Displaying publications 1 - 20 of 69 in total

Abstract:
Sort:
  1. Ng PY, Nafi SNM, Jalil NAC, Kueh YC, Lee YY, Zin AAM
    Croat Med J, 2023 Feb 28;64(1):29-36.
    PMID: 36864816
    AIM: To assess the association of the expression of apolipoprotein B (apoB) and 4-hydroxynonenal (4HNE) with the clinicopathological data of patients with colorectal cancer (CRC).

    METHODS: We obtained 80 CRC histopathological specimens sent to the Pathology Laboratory of Hospital Universiti Sains Malaysia from 2015 to 2019. Data on demographic factors, body mass index (BMI), and clinicopathological characteristics were also collected. Formalin-fixed paraffin-embedded tissues were stained by using an optimized immunohistochemical protocol.

    RESULTS: Patients were mostly older than 50 years, male, Malay, and overweight or obese. A high apoB expression was observed in 87.5% CRC samples (70/80), while a high 4HNE expression was observed in only 17.5% (14/80) of CRCs. The expression of apoB was significantly associated with the sigmoid and rectosigmoid tumor sites (p =0.001) and tumor size 3-5 cm (p =0.005). 4HNE expression was significantly associated with tumor size 3-5 cm (p =0.045). Other variables were not significantly associated with the expression of either marker.

    CONCLUSION: ApoB and 4HNE proteins may play a role in promoting CRC carcinogenesis.

