Displaying publications 1 - 20 of 455 in total

Abstract:
Sort:
  1. Pern YC, Lee SY, Ng WL, Mohamed R
    3 Biotech, 2020 Mar;10(3):103.
    PMID: 32099744 DOI: 10.1007/s13205-020-2072-2
    Tree species in the Aquilarieae tribe of the Thymelaeaceae family produce agarwood, a natural product highly valued for its fragrance, but the species are under threat due to indiscriminate harvesting. For conservation of these species, molecular techniques such as DNA profiling have been used. In this study, we assessed cross-amplification of microsatellite markers, initially developed for three Aquilaria species (A.crassna, A.malaccensis, and A.sinensis), on ten other agarwood-producing species, including members of Aquilaria (A.beccariana, A.hirta, A.microcarpa, A.rostrata, A.rugosa, A.subintegra, and A.yunnanensis) and Gyrinops (G.caudata, G.versteegii, and G.walla), both from the Aquilarieae tribe. Primers for 18 out of the 30 microsatellite markers successfully amplified bands of expected sizes in 1 sample each of at least 10 species. These were further used to genotype 74 individuals representing all the 13 studied species, yielding 13 cross-amplifiable markers, of which only 1 being polymorphic across all species. At each locus, the number of alleles ranged from 7 to 23, indicating a rather high variability. Four markers had relatively high species discrimination power. Our results demonstrated that genetic fingerprinting can be an effective tool in helping to manage agarwood genetic resources by potentially supporting the chain-of-custody of agarwood and its products in the market.
    Matched MeSH terms: Alleles
  2. Purayil FT, Robert GA, Gothandam KM, Kurup SS, Subramaniam S, Cheruth AJ
    3 Biotech, 2018 Feb;8(2):109.
    PMID: 29430370 DOI: 10.1007/s13205-018-1108-3
    Nine (9) different date palm (Phoenix dactylifera L.) cultivars from UAE, which differ in their flower timings were selected to determine the polymorphism and genetic relationship between these cultivars. Hereditary differences and interrelationships were assessed utilizing inter-simple sequence repeat (ISSR) and directed amplification of minisatellite DNA region (DAMD) primers. Analysis on eight DAMD and five ISSR markers produced total of 113 amplicon including 99 polymorphic and 14 monomorphic alleles with a polymorphic percentage of 85.45. The average polymorphic information content for the two-marker system was almost similar (DAMD, 0.445 and ISSR, 0.459). UPGMA based clustering of DAMD and ISSR revealed that mid-season cultivars, Mkh (Khlas) and MB (Barhee) grouped together to form a subcluster in both the marker systems. The genetic similarity analysis followed by clustering of the cumulative data from the DAMD and ISSR resulted in two major clusters with two early-season cultivars (ENg and Ekn), two mid-season cultivars (MKh and MB) and one late-season cultivar (Lkhs) in cluster 1, cluster 2 includes two late-season cultivars, one early-season cultivar and one mid-season cultivar. The cluster analysis of both DAMD and ISSR marker revealed that, the patterns of variation between some of the tested cultivars were similar in both DNA marker systems. Hence, the present study signifies the applicability of DAMD and ISSR marker system in detecting genetic diversity of date palm cultivars flowering at different seasons. This may facilitate the conservation and improvement of date palm cultivars in the future.
    Matched MeSH terms: Alleles
  3. Naidu R, Har YC, Taib NA
    APMIS, 2011 Jul;119(7):460-7.
