Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Abboud AS, Sanagi MM, Ibrahim WAW, Keyon ASA, Aboul-Enein HY
    J Chromatogr Sci, 2018 Feb 01;56(2):177-186.
    PMID: 29186451 DOI: 10.1093/chromsci/bmx095
    In this study, caged calcium alginate-caged multiwalled carbon nanotubes dispersive microsolid phase extraction was described for the first time for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatographic analysis. Fluorene, phenanthrene and fluoranthene were selected as model compounds. The caged calcium alginate-caged multiwalled carbon nanotubes was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermal gravimetry analyses. The effective parameters namely desorption solvent, solvent volume, extraction time, desorption time, the mass of adsorbent and sample volume were optimized. Under the optimum extraction conditions, the developed method showed good linearity in the range of 0.5-50 ng mL-1 (R2 ≥ 0.996), low limits of detection and quantification (0.42-0.22 ng mL-1) (0.73-1.38 ng mL-1) respectively, good relative recoveries (71.2-104.2%) and reproducibility (RSD 1.8-12.4%, n = 3) for the studied PAHs in water sample. With high enrichment factor (1,000), short extraction time (<30 min), low amounts of adsorbent (100 mg) and low amounts of solvent (0.1 mol) have proven that the microsolid phase extraction method based on calcium alginate-caged multiwalled carbon nanotubes are environmentally friendly and convenient extraction method to use as an alternative adsorbent in the simultaneous preconcentration of PAHs from environmental water samples.
    Matched MeSH terms: Alginates/chemistry*
  2. Ahmad ARD, Imam SS, Adnan R, Oh WD, Abdul Latip AF, Ahmad AAD
    Int J Biol Macromol, 2023 Feb 28;229:838-848.
    PMID: 36586654 DOI: 10.1016/j.ijbiomac.2022.12.287
    The primary aim of this study is to develop an economical, stable, and effective heterogeneous catalyst for wastewater remediation via the Fenton oxidation process. For this purpose, Fe3O4-montmorillonite alginate (FeMA) composite beads were synthesized by entrapping Fe3O4-montmorillonite in calcium alginate beads. The performance of the catalysts was evaluated via the Fenton degradation of ofloxacin (OFL), an antibiotic that is frequently detected in water bodies. The physiochemical properties of the FeMA composite beads were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). FeMA composite beads were found to have a higher surface area, higher porosity, and better thermal stability compared to pristine alginate beads. The composite beads were subsequently used for Fenton degradation of ofloxacin (OFL) in an aqueous solution. The effects of Fe3O4-montmorillonite loading on alginate, FeMA composite beads dosage, initial solution pH, initial OFL concentration, different oxidants, H2O2 dosage, reaction temperature, and inorganic salts on Fenton degradation of OFL in aqueous solution was investigated. The results revealed that the percentage of OFL degradation reached about 80 % under optimized conditions, while the total organic carbon (TOC) removal reached about 53 %. The entrapment of Fe3O4-montmorillonite in alginate beads results in less iron ions leaching compared to previous observation, and the efficiency remains constant over the five cycles investigated. The kinetics of the Fenton degradation process are best fitted to the pseudo-first-order kinetic model. It is therefore believed that FeMA composite beads can be a promising material for wastewater remediation via the Fenton oxidation process.
    Matched MeSH terms: Alginates/chemistry
  3. Rezvanian M, Ng SF, Alavi T, Ahmad W
    Int J Biol Macromol, 2021 Feb 28;171:308-319.
    PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221
    Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p 
    Matched MeSH terms: Alginates/chemistry
  4. Taghizadeh Davoudi E, Ibrahim Noordin M, Kadivar A, Kamalidehghan B, Farjam AS, Akbari Javar H
    Biomed Res Int, 2013;2013:495319.
    PMID: 24288681 DOI: 10.1155/2013/495319
    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.
    Matched MeSH terms: Alginates/chemistry
  5. Hasnain MS, Nayak AK, Singh M, Tabish M, Ansari MT, Ara TJ
    Int J Biol Macromol, 2016 Feb;83:71-7.
