by ROS: the highest concentration applied of IPOH [500 μM] enhanced ROS generation by 100-fold ± 7.7 (A549) and 230-fold ± 19.9 (16HBE14o-) compared to the baseline. 4-OPA [500 μM] increased ROS levels by 1.4-fold ± 0.3 (A549) and by 127-fold ± 10.5 (16HBE14o-), while treatment with 4-AMCH [500 μM] led to 0.9-fold ± 0.2 (A549) and 49-fold ± 12.8 (16HBE14o-) increase. IPOH [500 μM] caused a decrease in the thiol-state balance (e.g. after 2 h, GSH:GSSG was reduced by 37% compared to the untreated 16HBE14o-cells). 4-OPA [500 μM] decreased the GSH:GSSG by 1.3-fold change in A549 cells and 1.4-fold change in 16HBE14o-cells. No statistically significant decrease in the GSH:GSSG in A549 and 16HBE14o-cell lines was observed for 4-AMCH [500 μM]. In addition, IPOH and 4-OPA [31.2 μM] increased the amount of the inflammatory markers: RANTES, VEGF and EGF. On the other hand, 4-AMCH [31.2 μM] did not show inflammatory effects in A549 or 16HBE14o-cells. The 4-OPA, IPOH and 4-AMCH treatment concentration and time-dependently induce oxidative stress and/or alteration of inflammatory markers on human bronchial and alveolar cell lines.
    Matched MeSH terms: Aldehydes/pharmacology
  16. Iqbal M, Okazaki Y, Okada S
    Mol Cell Biochem, 2009 Apr;324(1-2):157-64.
    PMID: 19165575 DOI: 10.1007/s11010-008-9994-z
    Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357-366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33-38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151-160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.
    Matched MeSH terms: Aldehydes/metabolism
  17. Pang KL, Chin KY
    Nutrients, 2018 May 06;10(5).
    PMID: 29734791 DOI: 10.3390/nu10050570
    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
    Matched MeSH terms: Aldehydes/pharmacology*
  18. Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, et al.
    Phytochemistry, 2015 Sep;117:317-24.
    PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024
    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
    Matched MeSH terms: Aldehydes/pharmacology; Aldehydes/chemistry
  19. Alqadeeri F, Rukayadi Y, Abbas F, Shaari K
    Molecules, 2019 Aug 26;24(17).
    PMID: 31454974 DOI: 10.3390/molecules24173095
    Piper cubeba L. is the berry of a shrub that is indigenous to Java, Southern Borneo, Sumatra, and other islands in the Indian Ocean. The plant is usually used in folk traditional medicine and is an important ingredient in cooking. The purpose of this study was to isolate and purify the bioactive compounds from P. cubeba L. fractions. In addition, the isolated compounds were tested for their antibacterial and antispore activities against vegetative cells and spores of Bacilluscereus ATCC33019, B. subtilis ATCC6633, B.pumilus ATCC14884, and B.megaterium ATCC14581. The phytochemical investigation of the DCM fraction yielded two known compounds: β-asarone (1), and asaronaldehyde (2) were successfully isolated and identified from the methanol extract and its fractions of P. cubeba L. Results showed that exposing the vegetative cells of Bacillus sp. to isolated compounds resulted in an inhibition zone with a large diameter ranging between 7.21 to 9.61 mm. The range of the minimum inhibitory concentration (MIC) was between 63.0 to 125.0 µg/mL and had minimum bactericidal concentration (MBC) at 250.0 to 500.0 µg/mL against Bacillus sp. Isolated compounds at a concentration of 0.05% inactivated more than 3-Log10 (90.99%) of the spores of Bacillus sp. after an incubation period of four hours, and all the spores were killed at a concentration of 0.1%. The structures were recognizably elucidated based on 1D and 2D-NMR analyses (1H, 13C, COSY, HSQC, and HMBC) and mass spectrometry data. Compounds 1, and 2 were isolated for the first time from this plant. In conclusion, the two compounds show a promising potential of antibacterial and sporicidal activities against Bacillus sp. and thus can be developed as an anti-Bacillus agent.
    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology*
  20. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 Apr 24;24(8).
    PMID: 31022967 DOI: 10.3390/molecules24081625
    The preservation of active constituents in Cassia alata through the removal of moisture is crucial in producing a final product with high antioxidant activity. This study aims to determine the influences of various drying methods and drying conditions on the antioxidant activity, volatiles and phytosterols content of C. alata. The drying methods used were convective drying (CD) at 40 °C, 50 °C and 60 °C; freeze drying; vacuum microwave drying (VMD) at 6, 9 and 12 W/g; and two-stage convective pre-drying followed by vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g. The drying kinetics of C. alata are best described by the thin-layer model (modified Page model). The highest antioxidant activity, TPC and volatile concentration were achieved with CD at 40 °C. GC-MS analysis identified the presence of 51 volatiles, which were mostly present in all samples but with quantitative variation. The dominant volatiles in fresh C. alata are 2-hexenal (60.28 mg 100 g-1 db), 1-hexanol (18.70 mg 100 g-1 db) and salicylic acid (15.05 mg 100 g-1 db). The concentration of phytosterols in fresh sample was 3647.48 mg 100 g-1 db, and the major phytosterols present in fresh and dried samples were β-sitosterol (1162.24 mg 100 g-1 db). CPD-VMFD was effective in ensuring the preservation of higher phytosterol content in comparison with CD at 50 °C. The final recommendation of a suitable drying method to dehydrate C. alata leaves is CD at 40 °C.
    Matched MeSH terms: Aldehydes/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links