Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Chiu HI, Lim V
    Int J Nanomedicine, 2021;16:2995-3020.
    PMID: 33911862 DOI: 10.2147/IJN.S302238
    PURPOSE: In chemotherapy, oral administration of drug is limited due to lack of drug specificity for localized colon cancer cells. The inability of drugs to differentiate cancer cells from normal cells induces side effects. Colonic targeting with polymeric nanoparticulate drug delivery offers high potential strategies for delivering hydrophobic drugs and fewer side effects to the target site. Disulfide cross-linked polymers have recently acquired high significance due to their potential to degrade in reducing colon conditions while resisting the upper gastrointestinal tract's hostile environment. The goal of this project is, therefore, to develop pH-sensitive and redox-responsive fluorescein-labeled wheat germ agglutinin (fWGA)-mounted disulfide cross-linked alginate nanoparticles (fDTP2) directly targeting docetaxel (DTX) in colon cancer cells.

    METHODS: fDTP2 was prepared by mounting fWGA on DTX-loaded nanoparticles (DTP2) using the two-step carbodiimide method. Morphology of fDTP2 was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) study was carried out to determine the mean diameter, polydispersity index (PDI) and zeta potential of fDTP2. Cellular uptake efficiency was examined using fluorescence microplate reader. Biocompatibility and active internalization of fDTP2 were conducted on HT-29.

    RESULTS: fDTP2 was found to exhibit a DTX loading efficiency of 19.3%. SEM and TEM tests revealed spherical nanoparticles. The in vitro DTX release test showed a cumulative release of 54.7%. From the DLS study, fDTP2 reported a 277.7 nm mean diameter with PDI below 0.35 and -1.0 mV zeta potential. HT-29 which was fDTP2-treated demonstrated lower viability than L929 with a half maximal inhibitory concentration (IC50) of 34.7 µg/mL. HT-29 (33.4%) internalized fDTP2 efficiently at 2 h incubation. The study on HT-29 active internalization of nanoparticles through fluorescence and confocal imaging indicated such.

    CONCLUSION: In short, fDTP2 demonstrated promise as a colonic drug delivery DTX transporter.