    Matched MeSH terms: Aldehydes
  2. Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong VK, Ismail NH, et al.
    Asian Pac J Cancer Prev, 2017 Dec 29;18(12):3333-3341.
    PMID: 29286228
    Cancer is one of the most common causes of death in the developed world, with one-third of people diagnosed with
    cancer during their lifetime. Oral cancer commonly occurs involving the buccal mucosa (cheeks), tongue, floor of the
    mouth and lip. It is one of the most devastating and disfiguring of malignancies. Morinda citrifolia L., commonly known
    as ‘noni’, belongs to the Rubiaceae family. It is native to the Pacific islands, Hawaii, Caribbean, Asia and Australia.
    The plant displays broad curative effects in pharmacological studies. Damnacanthal (DAM) and Nordamnacanthal
    (NDAM), anthraquinone compounds isolated from the roots of Morinda citrifolia L., has been used for the treatment
    of several chronic diseases including cancer. The objectives of this study were to evaluate cytotoxicity, morphological
    changes, cell death mode (apoptosis/necrosis), and cell migration induced by DAM and NDAM on the most common
    type of oral cancer, oral squamous cell carcinoma (OSCC)cells. Anti-proliferative effects of these compounds against
    OSCC cell lines were determined by MTT assay. The mode of cell death was analysed by phase contrast and fluorescent
    microscopy as well as flow cytometry. In addition, cell migration was assessed. The results showed that DAM and
    NDAM exerted cytotoxicity against OSCC cells with IC50 values of 1.9 to >30 μg/ml after 72 h treatment. Maximum
    growth inhibition among the tested cell lines for both compounds was observed in H400 cells, and thus it was selected
    for further study. The study demonstrated inhibition of H400 OSCC cell proliferation, marked apoptotic morphological
    changes, induction of early apoptosis, and inhibition of cell migration by DAM and NDAM. Therefore, this information
    suggests that these compounds from noni have potential for used as anti tumor agents for oral cancer therapy.
    Matched MeSH terms: Aldehydes/pharmacology*
  3. Jiang X, Li Y, Feng JL, Nik Nabil WN, Wu R, Lu Y, et al.
    Front Cell Dev Biol, 2020;8:598620.
    PMID: 33392189 DOI: 10.3389/fcell.2020.598620
    The re-proliferation of quiescent cancer cells is considered to be the primary contributor to prostate cancer (Pca) recurrence and progression. In this study, we investigated the inhibitory effect of safranal, a monoterpene aldehyde isolated from Crocus sativus (saffron), on the re-proliferation of quiescent Pca cells in vitro and in vivo. The results showed that safranal efficiently blocked the re-activation of quiescent Pca cells by downregulating the G0/G1 cell cycle regulatory proteins CDK2, CDK4, CDK6, and phospho-Rb at Ser807/811 and elevating the levels of cyclin-dependent kinase inhibitors, p21 and p27. Further investigation on the underlying mechanisms revealed that safranal suppressed the mRNA and protein expression levels of Skp2, possibly through the deregulation of the transcriptional activity of two major transcriptional factors, E2F1 and NF-κB subunits. Moreover, safranal inhibited AKT phosphorylation at Ser473 and deregulated both canonical and non-canonical NF-κB signaling pathways. Safranal suppressed the tumor growth of quiescent Pca cell xenografts in vivo. Furthermore, safranal-treated tumor tissues exhibited a reduction in Skp2, E2F1, NF-κB p65, p-IκBα (Ser32), c-MYC, p-Rb (Ser807), CDK4, CDK6, and CDK2 and an elevation of p27 and p21 protein levels. Therefore, our findings demonstrate that safranal suppresses cell cycle re-entry of quiescent Pca cells in vitro and in vivo plausibly by repressing the transcriptional activity of two major transcriptional activators of Skp2, namely, E2F1 and NF-κB, through the downregulation of AKT phosphorylation and NF-κB signaling pathways, respectively.
    Matched MeSH terms: Aldehydes
  4. Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, et al.