    PMID: 26608007 DOI: 10.1016/j.ijbiomac.2015.11.044
    Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release were developed through incorporation of nano-hydroxyapatite [nHAp] powders within ionotropically-gelled calcium ion-induced alginate-poly (vinyl pyrrolidone) blends polymeric systems. nHAp powders were synthesized by precipitation technique using calcium hydroxide [Ca(OH)2] and orthophosphoric acid [H3PO4] as raw materials. The average particle size of these was synthesized. nHAp powders was found as 19.04 nm and used to prepare nHAp-alginate-PVP beads containing DS. These beads exhibited drug entrapment efficiency (%) of 65.82±1.88 to 94.45±3.72% and average bead sizes of 0.98±0.07 to 1.23±0.15 mm. These beads were characterized by scanning electron microscopy (SEM) and Fourier transform-infra red (FTIR) spectroscopy analyses. Various nHAp-alginate-PVP beads containing DS exhibited prolonged sustained drug release and followed the Koresmeyer-Peppas model of drug release (R2=0.9908-0.9978) with non-Fickian release (anomalous transport) mechanism (n=0.73-0.84) for drug release over 8 h.
    Matched MeSH terms: Alginates/chemistry*
  6. Idris A, Hassan N, Mohd Ismail NS, Misran E, Yusof NM, Ngomsik AF, et al.
    Water Res, 2010 Mar;44(6):1683-8.
    PMID: 19963234 DOI: 10.1016/j.watres.2009.11.026
    Magnetically separable photocatalyst beads containing nano-sized iron oxide in alginate polymer were prepared. This magnetic photocatalyst beads are used in slurry-type reactors. The magnetism of the catalyst arises from the nanostructured particles gamma-Fe(2)O(3), by which the catalyst can be easily recovered by the application of an external magnetic field. These synthesized beads are sunlight-driven photocatalyst. In the system without magnetic photocatalyst beads, no chromium reduction was observed under sunlight irradiation due to the stability of the chromium (VI). Upon the addition of magnetic photocatalyst beads, the photo-reduction of Cr(VI) was completed in just after only 50min under sunlight irradiation due to the photocatalytic activity of the beads. However when placed away from sunlight, the reduction rate of the chromium is just about 10%. These observations were explained in terms of absorption occurrence of chromium (VI) onto the catalyst surface which took place in this reaction. In addition, photo-reduction rate of chromium (VI) was more significant at lower pH. The results suggest that the use of magnetic separable photocatalyst beads is a feasible strategy for eliminating Cr(VI).
    Matched MeSH terms: Alginates/chemistry
  7. Azad AK, Doolaanea AA, Al-Mahmood SMA, Kennedy JF, Chatterjee B, Bera H
    Int J Biol Macromol, 2021 Aug 31;185:861-875.
    PMID: 34237363 DOI: 10.1016/j.ijbiomac.2021.07.019
    Peppermint oil (PO) is the most prominent oil using in pharmaceutical formulations with its significant therapeutic value. In this sense, this oil is attracting considerable attention from the scientific community due to its traditional therapeutic claim, biological and pharmacological potential in recent research. An organic solvent-free and environment-friendly electrohydrodynamic assisted (EHDA) technique was employed to prepared PO-loaded alginate microbeads. The current study deals with the development, optimization, in vitro characterization, in vivo gastrointestinal tract drug distribution and ex-vivo mucoadhesive properties, antioxidant, and anti-inflammatory effects of PO-loaded alginate microbeads. The optimization results indicated the voltage and flow rate have a significant influence on microbeads size and sphericity factor and encapsulation efficiency. All these optimized microbeads showed a better drug release profile in simulated intestinal fluid (pH 6.8) at 2 h. However, a minor release was found in acidic media (pH 1.2) at 2 h. The optimized formulation showed excellent mucoadhesive properties in ex-vivo and good swelling characterization in intestine media. The microbeads were found to be well distributed in various parts of the intestine in in vivo study. PO-loaded alginate microbeads similarly showed potential antioxidant effects with drug release. The formulation exhibited possible improvement of irritable bowel syndrome (IBS) in MO-induced rats. It significantly suppressed proinflammatory cytokines, i.e., interleukin- IL-1β, and upregulated anti-inflammatory cytokine expression, i.e., IL-10. It would be a promising approach for targeted drug release after oral administration and could be considered an anti-inflammatory therapeutic strategy for treating IBS.