    Matched MeSH terms: Alginates/chemistry
  2. Karunanithi P, Murali MR, Samuel S, Raghavendran HRB, Abbas AA, Kamarul T
    Carbohydr Polym, 2016 08 20;147:294-303.
    PMID: 27178935 DOI: 10.1016/j.carbpol.2016.03.102
    Presence of sulfated polysaccharides like heparan sulphate has often been implicated in the regulation of chondrogenesis. However, recently there has been a plethora of interest in the use of non-animal extracted analogs of heparan sulphate. Here we remodeled alginate (1.5%) by incorporating fucoidan (0.5%), a natural sulphated polysaccharide extracted from seaweeds to form a composite hydrogel (Al-Fu), capable of enhancing chondrogenesis of human mesenchymal stromal cells (hMSCs). We confirmed the efficiency of fucoidan incorporation by FTIR and EDX analysis. Further, its ability to support hMSC attachment and chondrogenic differentiation was confirmed by SEM, biochemical glycosaminoglycan quantification, real-time quantitative PCR and immunocytochemical analyses of chondrogenic markers Sox-9, Collagen II, Aggrecan and COMP. Effect of Al-Fu hydrogel on hMSC hypertrophy was also confirmed by the downregulation of hypertrophic genes Collagen X and Runx2. This composite scaffold can hence be used as a cartilage biomimetic biomaterial to drive hMSC chondrogenesis and for other cartilage repair based therapies.
    Matched MeSH terms: Alginates/chemistry*
  3. Ghosal K, Das A, Das SK, Mahmood S, Ramadan MAM, Thomas S
    Int J Biol Macromol, 2019 Jun 01;130:645-654.
    PMID: 30797807 DOI: 10.1016/j.ijbiomac.2019.02.117
    This study aimed to develop and characterize the calcium alginate films loaded with diclofenac sodium and other hydrophilic polymers with different degrees of cross-linking obtained by external gelation process. To the formed films different physicochemical evaluation were performed which showed an initial character of the films. The films produced by this external gelation process were found thicker (0.031-0.038 mm) and stronger (51.9-52.9 MPa) but less elastic (2.3%) than those non-cross-linked films (0.029 mm; 39.7 MPa; 4.4%). The lower water vapor permeability (WVP) values of the films were obtained where maximum level of crosslinking occurs. Composite films can be cross-linked in presence of external crosslinking agent to improve the quality of the produced matrices for various uses. The characterization of the film was performed using Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR) analysis. The Scanning Electron Microscopy (SEM) study showed the morphology of treated composite films. The kinetic release studies showed a sustained release of the drug from the formulated films as it can be prolonged in composite film. The prepared biodegradable Ca-Alginate bio-composite film may be of clinical importance for its therapeutic benefit.
    Matched MeSH terms: Alginates/chemistry*
  4. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
    Matched MeSH terms: Alginates/chemistry*
  5. Teh AH, Sim PF, Hisano T
    Biochem Biophys Res Commun, 2020 12 10;533(3):257-261.
    PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064
    The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
    Matched MeSH terms: Alginates/chemistry*
  6. Surjit Singh CK, Lim HP, Tey BT, Chan ES
    Carbohydr Polym, 2021 Jan 01;251:117110.
    PMID: 33142647 DOI: 10.1016/j.carbpol.2020.117110
    The commercial application of liquid-state Pickering emulsions in food systems remains a major challenge. In this study, we developed a spray-dried Pickering emulsion powder using chitosan as a Pickering emulsifier and alginate as a coating material. The functionality of the powder was evaluated in terms of its oxidative stability, pH-responsiveness, mucoadhesivity, and lipid digestibility. The Pickering emulsion powder was oxidatively more stable than the conventional emulsion powder stabilized by gum Arabic. The powder exhibited pH-responsiveness, whereby it remained intact in acidic pH, but dissolved to release the emulsion in 'Pickering form' at near-neutral pH. The Pickering emulsion powder was also mucoadhesive and could be digested by lipase in a controlled manner. These findings suggested that the multi-functional Pickering emulsion powder could be a potential delivery system for applications in the food industry.
    Matched MeSH terms: Alginates/chemistry*
  7. Adzmi F, Meon S, Musa MH, Yusuf NA
    J Microencapsul, 2012;29(3):205-10.
    PMID: 22309479 DOI: 10.3109/02652048.2012.659286
    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p 
    Matched MeSH terms: Alginates/chemistry*
  8. Abdullah GZ, Abdulkarim MF, Chitneni M, Mutee AF, Ameer OZ, Salman IM, et al.
    Pharm Dev Technol, 2011 Aug;16(4):331-42.
    PMID: 20429815 DOI: 10.3109/10837451003739255