    PMID: 21635553 DOI: 10.1111/j.1600-0463.2011.02753.x
    In the present study, we evaluated the association between the TP53BP1 Glu353Asp and T-885G polymorphisms and breast cancer risk as well as with the clinicopathological characteristics of the patients. Genotyping of these polymorphisms was performed on 387 breast cancer patients and 252 normal and healthy women who had no history of any malignancy using PCR-RFLP method in a hospital-based Malaysian population. Breast cancer risk was not observed among women who were heterozygous (OR(adj) = 0.887; 95% CI, 0.632-1.245) or homozygous (OR(adj) = 1.083; 95% CI, 0.595-1.969) for Asp allele, and those carriers of Asp allele (OR(adj) = 0.979; 95% CI, 0.771-1.243). Similarly, women who were TG heterozygotes (OR(adj) = 1.181; 95% CI, 0.842-1.658) or GG homozygotes (OR(adj) = 1.362; 95% CI, 0.746-2.486) and carriers of G allele (OR(adj) = 1.147; 95% CI, 0.903-1.458) were not associated with increased risk of breast cancer. Asp allele genotype was significantly associated with ER negativity (p = 0.0015) and poorly differentiated tumours (p = 0.008), but G allele genotype was not associated with the clinicopathological characteristics. In conclusion, Glu353Asp and T-885G polymorphic variants might not have an influence on breast cancer risk, thus might not be potential candidates for cancer susceptibility. Glu353Asp variant might be associated with tumour aggressiveness as defined by its association with ER negativity and poorly differentiated tumours.
    Matched MeSH terms: Alleles
  4. W. Wilonita, R. Nurliyana, D.D. Asma, M. Noorazizah, M.Y. Hirzun
    ASM Science Journal, 2013;7(2):105-112.
    MyJurnal
    Molecular markers have been intensively used in assisting breeding to reduce the time taken by conventional breeding as well as helping introgression of specific traits. Baseline analysis of known markers is crucial in developing a genetic database on disease and pest resistance for local rice germplasm which does not yet
    exist. In this study seven local rice varieties, including the popular MR219 and MRQ 74 and MRQ 76 (newly developed aromatic rice varieties), together with a foreign variety, Intani-2, were screened for genetic markers related to pest and disease resistance. One hundred and twenty-two type-related markers (SSR, STS, InDel and Allele-specific) for genes resistant to bacterial leaf blight, blast and brown planthopper were screened using PCR amplification and validated by sequencing. It was found that each variety had its own pattern of resistance. Using allele-specific markers namely pBPH9, pTA248 and Pisbdom were found to be the most efficient way to screen for the targeted genes. Of the seven varieties, MR219 and MR232 were found to have the highest distribution of markers for resistance genes against pest and diseases studied.
    Matched MeSH terms: Alleles
  5. Tan JAMA, Yap SF, Tan KL, Wong YC, Wee YC, Kok JL
    Acta Haematol., 2003;109(4):169-75.
    PMID: 12853688 DOI: 10.1159/000070965
    Molecular characterization of the compound heterozygous condition - (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia - in four families showing mild beta-thalassemia intermedia was carried out using DNA amplification techniques. Using the Amplification Refractory Mutation System (ARMS) to confirm the beta-mutations and DNA amplification to detect the 100-kb Chinese-specific (G)gamma((A)gammadeltabeta)(o)-deletion, ()two families were confirmed to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia with the IVSII No. 654 beta(+)-allele. In the third family, the (G)gamma((A)gammadeltabeta)(o)-deletion was confirmed in the father and the mother was a beta-thalassemia carrier with the cd 41-42 beta(o)-allele. Their affected child with (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia was found to be transfusion dependent. The same (G)gamma((A)gammadeltabeta)(o)-deletion and beta-thalassemia (cd 41-42) was also confirmed in a fourth family. In addition, the mother was also diagnosed with Hb H disease (genotype -alpha(3.7)/-(SEA)). Both the children were found to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia but they were not transfusion dependent and this could be due to co-inheritance of alpha-thalassemia-2 (genotype-alpha(3.7)/alphaalpha) in the children together with their compound heterozygous condition.
    Matched MeSH terms: Alleles
  6. Bamaga OA, Mahdy MA, Lim YA
    Acta Trop, 2015 Sep;149:59-63.