    PMID: 33786878 DOI: 10.1002/bab.2155
    A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
    Matched MeSH terms: Aldehydes
  5. Han C, Zheng Y, Huang S, Xu L, Zhou C, Sun Y, et al.
    Int J Biol Macromol, 2024 Apr;263(Pt 1):130300.
    PMID: 38395276 DOI: 10.1016/j.ijbiomac.2024.130300
    This work employed the model protein β-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.
    Matched MeSH terms: Aldehydes*
  6. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology; Aldehydes/chemistry
  7. Md Amin R, Koski M, Båmstedt U, Vidoudez C
    Mar Biol, 2011;158(9):1965-1980.
    PMID: 24391269
    Three strains of the chain-forming diatom Skeletonema marinoi, differing in their production of polyunsaturated aldehydes (PUA) and nutritional food components, were used in experiments on feeding, egg production, hatching success, pellet production, and behavior of three common planktonic copepods: Acartia tonsa, Pseudocalanus elongatus, and Temora longicornis. The three different diatom strains (9B, 1G, and 7J) induced widely different effects on Acartia tonsa physiology, and the 9B strain induced different effects for the three copepods. In contrast, different strains induced no or small alterations in the distribution, swimming behavior, and turning frequency of the copepods. 22:6(n-3) fatty acid (DHA) and sterol content of the diet typically showed a positive effect on either egg production (A. tonsa) or hatching success (P. elongatus), while other measured compounds (PUA, other long-chain polyunsaturated fatty acids) of the algae had no obvious effects. Our results demonstrate that differences between strains of a given diatom species can generate effects on copepod physiology, which are as large as those induced by different algae species or groups. This emphasizes the need to identify the specific characteristics of local diatoms together with the interacting effects of different mineral, biochemical, and toxic compounds and their potential implications on different copepod species.
    Matched MeSH terms: Aldehydes
  8. Basar N, Donnelly S, Sirat HM, Thomas EJ
    Org Biomol Chem, 2013 Dec 28;11(48):8476-505.
    PMID: 24212203 DOI: 10.1039/c3ob41931b
    Reactions of 5-benzyloxy-4-methylpent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were usefully stereoselective in favour of the (E)-1,5-anti-6-benzyloxy-5-methylalk-3-en-1-ols. Similar stereoselectivity was observed for reactions of analogous 5-benzyloxy-4-methylpent-2-enyl bromides with aldehydes when promoted by a low valency bismuth species prepared by reduction of bismuth(III) triiodide with powdered zinc so providing a "tin-free" procedure. The analogous reactions of 4-benzyloxypent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were also stereoselective but gave lower yields. Attempted 1,6-stereocontrol using these reactions resulted in only modest stereoselectivities. Aspects of the chemistry of the products were studied in particular their stereoselective conversion into aliphatic compounds with methyl bearing stereogenic centres at 1,5,9,13- and 1,3,5-positions along the aliphatic chain. Mechanistically, allylic organobismuth species may be involved in both sets of reactions but this was not confirmed although the similar stereoselectivities observed for both the bismuth(III) iodide mediated reactions of the pent-2-enylstannanes and the low-valency bismuth promoted reactions of the pent-2-enyl bromides are consistent with participation of similar intermediates.
    Matched MeSH terms: Aldehydes
  9. Lasekan O, Teoh LS
    BMC Chem, 2019 Dec;13(1):133.
    PMID: 31891159 DOI: 10.1186/s13065-019-0650-3
    Background: The aroma chemistry and the contribution of the aroma compounds to the anti-oxidative properties of roasted yam have yet to be characterized. The growing popularity of roasted yam in regions where they are being consumed calls for a concerted effort to elucidate their aroma chemistry as well as their anti-oxidative properties.