    Matched MeSH terms: Alginates/chemistry*
  8. Md Ramli SH, Wong TW, Naharudin I, Bose A
    Carbohydr Polym, 2016 Nov 05;152:370-381.
    PMID: 27516284 DOI: 10.1016/j.carbpol.2016.07.021
    Conventional alginate pellets underwent rapid drug dissolution and failed to exert colon targeting unless subjected to complex coating. This study designed coatless delayed-release oral colon-specific alginate pellets for ulcerative colitis treatment. Alginate pellets, formulated with water-insoluble ethylcellulose and various calcium salts, were prepared using solvent-free melt pelletization technique which prevented reaction between processing materials during agglomeration and allowed reaction to initiate only in dissolution. Combination of acid-soluble calcium carbonate and highly water-soluble calcium acetate did not impart colon-specific characteristics to pellets due to pore formation in fragmented matrices. Combination of moderately water-soluble calcium phosphate and calcium acetate delayed drug release due to rapid alginate crosslinking by soluble calcium from acetate salt followed by sustaining alginate crosslinking by calcium phosphate. The use of 1:3 ethylcellulose-to-alginate enhanced the sustained drug release attribute. The ethylcellulose was able to maintain the pellet integrity without calcium acetate. Using hydrophobic prednisolone as therapeutic, hydrophilic alginate pellets formulated with hydrophobic ethylcellulose and moderately polar calcium phosphate exhibited colon-specific in vitro drug release and in vivo anti-inflammatory action. Coatless oral colon-specific alginate pellets can be designed through optimal formulation with melt pelletization as the processing technology.
    Matched MeSH terms: Alginates/chemistry*
  9. Supramaniam J, Adnan R, Mohd Kaus NH, Bushra R
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):640-648.
    PMID: 29894784 DOI: 10.1016/j.ijbiomac.2018.06.043
    Magnetic nanocellulose alginate hydrogel beads are produced from the assembly of alginate and magnetic nanocellulose (m-CNCs) as a potential drug delivery system. The m-CNCs were synthesized from cellulose nanocrystals (CNCs) that were isolated from rice husks (RH) by co-precipitation method and were incorporated into alginate-based hydrogel beads with the aim of enhancing mechanical strength and regulating drug release behavior. Ibuprofen was chosen as a model drug. The prepared CNCs, m-CNCs and the alginate hydrogel beads were characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer studies (VSM). Besides the magnetic property, the presence of m-CNCs increased the integrity of the alginate hydrogel beads and the swelling percentage. The drug release study exhibited a controlled release profiles and based on the drug release data, the drug release mechanism was analyzed and discussed based on mathematical models such as Korsmeyer-Peppas and Peppas-Sahlin.
    Matched MeSH terms: Alginates/chemistry*
  10. Ong WD, Tey BT, Quek SY, Tang SY, Chan ES
    J Food Sci, 2015 Jan;80(1):E93-E100.
    PMID: 25529579 DOI: 10.1111/1750-3841.12729
    Oil-in-water (O/W) emulsion-gel systems containing high oil payloads are of increasing interest for food applications because of the reduction in encapsulation cost, consumption frequency or volume of food products. This study shows a facile approach to prepare stable alginate-based O/W emulsions at high oil loading using a mixture of nonionic surfactants (Tween 80 and Span 20) as a template to form gelled-emulsions. The synergistic effects of alginate and surfactants on the O/W emulsion properties were evaluated in terms of oil droplet size and emulsion stability. At 2% (w/v) of alginate and 1% (w/v) of surfactants, the size distribution of oil droplets was narrow and monomodal, even at an oil loading of 70% (v/v). The emulsions formed were stable against phase separation. The oil droplet size could be further reduced to below 1 μm using a high-shear homogenizer. The emulsions formed could be easily molded and gelled into solids of different shapes via ionic gelation. The findings of this study create possible avenues for applications in food industries.