    PMID: 26001972 DOI: 10.1016/j.actatropica.2015.05.013
    Malaria is still a major public health problem in Yemen. More than 95% of the malaria cases are due to Plasmodium ‎falciparum‎. Recently in Yemen, the antimalarial treatment policy was changed from chloroquine (CQ) to artemisinin combination therapy (ACTs). However, CQ is still available and prescribed in the Yemeni market. The persistence of CQ resistance will be prolonged if the shift to ACT and the simultaneous withdrawal of CQ are not rigorously implemented. The aim of the current survey is to detect chloroquine-resistant mutations in P. falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multi-drug resistance-1 (pfmdr1) genes. These data will be important for future monitoring and assessment of antimalarial drug policy in Yemen. Blood specimens were collected from 735 individuals from different districts of the Hadhramout province, Yemen by house-to-house visit. Mutation-specific nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) methods were used to investigate the mutations in the pfmdr1(codons 86 and 1246) and pfcrt (codons 76, 271, 326, 356 and 371) genes. The overall prevalence of pfcrt mutations at codons 76, 271, 326 and 371 were 50.4%, 58.7%, 54.3% and 44.9%, respectively. All isolates had wild-type pfcrt 356 allele. The majority of pfmdr1 86 alleles (83.3%) and all pfmdr1 1246 alleles were wild type. There was no association between pfcrt mutations and symptomatology, gender and age groups. In conclusion, point mutations in codons 76, 271, 326 and 371 of pfcrt of P. falciparum are high suggesting a sustained high CQ resistance even after 4 years of shifting to ACTs. These findings warrant complete withdrawal of CQ use from the Yemeni market for P. falciparum and careful usage of CQ for treating Plasmodium vivax.
    Matched MeSH terms: Alleles
  7. Alareqi LMQ, Mahdy MAK, Lau YL, Fong MY, Abdul-Ghani R, Mahmud R
    Acta Trop, 2016 Oct;162:174-179.
    PMID: 27343362 DOI: 10.1016/j.actatropica.2016.06.016
    Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a self-medication in the study area. However, the almost predominant wild-type alleles of the genes associated with resistance to AS and SP among P. falciparum isolates in the present study indicates the sustained efficacy of the currently adopted first-line treatment of AS plus SP in the study area.
    Matched MeSH terms: Alleles
  8. Cheong FW, Dzul S, Fong MY, Lau YL, Ponnampalavanar S
    Acta Trop, 2020 Jun;206:105454.
    PMID: 32205132 DOI: 10.1016/j.actatropica.2020.105454
    Transmission of Plasmodium vivax still persist in Malaysia despite the government's aim to eliminate malaria in 2020. High treatment failure rate of chloroquine monotherapy was reported recently. Hence, parasite drug susceptibility should be kept under close monitoring. Mutation analysis of the drug resistance markers is useful for reconnaissance of anti-malarial drug resistance. Hitherto, information on P. vivax drug resistance marker in Malaysia are limited. This study aims to evaluate the mutations in four P. vivax drug resistance markers pvcrt-o (putative), pvmdr1 (putative), pvdhfr and pvdhps in 44 isolates from Malaysia. Finding indicates that 27.3%, 100%, 47.7%, and 27.3% of the isolates were carrying mutant allele in pvcrt-o, pvmdr1, pvdhfr and pvdhps genes, respectively. Most of the mutant isolates had multiple point mutations rather than single point mutation in pvmdr1 (41/44) and pvdhfr (19/21). One novel point mutation V111I was detected in pvdhfr. Allelic combination analysis shows significant strong association between mutations in pvcrt-o and pvmdr1 (X2 = 9.521, P < 0.05). In the present study, 65.9% of the patients are non-Malaysians, with few of them arrived in Malaysia 1-2 weeks before the onset of clinical manifestations, or had previous history of malaria infection. Besides, few Malaysian patients had travel history to vivax-endemic countries, suggesting that these patients might have acquired the infections during their travel. All these possible imported cases could have placed Malaysia in a risk to have local transmission or outbreak of malaria. Six isolates were found to have mutations in all four drug resistance markers, suggesting that the multiple-drugs resistant P. vivax strains are circulating in Malaysia.
    Matched MeSH terms: Alleles
  9. Tan EC, Lee BW, Tay AW, Chew FT, Tay AH
    Allergy, 1999 Apr;54(4):402-3.
    PMID: 10371104
    Matched MeSH terms: Alleles
  10. Hanafi S, Hassan R, Bahar R, Abdullah WZ, Johan MF, Rashid ND, et al.
    Am J Blood Res, 2014;4(1):33-40.