    Results: The aroma compounds in roasted white yam (Dioscorea rotundata) were isolated and identified using static headspace-gas chromatography-mass spectrometry (SH-GC-MS) and gas chromatography-olfactometry (GC-O). In addition, the anti-oxidative activities of the most abundant volatile heterocyclic compounds (2 pyrroles, 4 furans and 3 pyrazines) were evaluated on their inhibitory effect towards the oxidation of hexanal for a period of 30 days. Twenty-nine aroma-active compounds with a flavour dilution (FD) factor range of 2-256 and an array of odour notes were obtained. Among them, the highest odour activities (FD ≥ 128) factors were determined for 2-acetyl furan and 2-acetylpyrrole. Other compounds with significant FD factors ≥ 32 were; 2-methylpyrazine, ethyl furfural, and 5-hydroxy methyl furfural.

    Conclusion: Results of the anti-oxidative activity showed that the pyrroles exhibited the greatest antioxidant activity among all the tested heterocyclic compounds. This was followed by the furans and the pyrazines which had the least antioxidant activity.

    Matched MeSH terms: Aldehydes
  10. Hadariah Bahron, Siti Solihah Khaidir, Amalina Mohd Tajuddin, Syed Abdul Illah Alyahya Syed Abd Kadir
    MyJurnal
    A mononuclear and new tetranuclear metal complexes of Zn(II) with Schiff base ligands L1 and L2 respectively, were synthesised. L1 was obtained through the condensation of salicylaldehyde with ortho-phenylenediamine while L2 was the product of reaction between of ortho-vanillin with 2,4,6-trimethyl-m-phenylenediamine. The ligands and complexes were characterised via elemental analysis, melting point, IR and NMR spectroscopy. The shifting of v(C=N), v(C-OH) and v(O-CH3) infrared peaks upon coordination with Zn(II) indicated that these three moieties play a significant role in the complexation. It was found that L1 acted as tetradentate ligand, coordinating with Zn(II) centres through phenolic oxygen and imine nitrogen. The ligand L2 acted as a hexadentate ligand, bonded to metal via phenolic oxygen, imine nitrogen and methoxy oxygen, where four Zn(II) centres formed bridges to connect two ligands.
    Matched MeSH terms: Aldehydes; Benzaldehydes
  11. Kamarulzaman NH, Le-Minh N, Fisher RM, Stuetz RM
    Sci Total Environ, 2019 Mar 20;657:154-168.
    PMID: 30543968 DOI: 10.1016/j.scitotenv.2018.11.451
    The impacts of rubber variations (clonal, seasonal, and pre-treatment) were investigated to assess changes in the composition of volatile organic compounds (VOCs) emitted during rubber processing. VOC emissions from 14 different rubber types were evaluated by headspace micro-chamber (μ-TEC) extraction coupled with gas chromatography-mass spectrometry (GC-MS). Headspace extracted at 120 °C, which is equivalent to the drying temperature during rubber processing, revealed a significant number of odorants in terms of concentrations as well as odorant type. Volatile fatty acids (VFAs) such as acetic, propanoic, butanoic, pentanoic and hexanoic acids, were frequently detected at concentrations greater than their odour detection thresholds. Other odorous compounds including trimethylamine, p-cresol, butanone, indole, and phenol, were also detected. Emissions collected at ambient conditions represent odorants released during material storage (or maturation) and were dominated by benzene derivatives followed by ketones, aldehydes, esters, and acids. Emission composition during storage appeared to be governed by specific rubber properties such as protein and rubber moisture content. Seasonal variations revealed greater impacts on the concentration of VOCs for all studied clones, compared to pre-treatment variations, suggesting that the VOCs composition was seasonally dependent and may represents the 'potential' emissions from rubber as they are processed. A combination of sensorial and analytical measurements were used to produce odour wheels which may be used as tool to identify key malodours in onsite rubber processing. The linking of odours and odorants can facilitate communication between receptors (the public) and plant operators inorder to minimise odour impact and develop effective abatement and on-site management practices.
    Matched MeSH terms: Aldehydes
  12. Kamarulzaman NH, Le-Minh N, Stuetz RM
    Talanta, 2019 Jan 01;191:535-544.
    PMID: 30262095 DOI: 10.1016/j.talanta.2018.09.019
    Different extraction procedures were evaluated to assess their potential for measuring volatile organic compounds (VOCs) from raw rubber materials. Four headspace sampling techniques (SHS, DHS, HS-SPME and µ-CTE) were studied. Each method was firstly optimised to ensure their reliability in performance. Passive sampling was also compared as a rapid identification of background VOCs. 352 VOCs were identified, 71 from passive sampling and 281 from active headspace sampling, with 62 not previously reported (hexanenitrile, octanone, decanal, indole, aniline, anisole, alpha-pinene as well as pentanol and butanol). The volatiles belonged to a broad range of chemical classes (ketones, aldehydes, aromatics, acids, alkanes, alcohol and cyclic) with their thermal effects (lower boiling points) greatly affecting their abundance at a higher temperature. Micro-chamber (µ-CTE) was found to be the most suitability for routine assessments due to its operational efficiency (rapidity, simplicity and repeatability), identifying 115 compounds from both temperatures (30 °C and 60 °C). Whereas, HS-SPME a widely applied headspace technique, only identified 75 compounds and DHS identified 74 VOCs and SHS only 17 VOCs. Regardless of the extraction technique, the highest extraction efficiency corresponded to aromatics and acids, and the lowest compound extraction were aldehyde and hydrocarbon. The interaction between techniques and temperature for all chemical groups were evaluated using two-way ANOVA (p-value is 0.000197) explaining the highly significant interactions between factors.
