Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Adryana Izzati Adnan, noorhidayah977@uitm.edu.my, Nur Ain Nabilah Ash’ari
    MyJurnal
    A series of ten 5-arylidene Meldrum’s acid derivatives had been synthesised in excellent yield via Knoevenagel condensation. This method does not require catalyst, or any further purification. Isopropylidene malonate (2,2-dimethyl-1,3-dioxane-4,6-dione), also known as Meldrum’s acid, is utilised as a core skeleton for various kind of reactions. Meldrum’s acid has features of a peculiar ring- opening sequences based on nucleophile-sensitive carbonyl functional groups at C-4 and C-6, which has made it possible for useful synthetic transformations, as well as its high acidity of methylene hydrogen at carbon position C-5. Hence, it allows the compound to be a flexible reagent for further reaction to prepare other derivatives. Therefore, Meldrum’s acid derivatives showed high potential of biological functions, such as antibacterial, antimalarial and antioxidant activities due to the olefinic linkage which played an important role in the enhancement of antimalarial activity. Furthermore, when arylidene Meldrum’s acid transformed to epoxide, the compound showed losses of antimalarial behaviour. Additionally, this compound has unique molecules due to the high acidity of methylene hydrogen at the carbon-5 position to initiate various reactions with different functional groups. In this research, Meldrum’s acid, 3 and ten its 5-arylidene derivatives (4a-e) and (5a-e) were synthesised by using two short and efficient reaction steps. The first step involved the condensation of malonic acid, 1 with acetone, 2 in acetic anhydride and acid via one-pot reaction to give Meldrum’s acid, 3 in 50% overall yield. Having Meldrum’s acid in hand, the reaction was proceeded with the Knoevenagel condensation reaction by using various functional groups, such as aryl aldehydes and aryl amines. All the synthesised compounds were characterised by using 1H and 13C spectroscopy.
    Matched MeSH terms: Aldehydes
  2. Lasekan O
    Molecules, 2013 Sep 25;18(10):11809-23.
    PMID: 24071987 DOI: 10.3390/molecules181011809
    The influence of human salivary enzymes on palm wines' odorant concentrations were investigated by the application of aroma extracts dilution analysis (AEDA) and by the calculation of odour activity values (OAVs), respectively. The odorants were quantified by means of stable isotope dilution assays (SIDA), and the degradation profiles of odorants by human saliva were also studied. Results revealed 46 odour-active compounds in the flavour dilution (FD) factor range of 4-256, and all were subsequently identified. Of the 46 odorants, 41 were identified in the Elaeis guineensis wine, 36 in Raphia hookeri wine and 29 in Borassus flabellifer wine. Among the odorants, the highest FD-factors were obtained from acetoin, 2-acetyl-1-pyrroline and 3-isobutyl-2-methoxypyrazine. Among the 13 potent odorants identified, five aroma compounds are reported here as important contributors to palm wine aroma, namely 3-isobutyl-2-methoxy-pyrazine, acetoin, 2-acetyl-1-pyrroline, 3-methylbutylacetate and ethyl hexanoate. Meanwhile, salivary enzymic degradation of odorants was more pronounced among the aldehydes, esters and thiols.
    Matched MeSH terms: Aldehydes/chemistry
  3. Ling JG, Mansor MH, Abdul Murad AM, Mohd Khalid R, Quay DHX, Winkler M, et al.
    J Biotechnol, 2020 Jan 10;307:55-62.