    PMID: 25232503
    The aim of this study was to adapt MARMS with some modifications to detect beta mutation in our cohort of thalassemia patients. We focused only on transfusion-dependent thalassemia Malay patients, the predominant ethnic group (95%) in the Kelantanese population. Eight mutations were identified in 46 out of 48 (95.83%) beta thalassemia alleles. Most of the patients (54.2%) were compound heterozygous with co-inheritance Cd 26 (G>A). The frequencies of spectrum beta chain mutation among these patients are presented in Table 2. Among the transfusion dependent beta thalassemia Malay patients studied, 26 patients were found to be compound heterozygous and the main alleles were Cd 26 (G>A). Compound heterozygous mutation of Cd 26 (G>A) and IVS 1-5 (G>C) were 12 (46.2%), Cd 26 (G>A) and Cd 41/42 (TTCT) were 9 (34.6%), Cd 26 (G>A) and IVS 1-1 (G>C) were 2 (7.7%) respectively. Meanwhile the minority were made of a single compound heterozygous of Cd 26 (G>A) and Cd 71/72, Cd 26 (>A) and Cd 17 (A>T), Cd 26 (G>A) and -28 (G>A) respectively. Twenty out of forty six patients were shown to have homozygous of IVS 1-5 (G>C) were 2 (10.0%), Cd 26 (G>A) were 15 (75.0%), Cd 19 (A>G) were 1 (5.0%), and IVS 1-1 (G>T) were 2 (10.0%). The beta chain mutations among the Kelantanese Malays followed closely the distribution of beta chain mutations among the Thais and the Malays of the Southern Thailand. The G-C transition at position 5 of the IVS 1-5 mutation was predominant among the Malay patients. In conclusion, this method has successfully identified the mutation spectrum in our cohort of transfusion-dependent beta thalassemia patients, and this method is equally effective in screening for mutation among thalassemia patients.
    Matched MeSH terms: Alleles
  11. Tnah LH, Lee CT, Lee SL, Ng KK, Ng CH, Nurul-Farhanah Z, et al.
    Am J Bot, 2012 Nov;99(11):e431-3.
    PMID: 23108468 DOI: 10.3732/ajb.1200165
    Aggressive collections and trade activities in recent decades have resulted in heavy pressure on the natural stands of Aquilaria malaccensis and concerns over its long-term survival potential. To aid DNA profiling and assessment of its genetic diversity, microsatellite markers were developed for the species.
    Matched MeSH terms: Alleles
  12. Lee SL, Ng KK, Saw LG, Norwati A, Salwana MH, Lee CT, et al.
    Am J Bot, 2002 Mar;89(3):447-59.
    PMID: 21665641 DOI: 10.3732/ajb.89.3.447
    A field survey of Virgin Jungle Reserve (VJR) compartments in Peninsular Malaysia allowed us to identify six populations of Intsia palembanica for this study. These were Pasoh Forest Reserve (FR) (Pasoh), Sungai Lalang FR (Lalang), Bukit Lagong FR (Lagong), Bubu FR (Bubu), Bukit Kinta FR (Kinta), and Bukit Perangin FR (Perangin). About 40 adult individuals were sampled in each population. In addition, progeny arrays were collected from nine mother plants at Lagong for a mating system study. A total of nine allozymes, encoded by 14 putative gene loci, were consistently resolved in I. palembanica. The mating system study showed that the species exhibited a mixed-mating system, with multilocus outcrossing rate of 0.766. The levels of diversity were comparably high (mean number of alleles per polymorphic locus = 2.4, mean effective number of alleles per polymorphic locus = 1.64, and mean expected heterozygosity (H(e)) = 0.242), and the majority of the diversity was partitioned within population (G(ST) = 0.040 and F(ST) = 0.048). Significant levels of inbreeding were detected in Bubu and Perangin. Probability tests of recent effective population size reduction using the Infinite Allele Model showed the occurrence of genetic bottlenecks on Lalang and Kinta. Two genetically unique populations (Pasoh and Perangin) were inferred using jackknife analysis. By using the neutral mutation rates, effective population size (N(e)) to maintain the H(e) was 80-800 000 individuals. A simulation study based on pooled samples, however, circumscribed the N(e) to 200 and 210 individuals. Implications of the study for managing the species and the VJRs are discussed.