    Mebeverine HCl is a water soluble drug commonly used to treat irritable bowel syndrome by acting directly on the smooth muscles of the colon. This work was aimed at the formulation and in vitro evaluation of a colon-targeted drug delivery system containing mebeverine HCl. Matrix tablets were prepared using ethyl cellulose (EC), Eudragit RL 100 either solely or in combination by wet granulation technique. Dissolution was carried out in 0.1 N HCl for 2?h followed by pH 6.8 phosphate buffer for eight hours. Uncoated forms released more than 5% drug in 0.1 N HCl therefore, Eudragit L100 was used as a coat. The results indicated very slow release profile. As a result, single retardant was used to prepare the matrix and coated by Eudragit L 100. The matrix containing 7% Eudragit RL 100 and 6% of binder was subjected to further studies to assess the effect of different coats (Eudragit L 100-55 and cellulose acetate phthalate) and different binders (pectin and sodium alginate) on the release profile. Eudragit L 100 and pectin were the best coating agent and binder, respectively. The final formula was stable and it can be concluded that the prepared system has the potential to deliver mebeverine HCl in vivo to the colon.
    Matched MeSH terms: Alginates/chemistry
  9. Taghizadeh Davoudi E, Ibrahim Noordin M, Kadivar A, Kamalidehghan B, Farjam AS, Akbari Javar H
    Biomed Res Int, 2013;2013:495319.
    PMID: 24288681 DOI: 10.1155/2013/495319
    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.
    Matched MeSH terms: Alginates/chemistry
  10. Darah I, Nisha M, Lim SH
    Appl Biochem Biotechnol, 2015 Mar;175(5):2629-36.
    PMID: 25547814 DOI: 10.1007/s12010-014-1447-4
    Bacterial cells of Enterobacter aerogenes NBO2 were entrapped in calcium alginate beads in order to enhance polygalacturonase production compared to free cells. The optimized condition of 5 % (w/v) sodium alginate concentration, agitation speed of 250 rpm, and 15 beads of calcium alginate with inoculum size of 4 % (v/v; 5.4 × 10(7) cells/ml) produced 23.48 U/mL of polygalacturonase compared to free cells of 18.54 U/ml. There was about 26.6 % increment in polygalaturonase production. However, in this study, there was 296.6 % of increment in polygalacturonase production after improvement parameters compared to before improvement parameters of calcium alginate bead immobilization cells (5.92 U/ml). This research has indicated that optimized physical parameters of calcium alginate bead immobilization cells have significantly enhanced the production of polygalacturonase.
    Matched MeSH terms: Alginates/chemistry
  11. Majidnia Z, Fulazzaky MA
    J Environ Manage, 2017 Apr 15;191:219-227.
    PMID: 28107756 DOI: 10.1016/j.jenvman.2017.01.019
    The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L(-1) on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L(-1). The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties.
    Matched MeSH terms: Alginates/chemistry
  12. Idris A, Hassan N, Mohd Ismail NS, Misran E, Yusof NM, Ngomsik AF, et al.
    Water Res, 2010 Mar;44(6):1683-8.
    PMID: 19963234 DOI: 10.1016/j.watres.2009.11.026
    Magnetically separable photocatalyst beads containing nano-sized iron oxide in alginate polymer were prepared. This magnetic photocatalyst beads are used in slurry-type reactors. The magnetism of the catalyst arises from the nanostructured particles gamma-Fe(2)O(3), by which the catalyst can be easily recovered by the application of an external magnetic field. These synthesized beads are sunlight-driven photocatalyst. In the system without magnetic photocatalyst beads, no chromium reduction was observed under sunlight irradiation due to the stability of the chromium (VI). Upon the addition of magnetic photocatalyst beads, the photo-reduction of Cr(VI) was completed in just after only 50min under sunlight irradiation due to the photocatalytic activity of the beads. However when placed away from sunlight, the reduction rate of the chromium is just about 10%. These observations were explained in terms of absorption occurrence of chromium (VI) onto the catalyst surface which took place in this reaction. In addition, photo-reduction rate of chromium (VI) was more significant at lower pH. The results suggest that the use of magnetic separable photocatalyst beads is a feasible strategy for eliminating Cr(VI).
    Matched MeSH terms: Alginates/chemistry
  13. Ngah WS, Fatinathan S
    J Environ Sci (China), 2010;22(3):338-46.
    PMID: 20614774
    The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
    Matched MeSH terms: Alginates/chemistry
  14. Wong TW, Sumiran N
    J Pharm Pharmacol, 2014 May;66(5):646-57.
    PMID: 24329400 DOI: 10.1111/jphp.12192
    Objective: Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties.