    PMID: 31545972 DOI: 10.1016/j.jbiotec.2019.09.008
    Carboxylic acid reductases (CARs) are attracting burgeoning attention as biocatalysts for organic synthesis of aldehydes and their follow-up products from economic carboxylic acid precursors. The CAR enzyme class as a whole, however, is still poorly understood. To date, relatively few CAR sequences have been reported, especially from fungal sources. Here, we sought to increase the diversity of the CAR enzyme class. Six new CAR sequences from the white-rot fungus Pycnoporus cinnabarinus were identified from genome-wide mining. Genome and gene clustering analysis suggests that these PcCAR enzymes play different natural roles in Basidiomycete systems, compared to their type II Ascomycete counterparts. The cDNA sequences of all six Pccar genes were deduced and analysis of their corresponding amino acid sequence showed that they encode for proteins of similar properties that possess a conserved modular functional tri-domain arrangement. Phylogenetic analyses showed that all PcCAR enzymes cluster together with the other type IV CARs. One candidate, PcCAR4, was cloned and over-expressed recombinantly in Escherichia coli. Subsequent biotransformation-based screening with a panel of structurally-diverse carboxylic acid substrates suggest that PcCAR4 possessed a more pronounced substrate specificity compared to previously reported CARs, preferring to reduce sterically-rigid carboxylic acids such as benzoic acid. These findings thus present a new functionally-distinct member of the CAR enzyme class.
    Matched MeSH terms: Aldehydes/metabolism
  4. Ee GC, Wen YP, Sukari MA, Go R, Lee HL
    Nat Prod Res, 2009;23(14):1322-9.
    PMID: 19735047 DOI: 10.1080/14786410902753138
    An investigation of Morinda citrifolia roots afforded a new anthraquinone, 2-ethoxy-1-hydroxyanthraquinone (1), along with five other known anthraquinones: 1-hydroxy-2-methylanthraquinone (2), damnacanthal (3), nordamnacanthal (4), 2-formyl-1-hydroxyanthraquinone (5) and morindone-6-methyl-ether (6). This is the first report on the isolation of morindone-6-methyl-ether (6) from this plant. The structures of these compounds were elucidated based on spectroscopic analyses such as NMR, MS and IR. Biological evaluation of five pure compounds and all the extracts against the larvae of Aedes aegypti indicated 1-hydroxy-2-methylanthraquinone (2) and damnacanthal (3) were the extracts to exhibit promising larvicidal activities.
    Matched MeSH terms: Aldehydes/pharmacology; Aldehydes/chemistry
  5. Ravi Kumar G, Dasireddy CR, Varala R, Kotra V, Bollikolla HB
    Turk J Chem, 2020;44(5):1386-1394.
    PMID: 33488238 DOI: 10.3906/kim-2003-10
    A series of nine methyl sulphones ( 3a -3 i ) starting from the aldehydes ( 1a-1i ) were synthesized in two consecutive steps. In the first step, preparation of allyl alcohols ( 2a-2i ) from their corresponding aldehydes by the reaction of sodium borohydride in methanol at room temperature is reported. Finally, methyl sulphones are synthesized by condensing sodium methyl sulfinates with allyl alcohols in the presence of BF 3 .Et 2 O in acetic acid medium at room temperature for about 2-3 h. The reaction conditions are simple, yields are high (85%-95%), and the products were obtained with good purity. All the synthesized compounds were characterized by their 1 H, 13 C NMR, and mass spectral analysis. All the title compounds were screened for antimicrobial activity. Among the compounds tested, the compound 3f has inhibited both Gram positive and Gram negative bacteria effectively and compound 3i has shown potent antifungal activity. These promising components may help to develop more potent drugs in the near future for the treatment of bacterial and fungal infections.
    Matched MeSH terms: Aldehydes
  6. Alqadeeri F, Rukayadi Y, Abbas F, Shaari K
    Molecules, 2019 Aug 26;24(17).