    Matched MeSH terms: Alleles
  13. Laosombat V, Fucharoen SP, Panich V, Fucharoen G, Wongchanchailert M, Sriroongrueng W, et al.
    Am J Hematol, 1992 Nov;41(3):194-8.
    PMID: 1415194
    A total of 103 beta thalassemia genes from 78 children (45 with Hb E/beta thalassemia, 8 with beta thalassemia heterozygotes, and 25 with homozygous beta thalassemia) were analyzed using dot-blot hybridization of the polymerase chain reaction-amplified DNA and direct DNA sequencing. Nine mutations were characterized in 98/103 (95%) of beta thalassemia alleles, of which six (a 4 bp deletion in codons 41-42, a G-C transition at position 5 of IVS-1, A-G transition at codon 19, an A-T transition at codon 17, an A-G transition at position -28 upstream of the beta globin gene, a G-T transition at position 1 of IVS-1), accounted for 92%. The spectrum of beta thalassemia mutations in Chinese Thai is similar to that reported among the Chinese from other parts of the world. The distribution of beta thalassemia mutations in Muslim Thai is similar to that reported among Malaysians. The most common beta thalassemia mutation in Thai and Chinese Thai patients is the frameshift mutation at codons 41-42, in comparison with the Muslim Thai in whom the G-C transition at position 5 of the IVS-1 mutation predominates. The heterogeneity of molecular defects causing beta thalassemia should aid in the planning of a prenatal diagnosis program for beta thalassemia in the South of Thailand.
    Matched MeSH terms: Alleles
  14. Hamanaka K, Imagawa E, Koshimizu E, Miyatake S, Tohyama J, Yamagata T, et al.
    Am J Hum Genet, 2020 04 02;106(4):549-558.
    PMID: 32169168 DOI: 10.1016/j.ajhg.2020.02.011
    De novo variants (DNVs) cause many genetic diseases. When DNVs are examined in the whole coding regions of genes in next-generation sequencing analyses, pathogenic DNVs often cluster in a specific region. One such region is the last exon and the last 50 bp of the penultimate exon, where truncating DNVs cause escape from nonsense-mediated mRNA decay [NMD(-) region]. Such variants can have dominant-negative or gain-of-function effects. Here, we first developed a resource of rates of truncating DNVs in NMD(-) regions under the null model of DNVs. Utilizing this resource, we performed enrichment analysis of truncating DNVs in NMD(-) regions in 346 developmental and epileptic encephalopathy (DEE) trios. We observed statistically significant enrichment of truncating DNVs in semaphorin 6B (SEMA6B) (p value: 2.8 × 10-8; exome-wide threshold: 2.5 × 10-6). The initial analysis of the 346 individuals and additional screening of 1,406 and 4,293 independent individuals affected by DEE and developmental disorders collectively identified four truncating DNVs in the SEMA6B NMD(-) region in five individuals who came from unrelated families (p value: 1.9 × 10-13) and consistently showed progressive myoclonic epilepsy. RNA analysis of lymphoblastoid cells established from an affected individual showed that the mutant allele escaped NMD, indicating stable production of the truncated protein. Importantly, heterozygous truncating variants in the NMD(+) region of SEMA6B are observed in general populations, and SEMA6B is most likely loss-of-function tolerant. Zebrafish expressing truncating variants in the NMD(-) region of SEMA6B orthologs displayed defective development of brain neurons and enhanced pentylenetetrazole-induced seizure behavior. In summary, we show that truncating DNVs in the final exon of SEMA6B cause progressive myoclonic epilepsy.
    Matched MeSH terms: Alleles
  15. Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, et al.
    Am J Hum Genet, 2016 Oct 06;99(4):950-961.
    PMID: 27666374 DOI: 10.1016/j.ajhg.2016.08.005
    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy.