    Matched MeSH terms: Aldehydes
  13. Alqadeeri F, Rukayadi Y, Abbas F, Shaari K
    Molecules, 2019 Aug 26;24(17).
    PMID: 31454974 DOI: 10.3390/molecules24173095
    Piper cubeba L. is the berry of a shrub that is indigenous to Java, Southern Borneo, Sumatra, and other islands in the Indian Ocean. The plant is usually used in folk traditional medicine and is an important ingredient in cooking. The purpose of this study was to isolate and purify the bioactive compounds from P. cubeba L. fractions. In addition, the isolated compounds were tested for their antibacterial and antispore activities against vegetative cells and spores of Bacilluscereus ATCC33019, B. subtilis ATCC6633, B.pumilus ATCC14884, and B.megaterium ATCC14581. The phytochemical investigation of the DCM fraction yielded two known compounds: β-asarone (1), and asaronaldehyde (2) were successfully isolated and identified from the methanol extract and its fractions of P. cubeba L. Results showed that exposing the vegetative cells of Bacillus sp. to isolated compounds resulted in an inhibition zone with a large diameter ranging between 7.21 to 9.61 mm. The range of the minimum inhibitory concentration (MIC) was between 63.0 to 125.0 µg/mL and had minimum bactericidal concentration (MBC) at 250.0 to 500.0 µg/mL against Bacillus sp. Isolated compounds at a concentration of 0.05% inactivated more than 3-Log10 (90.99%) of the spores of Bacillus sp. after an incubation period of four hours, and all the spores were killed at a concentration of 0.1%. The structures were recognizably elucidated based on 1D and 2D-NMR analyses (1H, 13C, COSY, HSQC, and HMBC) and mass spectrometry data. Compounds 1, and 2 were isolated for the first time from this plant. In conclusion, the two compounds show a promising potential of antibacterial and sporicidal activities against Bacillus sp. and thus can be developed as an anti-Bacillus agent.
    Matched MeSH terms: Aldehydes/isolation & purification; Aldehydes/pharmacology*
  14. Adam F, Samshuddin S, Ameram N, Subramaya, Samartha L
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o1031-2.
    PMID: 26870482 DOI: 10.1107/S2056989015023294
    The title compound, C19H21N3O, comprises a central pyrazole ring which is N-connected to an aldehyde group and C-connected twice to substituted benzene rings. The pyrazole ring is twisted on the C-C single bond, and the least-squares plane through this ring forms dihedral angles of 82.44 (5) and 4.52 (5)° with the (di-methyl-amino)-benzene and p-tolyl rings, respectively. In the crystal, weak C-H⋯O hydrogen bonds link mol-ecules into supra-molecular tubes along the b axis.
    Matched MeSH terms: Aldehydes
  15. Starkenmann C, Luca L, Niclass Y, Praz E, Roguet D
    J Agric Food Chem, 2006 Apr 19;54(8):3067-71.
    PMID: 16608232
    Polygonum odoratum Lour. has been reclassified as Persicaria odorata (Lour.) Soják [Wilson, K. L. Polygonum sensu lato (Polygonaceae) in Australia. Telopea 1988, 3, 177-182]; other synonyms currently used are Vietnamese mint or Vietnamese coriander and, in Malaysia, Daun Laksa or Laksa plant. The aerial parts of Laksa plant are highly aromatic, and they contain many organic compounds such as (Z)-3-hexenal, (Z)-3-hexenol, decanal, undecanal, and dodecanal that are typical for green, citrus, orange peel, and coriander odors. In addition to these aldehydes, 3-sulfanyl-hexanal and 3-sulfanyl-hexan-1-ol were discovered for the first time in this herb. The fresh leaves are pungent when they are chewed, although the active compound has never been identified. The pungency of Persicaria hydropiper (L.) Spach (formerly Polygonum hydropiper L., synonym water pepper) is produced by polygodial, a 1,4-dialdehyde derived from drimane terpenoids. We also identified polygodial as the active pungent compound in P. odorata (Lour.) Soják.
    Matched MeSH terms: Aldehydes/analysis
  16. Suryaningtyas W, Parenrengi MA, Bajamal AH, Rantam FA
    Malays J Med Sci, 2020 May;27(3):34-42.
    PMID: 32684804 DOI: 10.21315/mjms2020.27.3.4
    Background: Hydrocephalus induces mechanical and biochemical changes in neural cells of the brain. Astrogliosis, as the hallmark of cellular changes in white matter, is involved in demyelination process, re-myelination inhibitory effect, and inhibition of axonal elongation and regeneration. The pathophysiology of this process is not well understood. The purpose of the present study is to elucidate the effect of lipid peroxidation product on astrogliosis through WNT/ β-catenin in kaolin-induced hydrocephalic rats.