    PMID: 31454974 DOI: 10.3390/molecules24173095
    Piper cubeba L. is the berry of a shrub that is indigenous to Java, Southern Borneo, Sumatra, and other islands in the Indian Ocean. The plant is usually used in folk traditional medicine and is an important ingredient in cooking. The purpose of this study was to isolate and purify the bioactive compounds from P. cubeba L. fractions. In addition, the isolated compounds were tested for their antibacterial and antispore activities against vegetative cells and spores of Bacilluscereus ATCC33019, B. subtilis ATCC6633, B.pumilus ATCC14884, and B.megaterium ATCC14581. The phytochemical investigation of the DCM fraction yielded two known compounds: β-asarone (1), and asaronaldehyde (2) were successfully isolated and identified from the methanol extract and its fractions of P. cubeba L. Results showed that exposing the vegetative cells of Bacillus sp. to isolated compounds resulted in an inhibition zone with a large diameter ranging between 7.21 to 9.61 mm. The range of the minimum inhibitory concentration (MIC) was between 63.0 to 125.0 µg/mL and had minimum bactericidal concentration (MBC) at 250.0 to 500.0 µg/mL against Bacillus sp. Isolated compounds at a concentration of 0.05% inactivated more than 3-Log10 (90.99%) of the spores of Bacillus sp. after an incubation period of four hours, and all the spores were killed at a concentration of 0.1%. The structures were recognizably elucidated based on 1D and 2D-NMR analyses (1H, 13C, COSY, HSQC, and HMBC) and mass spectrometry data. Compounds 1, and 2 were isolated for the first time from this plant. In conclusion, the two compounds show a promising potential of antibacterial and sporicidal activities against Bacillus sp. and thus can be developed as an anti-Bacillus agent.
    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology*
  7. Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N
    Molecules, 2021 Mar 12;26(6).
    PMID: 33808969 DOI: 10.3390/molecules26061554
    BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines.

    METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out.

    RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle.

    CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.

    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology*
  8. Siti Balkis Budin, Norfadilah Rejab, Abdul Gapor Mohd Top, Wan Nazaimoon Wan Mohamud, Mokhtar Abu Bakar, Khairul Osman, et al.
    MyJurnal
    This study was conducted to evaluate the oxidative damage in diabetic mellitus induced rats. The evaluation of DNA damage was carried out by the Alkaline Comet Assay using peripheral lymphocyte cells taken from streptozotocin-induced diabetic rats (50 mg/kg) and control rats. The levels of malondealdehyde (MDA), 4-hydroxynonenal (4-HNE), fasting blood glucose (FBG) and HbA1c were also measured. All the induced diabetic rats were hyperglycemic until the end of the study with significantly higher levels of FBG and HbA1c as compared to the control rats. The results showed the percentage of tail DNA and tail moment values were also significantly higher in the diabetic induced rats. The same observations were made on the levels of plasma MDA and 4-HNE. In conclusion, this study indicated that hyperglycemic condition in diabetic induced rats could generate oxidative DNA damage.
    Matched MeSH terms: Aldehydes
  9. Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, et al.
    Phytochemistry, 2015 Sep;117:317-24.
    PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024
    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
    Matched MeSH terms: Aldehydes/pharmacology; Aldehydes/chemistry
  10. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2023 Jun 15;240:124526.
    PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526
    Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the dynamics, mechanisms, and unique features of the enzymes. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
    Matched MeSH terms: Aldehydes/metabolism
  11. Juhari NH, Martens HJ, Petersen MA
    Molecules, 2021 Oct 16;26(20).
    PMID: 34684840 DOI: 10.3390/molecules26206260
    Fresh roselle are high in moisture and deteriorate easily, which makes drying important for extending shelf-life and increasing availability. This study investigated the influence of different drying methods (oven-drying, freeze-drying, vacuum-drying, and sun-drying) on the quality of roselle calyx expressed as physicochemical properties (moisture content, water activity, soluble solids, color), volatile compounds, and microstructure. Oven-drying and freeze-drying reduced moisture content most while vacuum-drying and sun-drying were not as efficient. All drying methods except sun-drying resulted in water activities low enough to ensure safety and quality. Vacuum-drying had no impact on color of the dry calyx and only small impact on color of water extract of calyx. Drying reduced terpenes, aldehydes, and esters but increased furans. This is expected to reduce fruity, floral, spicy, and green odors and increase caramel-like aroma. Sun-drying produced more ketones, alcohols, and esters. Scanning electron microscopy revealed that freeze-drying preserved the cell structure better, and freeze-dried samples resembled fresh samples most compared to other drying techniques. The study concludes that freeze-drying should be considered as a suitable drying method, especially with respect to preservation of structure.
    Matched MeSH terms: Aldehydes/chemistry
  12. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 Apr 24;24(8).