    Matched MeSH terms: Alginates/chemistry*
  11. Voo WP, Ravindra P, Tey BT, Chan ES
    J Biosci Bioeng, 2011 Mar;111(3):294-9.
    PMID: 21216192 DOI: 10.1016/j.jbiosc.2010.11.010
    A comparative study on the stability and potential of alginate and pectin based beads for production of poultry probiotic cells using MRS medium in repeated batch fermentation was conducted. The bead cores, made of three types of materials, i.e., ca-alginate, ca-pectinate and ca-alginate/pectinate, were compared. The effect of single and double layer coatings using chitosan and core material, respectively, on the bead stability and cell production were also studied. The pectin based beads were found to be more stable than that of the alginate beads and their stability was further improved by coating with chitosan. The cell concentration in pectin based beads was comparable to that in the alginate beads. On the other hand, pectin based beads gave significantly lower cell concentration in the growth medium for the initial fermentation cycles when compared to the alginate beads. In conclusion, pectin was found to be potential encapsulation material for probiotic cell production owing to its stability and favourable microenvironment for cell growth.
    Matched MeSH terms: Alginates/chemistry*
  12. Surjit Singh CK, Lim HP, Tey BT, Chan ES
    Carbohydr Polym, 2021 Jan 01;251:117110.
    PMID: 33142647 DOI: 10.1016/j.carbpol.2020.117110
    The commercial application of liquid-state Pickering emulsions in food systems remains a major challenge. In this study, we developed a spray-dried Pickering emulsion powder using chitosan as a Pickering emulsifier and alginate as a coating material. The functionality of the powder was evaluated in terms of its oxidative stability, pH-responsiveness, mucoadhesivity, and lipid digestibility. The Pickering emulsion powder was oxidatively more stable than the conventional emulsion powder stabilized by gum Arabic. The powder exhibited pH-responsiveness, whereby it remained intact in acidic pH, but dissolved to release the emulsion in 'Pickering form' at near-neutral pH. The Pickering emulsion powder was also mucoadhesive and could be digested by lipase in a controlled manner. These findings suggested that the multi-functional Pickering emulsion powder could be a potential delivery system for applications in the food industry.
    Matched MeSH terms: Alginates/chemistry*
  13. Fu J, Yap JX, Leo CP, Chang CK
    Int J Biol Macromol, 2023 Apr 15;234:123642.
    PMID: 36791941 DOI: 10.1016/j.ijbiomac.2023.123642
    Although anionic polyelectrolyte hydrogel beads offer attractive adsorption of cationic dyes, phosphate adsorption is limited by electrostatic interactions. In this work, carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were modified with calcium carbonate (CaCO3) and/or bentonite (Be). The compatibility between CaCO3 and Be was proven by the homogeneous surface, as shown in the scanning electron microscopic images. Fourier-transform infrared and X-ray diffraction spectra further confirmed the existence of inorganic filler in the hydrogel beads. Although CMC/SA/Be/CaCO3 hydrogel beads attained the highest methylene blue and phosphate adsorption capacities (142.15 MB mg/g, 90.31 P mg/g), phosphate adsorption was significantly improved once CaCO3 nanoparticles were incorporated into CMC/SA/CaCO3 hydrogel beads. The kinetics of MB adsorption by CMC/SA hydrogel beads with or without inorganic fillers could be described by the pseudo-second-order model under chemical interactions. The phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads could be explained by the Elovich model due to heterogeneous properties. The incorporation of Be and CaCO3 also improved the phosphate adsorption through chemical interaction since Langmuir isotherm fitted the phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads. Unlike MB adsorption, the reusability of these hydrogel beads in phosphate adsorption reduced slightly after 5 cycles.
    Matched MeSH terms: Alginates/chemistry
  14. Samak YO, Santhanes D, El-Massik MA, Coombes AGA
    J Microencapsul, 2019 Mar;36(2):204-214.