    Methods: The study used kaolin-induced hydrocephalic rats. Obstructive hydrocephalus was expected to develop within seven days after induction. The hydrocephalus animals were killed at day 7, 14 and 21 after induction. One group of the saline-injected animals was used for sham-treatment.

    Results: We demonstrated that the hydrocephalic rats exhibited a high expression of 4-hydroxynonenal (4-HNE) in the periventricular area. The expression of β-catenin also increased, following the pattern of 4-HNE. Reactive astrocyte, expressed by positive glial fibrillary acidic protein (GFAP), was upregulated in an incremental fashion as well as the microglia.

    Conclusion: This work suggests that lipid peroxidation product, 4-HNE, activated the WNT/β-catenin pathway, leading to the development of reactive astrocyte and microglia activation in hydrocephalus.

    Matched MeSH terms: Aldehydes
  17. Juhari NH, Martens HJ, Petersen MA
    Molecules, 2021 Oct 16;26(20).
    PMID: 34684840 DOI: 10.3390/molecules26206260
    Fresh roselle are high in moisture and deteriorate easily, which makes drying important for extending shelf-life and increasing availability. This study investigated the influence of different drying methods (oven-drying, freeze-drying, vacuum-drying, and sun-drying) on the quality of roselle calyx expressed as physicochemical properties (moisture content, water activity, soluble solids, color), volatile compounds, and microstructure. Oven-drying and freeze-drying reduced moisture content most while vacuum-drying and sun-drying were not as efficient. All drying methods except sun-drying resulted in water activities low enough to ensure safety and quality. Vacuum-drying had no impact on color of the dry calyx and only small impact on color of water extract of calyx. Drying reduced terpenes, aldehydes, and esters but increased furans. This is expected to reduce fruity, floral, spicy, and green odors and increase caramel-like aroma. Sun-drying produced more ketones, alcohols, and esters. Scanning electron microscopy revealed that freeze-drying preserved the cell structure better, and freeze-dried samples resembled fresh samples most compared to other drying techniques. The study concludes that freeze-drying should be considered as a suitable drying method, especially with respect to preservation of structure.
    Matched MeSH terms: Aldehydes/chemistry
  18. Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, et al.
    Mol Divers, 2021 Mar 01.
    PMID: 33650031 DOI: 10.1007/s11030-021-10196-5
    A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
    Matched MeSH terms: Aldehydes
  19. Chakraborty S, Goswami S, Quah CK, Pakhira B
    R Soc Open Sci, 2018 Jun;5(6):180149.
    PMID: 30110468 DOI: 10.1098/rsos.180149
    Single-crystal X-ray structures of dimeric quinoxaline aldehyde (QA), quinoxaline dihydrazone (DHQ) and HQNM (Goswami S et al. 2013 Tetrahedron Lett.54, 5075-5077. (doi:10.1016/j.tetlet.2013.07.051); Goswami S et al. 2014 RSC Adv.4, 20 922-20 926. (doi:10.1039/C4RA00594E); Goswami S et al. 2014 New J. Chem.38, 6230-6235. (doi:10.1039/C4NJ01498G)) are reported along with the theoretical study. Among them, QA is not acting as an active probe, but DHQ and HQNM are serving as selective and sensitive probe for the Fe3+ cation and the Ni2+ cation, respectively. DHQ can also detect the Fe3+ in commercial fruit juices (grape and pomegranate).
    Matched MeSH terms: Aldehydes
  20. Neda, G.D., Rabeta, M.S., Ong, M.T.
    MyJurnal
    Aqueous and methanol extracts of the flowers of Clitoria ternatea (CT), a popularly
    plant consumed for blue colour in Nasi Kerabu was selected to explore its cytotoxic
    effect on six types of normal and cancer-origin cell lines. These included the hormone-dependent breast cancer cell line (MCF-7), non-hormone-dependent breast cancer cell
    line (MDA-MB-231), human ovary cancer cell line (Caov-3), human cervical cancer cell line (Hela), human liver cancer cell line (HepG2) and human foreskin fibroblast cell line (Hs27). The anti-proliferation activities of the extracts were examined by employing colorimetric MTT (3-(4,5-dimethylthiazol-2-yl) 2,5 diphenyltetrazolium bromide) assay through time periods of 24, 48 and 72 hours. Preliminary results showed that the water extracted of CT had significant effects (p < 0.05) against MCF-7 with an IC50 value of 175.35 µg/ml. Furthermore, the aqueous and methanolic extracts were investigated by Gas Chromatogram-Mass spectrometry (GC-MS). The GC-MS chromatogram analysis of the water extracted had shown five peaks that represented components in the water extract namely mome inositol (38.7%) and pentanal (14.3%). Fifteen chemical constituents were identified in the methanol extract and the major chemical constituents were mome inositol (33.6%), cyclohexen, 1-methyl-4-(1-methylethylideme)- (7.1%), acetic acid, cyano- (6.5%) and hirsutene (5.7%). Heavy metals tested were at very low levels. The analysis conducted on the flowers provides a strong basis for emphasizing the medicinal and nutritional value of CT.
    Matched MeSH terms: Aldehydes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links