    PMID: 31022967 DOI: 10.3390/molecules24081625
    The preservation of active constituents in Cassia alata through the removal of moisture is crucial in producing a final product with high antioxidant activity. This study aims to determine the influences of various drying methods and drying conditions on the antioxidant activity, volatiles and phytosterols content of C. alata. The drying methods used were convective drying (CD) at 40 °C, 50 °C and 60 °C; freeze drying; vacuum microwave drying (VMD) at 6, 9 and 12 W/g; and two-stage convective pre-drying followed by vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g. The drying kinetics of C. alata are best described by the thin-layer model (modified Page model). The highest antioxidant activity, TPC and volatile concentration were achieved with CD at 40 °C. GC-MS analysis identified the presence of 51 volatiles, which were mostly present in all samples but with quantitative variation. The dominant volatiles in fresh C. alata are 2-hexenal (60.28 mg 100 g-1 db), 1-hexanol (18.70 mg 100 g-1 db) and salicylic acid (15.05 mg 100 g-1 db). The concentration of phytosterols in fresh sample was 3647.48 mg 100 g-1 db, and the major phytosterols present in fresh and dried samples were β-sitosterol (1162.24 mg 100 g-1 db). CPD-VMFD was effective in ensuring the preservation of higher phytosterol content in comparison with CD at 50 °C. The final recommendation of a suitable drying method to dehydrate C. alata leaves is CD at 40 °C.
    Matched MeSH terms: Aldehydes/chemistry
  13. Neda, G.D., Rabeta, M.S., Ong, M.T.
    MyJurnal
    Aqueous and methanol extracts of the flowers of Clitoria ternatea (CT), a popularly
    plant consumed for blue colour in Nasi Kerabu was selected to explore its cytotoxic
    effect on six types of normal and cancer-origin cell lines. These included the hormone-dependent breast cancer cell line (MCF-7), non-hormone-dependent breast cancer cell
    line (MDA-MB-231), human ovary cancer cell line (Caov-3), human cervical cancer cell line (Hela), human liver cancer cell line (HepG2) and human foreskin fibroblast cell line (Hs27). The anti-proliferation activities of the extracts were examined by employing colorimetric MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay through time periods of 24, 48 and 72 hours. Preliminary results showed that the water extracted of CT had significant effects (p < 0.05) against MCF-7 with an IC50 value of 175.35 µg/ml. Furthermore, the aqueous and methanolic extracts were investigated by Gas Chromatogram-Mass spectrometry (GC-MS). The GC-MS chromatogram analysis of the water extracted had shown five peaks that represented components in the water extract namely mome inositol (38.7%) and pentanal (14.3%). Fifteen chemical constituents were identified in the methanol extract and the major chemical constituents were mome inositol (33.6%), cyclohexen, 1-methyl-4-(1-methylethylideme)- (7.1%), acetic acid, cyano- (6.5%) and hirsutene (5.7%). Heavy metals tested were at very low levels. The analysis conducted on the flowers provides a strong basis for emphasizing the medicinal and nutritional value of CT.
    Matched MeSH terms: Aldehydes
  14. Starkenmann C, Luca L, Niclass Y, Praz E, Roguet D
    J Agric Food Chem, 2006 Apr 19;54(8):3067-71.
    PMID: 16608232
    Polygonum odoratum Lour. has been reclassified as Persicaria odorata (Lour.) Soják [Wilson, K. L. Polygonum sensu lato (Polygonaceae) in Australia. Telopea 1988, 3, 177-182]; other synonyms currently used are Vietnamese mint or Vietnamese coriander and, in Malaysia, Daun Laksa or Laksa plant. The aerial parts of Laksa plant are highly aromatic, and they contain many organic compounds such as (Z)-3-hexenal, (Z)-3-hexenol, decanal, undecanal, and dodecanal that are typical for green, citrus, orange peel, and coriander odors. In addition to these aldehydes, 3-sulfanyl-hexanal and 3-sulfanyl-hexan-1-ol were discovered for the first time in this herb. The fresh leaves are pungent when they are chewed, although the active compound has never been identified. The pungency of Persicaria hydropiper (L.) Spach (formerly Polygonum hydropiper L., synonym water pepper) is produced by polygodial, a 1,4-dialdehyde derived from drimane terpenoids. We also identified polygodial as the active pungent compound in P. odorata (Lour.) Soják.