    Matched MeSH terms: Alleles*
  16. Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, et al.
    Am J Hum Genet, 2015 Jan 08;96(1):5-20.
    PMID: 25529635 DOI: 10.1016/j.ajhg.2014.11.009
    Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
    Matched MeSH terms: Alleles
  17. Ghoussaini M, French JD, Michailidou K, Nord S, Beesley J, Canisus S, et al.
    Am J Hum Genet, 2016 Oct 06;99(4):903-911.
    PMID: 27640304 DOI: 10.1016/j.ajhg.2016.07.017
    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.
    Matched MeSH terms: Alleles
  18. Salahshourifar I, Sulaiman WA, Zilfalil BA, Halim AS
    Am J Med Genet A, 2011 Sep;155A(9):2302-7.
    PMID: 21834040 DOI: 10.1002/ajmg.a.34169
    Several studies have shown evidence for the contribution of interferon regulatory factor 6 (IRF6) variants to the risk of nonsyndromic oral clefts in Asians; however, this has not included the Malay population. The current study attempts to address this research gap using allele and haplotype transmission disequilibrium analyses. The results showed a strong transmission distortion for multiple haplotypes to patients with nonsyndromic cleft lip with or without cleft palate. Haplotypes carrying the 243 bp allele of D1S2136 and common alleles at the rs861019 and rs2235371 were over-transmitted to patients. By contrast, haplotypes consisting of the 251 bp allele of D1S2136 and the rare allele at rs2235371 were more under-transmitted. Furthermore, several variants and haplotypes showed excess maternal transmission, but none of them attained statistical significance in maternal relative risk analyses. In contrast, a significant child genotype effect was observed for several haplotypes, indicating fetal genotype could be the major genetic contribution rather than maternal genotype. The present study therefore further supports a role for IRF6 variants in clefting in this Southeast Asian population. Overall, Asian genetic backgrounds are most likely more susceptible to the haploinsufficiency of IRF6 variants. These variants may contribute to the condition either themselves, or they may be in linkage disequilibrium with other casual variants.
    Matched MeSH terms: Alleles
  19. Gopalai AA, Ahmad-Annuar A, Li HH, Zhao Y, Lim SY, Tan AH, et al.
    PMID: 27174169 DOI: 10.1002/ajmg.b.32454
    PARK16 was identified as a risk factor for Parkinson's disease in a Japanese cohort; however, subsequent studies in the other populations including the Chinese, European, Caucasian, and Chilean have shown a protective role instead. To investigate this locus in our Malaysian cohort, 1,144 individuals were screened for five SNPs in the PARK16 locus and logistic regression analysis showed that the A allele of the rs947211 SNP reduced the risk of developing PD via a recessive model (Odds ratio 0.57, P-value 0.0003). Pooled analysis with other Asian studies showed that A allele of the rs947211 SNP decreased the risk of developing PD via a recessive model (Odds ratio 0.71, P-value 0.0001). In addition, when meta-analysis was performed with other Asian population, three SNPs (rs823128, rs823156, and rs11240572) reduced risk of developing PD via a dominant model. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Alleles
  20. Fix AG, Lie-injo LE
    Am. J. Phys. Anthropol., 1975 Jul;43(1):47-55.
    PMID: 1155591
    Blood samples, demographic and cultural data were collected from seven settlements of Semai Senoi, a swidden farming ethnic group of Malaysia. Three genetic loci (ABO blood group, hereditary ovalcytosis, and hemoglobin) were analyzed in a total sample of 546 individuals. These data indicate a considerable degree of genetic microdifferentiation in this area of the Semai distribution. Parent-offspring birthplace data (analyzed by means of a migration matrix) and settlement histories show that settlements are not strongly isolated. Genetic differences in the study area demonstrate a reasonable correspondence with migration and the history of the settlements. Genetic convergence also occurs through the addition of migrant groups to established populations leading to new patterns of marriage between donor and recipient groups. The genetic structure of the total Semai population through time thus comprises a mosaic of shifiting allele frequencies in a series of semi-isolated local populations.
    Matched MeSH terms: Alleles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links