    PMID: 31164027 DOI: 10.1080/02652048.2019.1620356
    Nigella sativa extract (NSE) was incorporated in alginate microcapsules using aerosolisation and homogenisation methods, respectively, with the aim of delivering high concentrations of the active species, thymoquinone (TQ), directly to sites of inflammation in the colon following oral administration. Encapsulation of NSE was accomplished either by direct loading or diffusion into blank microparticles. Microcapsules in the size range 40-60 µm exhibited significantly higher NSE loading up to 42% w/w and encapsulation efficiency (EE) up to 63% when the extract was entrapped by direct encapsulation compared with 4.1 w/w loading, 6.2% EE when NSE was incorporated by diffusion loading. Sequential exposure of samples to simulated intestinal fluids (SIFs) revealed that the microcapsules suppressed NSE release in simulated gastric fluid (SGF) for 2 h and SIF for 4 h and liberated most of the NSE content (80%) in simulated colonic fluid (SCF) over 18 h. NSE released in SCF at 12 h exhibited antioxidant activity, when measured using the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay at levels comparable with the activity of unencapsulated extract. These findings demonstrate the potential of oral alginate microcapsules as highly efficient, targeted carriers for colonic delivery of NSE in the treatment of inflammatory bowel disease.
    Matched MeSH terms: Alginates/chemistry*
  15. Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M
    Int J Biol Macromol, 2018 Feb;107(Pt B):1792-1799.
    PMID: 29032214 DOI: 10.1016/j.ijbiomac.2017.10.045
    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (SBET), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes.
    Matched MeSH terms: Alginates/chemistry*
  16. Ngah WS, Fatinathan S
    J Environ Sci (China), 2010;22(3):338-46.
    PMID: 20614774
    The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
    Matched MeSH terms: Alginates/chemistry
  17. Majidnia Z, Fulazzaky MA
    J Environ Manage, 2017 Apr 15;191:219-227.
    PMID: 28107756 DOI: 10.1016/j.jenvman.2017.01.019
    The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L(-1) on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L(-1). The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties.
    Matched MeSH terms: Alginates/chemistry
  18. Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M
    Biomed Res Int, 2014;2014:146723.
    PMID: 25110655 DOI: 10.1155/2014/146723
    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.
    Matched MeSH terms: Alginates/chemistry*
  19. Wong TW, Chan LW, Kho SB, Heng PW
    J Control Release, 2005 Jun 2;104(3):461-75.
    PMID: 15911046
    The influence of microwave irradiation on the drug release properties of freshly prepared and aged alginate, alginate-chitosan and chitosan beads was investigated. The beads were prepared by extrusion method with sulphathiazole as a model drug. The dried beads were subjected to microwave irradiation at 80 W for 10 min, 20 min or three consecutive cycles of 10 and 20 min, respectively. The profiles of drug dissolution, drug content, drug stability, drug polymorphism, drug-polymer interaction, polymer crosslinkage and complexation were determined by dissolution testing, drug content assay, differential scanning calorimetry and Fourier transform infra-red spectroscopy. The chemical stability of drug embedded in beads was unaffected by microwave conditions and length of storage time. The release property of drug was mainly governed by the extent of polymer interaction in beads. The aged alginate beads required intermittent cycles of microwave irradiation to induce drug release retarding effect in contrast to their freshly prepared samples. Unlike the alginate beads, the level of polymer interaction was higher in aged alginate-chitosan beads than the corresponding fresh beads. The drug release retarding property of aged alginate-chitosan beads could be significantly enhanced through subjecting the beads to microwave irradiation for 10 min. No further change in drug release from these beads was observed beyond 30 min of microwave irradiation. Unlike beads containing alginate, the rate and extent of drug released from the aged chitosan beads were higher upon treatment by microwave in spite of the higher degree of polymer interaction shown by the latter on prolonged storage. The observation suggested that the response of polymer matrix to microwave irradiation in induction of drug release retarding property was largely affected by the molecular arrangement of the polymer chains.
    Matched MeSH terms: Alginates/chemistry
  20. Teh AH, Sim PF, Hisano T
    Biochem Biophys Res Commun, 2020 12 10;533(3):257-261.
    PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064
    The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
    Matched MeSH terms: Alginates/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links