    Matched MeSH terms: Aldehydes/analysis
  15. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology; Aldehydes/chemistry
  16. Muhamad Faridz Osman, Karimah Kassim
    MyJurnal
    The coordination complexes of Co(II) and Zn(II) with Schiff bases derived from ophenylenediamine and substituted 2-hydroxybenzaldehyde were prepared. All compounds were characterized by Fourier transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) spectroscopy elemental analyzers. They were analyzed using impedance spectroscopy in the frequency range of 100Hz - 1MHz. L1 and L2 showed higher conductivity compared to their metal
    complexes, which had values of 1.37 x 10-7 and 6.13 x 10-8S/cm respectively.
    Matched MeSH terms: Aldehydes
  17. Meon R
    Oral Surg. Oral Med. Oral Pathol., 1989 Jun;67(6):740-5.
    PMID: 2500632
    The dorsal skin of 18 healthy Sprague-Dawley rats was used to investigate the reaction of connective tissue to buffered and unbuffered glutaraldehyde. Both the agents produced well-circumscribed lesions that underwent resolution within 30 days. Observation also shows that 2.0% buffered and unbuffered glutaraldehyde maintained a relatively inflammation-free status in connective tissue.
    Matched MeSH terms: Aldehydes/pharmacology*
  18. Lasekan O, Teoh LS
    BMC Chem, 2019 Dec;13(1):133.
    PMID: 31891159 DOI: 10.1186/s13065-019-0650-3
    Background: The aroma chemistry and the contribution of the aroma compounds to the anti-oxidative properties of roasted yam have yet to be characterized. The growing popularity of roasted yam in regions where they are being consumed calls for a concerted effort to elucidate their aroma chemistry as well as their anti-oxidative properties.

    Results: The aroma compounds in roasted white yam (Dioscorea rotundata) were isolated and identified using static headspace-gas chromatography-mass spectrometry (SH-GC-MS) and gas chromatography-olfactometry (GC-O). In addition, the anti-oxidative activities of the most abundant volatile heterocyclic compounds (2 pyrroles, 4 furans and 3 pyrazines) were evaluated on their inhibitory effect towards the oxidation of hexanal for a period of 30 days. Twenty-nine aroma-active compounds with a flavour dilution (FD) factor range of 2-256 and an array of odour notes were obtained. Among them, the highest odour activities (FD ≥ 128) factors were determined for 2-acetyl furan and 2-acetylpyrrole. Other compounds with significant FD factors ≥ 32 were; 2-methylpyrazine, ethyl furfural, and 5-hydroxy methyl furfural.

    Conclusion: Results of the anti-oxidative activity showed that the pyrroles exhibited the greatest antioxidant activity among all the tested heterocyclic compounds. This was followed by the furans and the pyrazines which had the least antioxidant activity.

    Matched MeSH terms: Aldehydes
  19. Adam F, Samshuddin S, Ameram N, Subramaya, Samartha L
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1031-2.
    PMID: 26870482 DOI: 10.1107/S2056989015023294
    The title compound, C19H21N3O, comprises a central pyrazole ring which is N-connected to an aldehyde group and C-connected twice to substituted benzene rings. The pyrazole ring is twisted on the C-C single bond, and the least-squares plane through this ring forms dihedral angles of 82.44 (5) and 4.52 (5)° with the (di-methyl-amino)-benzene and p-tolyl rings, respectively. In the crystal, weak C-H⋯O hydrogen bonds link mol-ecules into supra-molecular tubes along the b axis.
    Matched MeSH terms: Aldehydes
  20. Iqbal M, Okazaki Y, Okada S
    Mol Cell Biochem, 2009 Apr;324(1-2):157-64.
    PMID: 19165575 DOI: 10.1007/s11010-008-9994-z
    Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357-366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33-38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151-160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.
    Matched MeSH terms: Aldehydes/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links