    Methods: The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated.

    Key findings: Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation.

    Conclusion: Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles.

    Keywords: Tween 80; alginate; insulin; nanoparticle; pectin.
    Matched MeSH terms: Alginates/chemistry
  15. Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF
    Int J Biol Macromol, 2017 Apr;97:131-140.
    PMID: 28064048 DOI: 10.1016/j.ijbiomac.2016.12.079
    Natural polymer-based hydrogel films have great potential for biomedical applications and are good candidates for wound dressings. In this study, we aimed to develop simvastatin-loaded crosslinked alginate-pectin hydrogel films by ionic crosslinking to improve the mechanical characteristics, wound fluid uptake and drug release behavior. Alginate-pectin hydrocolloid films were chemically crosslinked by immersing in different concentrations of CaCl2 (0.5-3% w/v) for 2-20min. The degree of crosslinking was influenced by both contact time and CaCl2 concentration. The optimized conditions for crosslinking were 0.5% and 1% (CaCl2) for 2min. The optimized hydrogel films were then characterized for their physical, mechanical, morphological, thermal, in vitro drug release, and cytocompatibility profiles. Crosslinking improved the mechanical profile and wound fluid uptake capacity of dressings. The hydrogel films were able to maintain their physical integrity during use, and the best results were obtained with the film in which the extent of crosslinking was low (0.5%). Thermal analysis confirmed that the crosslinking process enhanced the thermal stability of hydrogel films. Sustained, slow release of simvastatin was obtained from the crosslinked films and in vitro cytotoxicity assay demonstrated that the hydrogel films were non-toxic.
    Matched MeSH terms: Alginates/chemistry*
  16. Rehman S, Madni A, Jameel QA, Usman F, Raza MR, Ahmad F, et al.
    AAPS PharmSciTech, 2022 Nov 17;23(8):304.
    PMID: 36396831 DOI: 10.1208/s12249-022-02456-w
    The current study sought to create graphene oxide-based superstructures for gastrointestinal drug delivery. Graphene oxide has a large surface area that can be used to load anti-cancer drugs via non-covalent methods such as surface adsorption and hydrogen bonding. To enhance the bio-applicability of graphene oxide, nano-hybrids were synthesized by encapsulating the graphene oxide into calcium alginate hydrogel beads through the dripping-extrusion technique. These newly developed bio-nanocomposite hybrid hydrogel beads were evaluated in structural analysis, swelling study, drug release parameters, haemolytic assay, and antibacterial activity. Doxorubicin served as a model drug. The drug entrapment efficiency was determined by UV-spectroscopy analysis and was found to be high at ⁓89% in graphene oxide hybrid hydrogel beads. These fabricated hydrogel beads ensure the drug release from a hybrid polymeric matrix in a more controlled and sustained pattern avoiding the problems associated with a non-hybrid polymeric system. The drug release study of 12 h shows about 83% release at pH 6.8. In vitro drug release kinetics proved that drug release was a Fickian mechanism. The cytotoxic effect of graphene oxide hybrid alginate beads was also determined by evaluating the morphology of bacterial cells and red blood cells after incubation. Additionally, it was determined that the sequential encapsulation of graphene oxide in alginate hydrogel beads hides its uneven edges and lessens the graphene oxide's negative impacts. Also, the antibacterial study and biocompatibility of fabricated hydrogel beads made them potential candidates for gastrointestinal delivery.
    Matched MeSH terms: Alginates/chemistry
  17. Kadir A, Mokhtar MT, Wong TW
    J Pharm Sci, 2013 Dec;102(12):4353-63.
    PMID: 24258282 DOI: 10.1002/jps.23742
    The relationship of high and low molecular weight mannuronic acid (M)- and guluronic acid (G)-rich alginate nanoparticles as oral insulin carrier was elucidated. Nanoparticles were prepared through ionotropic gelation using Ca(2+) , and then in vitro physicochemical attributes and in vivo antidiabetic characteristics were examined. The alginate nanoparticles had insulin release retarded when the matrices had high alginate-to-insulin ratio or strong alginate-insulin interaction via OH moiety. High molecular weight M-rich alginate nanoparticles were characterized by assemblies of long polymer chains that enabled insulin encapsulation with weaker polymer-drug interaction than nanoparticles prepared from other alginate grades. They were able to encapsulate and yet release and have insulin absorbed into systemic circulation, thereby lowering rat blood glucose. High molecular weight G- and low molecular weight M-rich alginate nanoparticles showed remarkable polymer-insulin interaction. This retarded the drug release and negated its absorption. Blood glucose lowering was, however, demonstrated in vivo with insulin-free matrices of these nanoparticles because of the strong alginate-glucose binding that led to intestinal glucose retention. Alginate nanoparticles can be used as oral insulin carrier or glucose binder in the treatment of diabetes as a function of its chemical composition. High molecular weight M-rich alginate nanoparticles are a suitable vehicle for future development into oral insulin carrier.
    Matched MeSH terms: Alginates/chemistry*
  18. Idris A, Misran E, Hassan N, Abd Jalil A, Seng CE
    J Hazard Mater, 2012 Aug 15;227-228:309-16.
    PMID: 22682796 DOI: 10.1016/j.jhazmat.2012.05.065
    In this study magnetic separable photocatalyst beads containing maghemite nanoparticles (γ-Fe(2)O(3)) in polyvinyl alcohol (PVA) polymer were prepared and used in the reduction of Cr(VI) to Cr(III) in an aqueous solution under sunlight. The unique superparamagnetic property of the photocatalyst contributed by the γ-Fe(2)O(3) and robust property of PVA polymer allow the magnetic beads to be recovered easily and reused for at least 7 times without washing. The concentration of γ-Fe(2)O(3) was varied from 8% (v/v) to 27% (v/v) and the results revealed that the beads with 8% (v/v) γ-Fe(2)O(3) exhibited the best performance where Cr(VI) was reduced to Cr(III) in only 30 min under sunlight. The use of the PVA has improved the bead properties and life cycle of beads which is in line with sustainable practices.
    Matched MeSH terms: Alginates/chemistry*
  19. Chu WL, Phang SM
    Mar Drugs, 2016 Dec 07;14(12).
    PMID: 27941599 DOI: 10.3390/md14120222
    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
    Matched MeSH terms: Alginates/chemistry
  20. Supramaniam J, Adnan R, Mohd Kaus NH, Bushra R
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):640-648.
    PMID: 29894784 DOI: 10.1016/j.ijbiomac.2018.06.043
    Magnetic nanocellulose alginate hydrogel beads are produced from the assembly of alginate and magnetic nanocellulose (m-CNCs) as a potential drug delivery system. The m-CNCs were synthesized from cellulose nanocrystals (CNCs) that were isolated from rice husks (RH) by co-precipitation method and were incorporated into alginate-based hydrogel beads with the aim of enhancing mechanical strength and regulating drug release behavior. Ibuprofen was chosen as a model drug. The prepared CNCs, m-CNCs and the alginate hydrogel beads were characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer studies (VSM). Besides the magnetic property, the presence of m-CNCs increased the integrity of the alginate hydrogel beads and the swelling percentage. The drug release study exhibited a controlled release profiles and based on the drug release data, the drug release mechanism was analyzed and discussed based on mathematical models such as Korsmeyer-Peppas and Peppas-Sahlin.
    Matched MeSH terms: Alginates/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links