Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Baig MR, Gunaseelan R
    J Oral Implantol, 2012 Apr;38(2):149-53.
    PMID: 20932151 DOI: 10.1563/AAID-JOI-D-09-00089
    Passive fit of a long-span screw-retained implant prosthesis is an important criteria for the success of the restoration. This article describes a technique for fabricating a ceramometal implant fixed dental prosthesis (FDP) for a long-span partially edentulous situation by altering the conventional screw-retained design. The possibility of a passive fit is maximized by intraoral luting of the cast frame to milled abutments, and the potential framework distortion during fabrication is compensated to a major extent. Retrievability is ensured by screw retention of the prosthesis to the implants. Compared with conventional porcelain fused to metal screw-retained FDP, this prosthesis is relatively inexpensive to fabricate.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry*
  2. Patil PG, Nimbalkar-Patil SP, Karandikar AB
    J Contemp Dent Pract, 2014 Jan 1;15(1):112-5.
    PMID: 24939276
    This case report demonstrates sequential periodontic, orthodontic and prosthodontic treatment modalities to save and restore deep horizontally fractured maxillary central incisor. The location of fracture was deep in the mucosa which reveals less than 2 mm of tooth structure to receive the crown. The procedures like surgical crown lengthening, endodontic post placement, orthodontic forced eruption, core build-up and metal-ceramic crown restoration were sequentially performed to conserve the fractured tooth. Forced eruption is preferred to surgical removal of supporting alveolar bone, since forced eruption preserves the biologic width, maintains esthetics, and at the same time exposes sound tooth structure for the placement of restorative margins.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry
  3. Buzayan MM, Ariffin YT, Yunus N
    J Prosthodont, 2013 Oct;22(7):591-5.
    PMID: 23551843 DOI: 10.1111/jopr.12036
    A method is described for the fabrication of a closed hollow bulb obturator prosthesis using a hard thermoforming splint material and heat-cured acrylic resin. The technique allowed the thickness of the thermoformed bulb to be optimized for weight reduction, while the autopolymerized seal area was covered in heat-cured acrylic resin, thus eliminating potential leakage and discoloration. This technique permits the obturator prosthesis to be processed to completion from the wax trial denture without additional laboratory investing, flasking, and processing.
    Matched MeSH terms: Chromium Alloys/chemistry
  4. Baig MR, Rajan G, Yunus N
    Gerodontology, 2012 Jun;29(2):e1140-5.
    PMID: 21615782 DOI: 10.1111/j.1741-2358.2010.00433.x
    Dental rehabilitation of a completely edentulous geriatric patient has always been a challenge to the clinician, especially in treating those with higher expectations and demands. Treatment duration and the amount of residual alveolar bone available are often important considerations when planning for dental implant-based fixed treatment for these patients. With the introduction of zygomatic implants, a graftless alternative solution has emerged for deficient maxillary bone with provision for immediate loading. This article describes the treatment of a completely edentulous elderly patient using zygomatic implants in conjunction with conventional implants. The implants were immediately loaded using a definitive acrylic resin fixed denture reinforced with a cast metal framework, to provide function and aesthetics.
    Matched MeSH terms: Chromium Alloys/chemistry
  5. Saini R, Osman NB, Ismail M, Sobri FM, Tang TH, Santhanam J
    J Investig Clin Dent, 2011 Nov;2(4):241-7.
    PMID: 25426895 DOI: 10.1111/j.2041-1626.2011.00068.x
      To determine the prevalence of human papillomavirus in the oral cavity of denture wearers.
    Matched MeSH terms: Chromium Alloys/chemistry
  6. Wahab RM, Idris H, Yacob H, Ariffin SH
    Eur J Orthod, 2012 Apr;34(2):176-81.
    PMID: 21478298 DOI: 10.1093/ejo/cjq179
    This prospective study investigated the difference in clinical efficiency between Damon™ 3 self-ligating brackets (SLB) compared with Mini Diamond conventional ligating brackets (CLBs) during tooth alignment in straightwire fixed appliance therapy. Twenty-nine patients (10 males and 19 females), aged between 14 and 30 years, were randomly divided into two groups: 14 patients received the SLB and 15 received the CLB. Upper arch impressions were taken for pre-treatment records (T(0)). A transpalatal arch was soldered to both maxillary first molar bands prior to extraction of the maxillary first premolars, followed by straightwire fixed appliances (0.022 × 0.028 inch). A 0.014 inch nickel titanium (NiTi) wire was used as the levelling and aligning archwire. Four monthly reviews were undertaken and impressions of the upper arch were taken at each appointment (T(1), T(2), T(3), and T(4)). Displacements of the teeth were determined using Little's irregularity index (LII). Data were analysed using the Mann-Whitney U-test. In the aligning stage, the CLB group showed significantly faster alignment of the teeth compared with the SLB group at the T(1)-T(2) interval (P < 0.05). However, there were no differences at T(2)-T(3), and T(3)-T(4) for either group (P > 0.05). The CLB group showed 98 per cent crowding alleviation compared with 67 per cent for the SLB after 4 months of alignment and levelling. Mini Diamond brackets aligned the teeth faster than Damon™ 3 but only during the first month. There was no difference in efficacy between the two groups in the later 3 weeks. Alleviation of crowding was faster with CLB than with SLB.
    Matched MeSH terms: Dental Alloys/chemistry
  7. Baig MR, Rajan G, Rajan M
    J Oral Implantol, 2009;35(6):295-9.
    PMID: 20017646 DOI: 10.1563/AAID-JOI-D-09-00012R1.1
    This article describes the rehabilitation of a completely edentulous patient using a milled titanium implant framework and cemented crowns. This combined approach significantly offsets unsuitable implant position, alignment, or angulation, while ensuring the easy retrievability, repair, and maintenance of the prosthesis. Hence, the dual advantage of cemented-retained crowns reproducing appropriate esthetics and function, irrespective of where the screw access openings are located in the substructure, can be obtained, along with the splinting effect and management of soft and hard tissue deficits achievable with a screw-retained framework.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry
  8. Al-Makramani BMA, Razak AAA, Abu-Hassan MI
    J Prosthodont, 2008 Feb;17(2):120-124.
    PMID: 18047490 DOI: 10.1111/j.1532-849X.2007.00270.x
    PURPOSE: The current study investigated the effect of different luting agents on the fracture resistance of Procera AllCeram copings.

    METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.

    CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.

    Matched MeSH terms: Chromium Alloys/chemistry
  9. Reddy KB, Dash S, Kallepalli S, Vallikanthan S, Chakrapani N, Kalepu V
    J Contemp Dent Pract, 2013 Nov 1;14(6):1028-35.
    PMID: 24858745
    The present study was conducted to compare the cleaning efficacy (debris and smear layer removal) of hand and two NiTi rotary instrumentation systems (K3 and ProTaper).
    Matched MeSH terms: Dental Alloys/chemistry*
  10. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Alloys/chemistry
  11. Ramesh T, Foo KL, R H, Sam AJ, Solayappan M
    Sci Rep, 2019 11 19;9(1):17039.
    PMID: 31745139 DOI: 10.1038/s41598-019-53476-9
    Detection of host integrated viral oncogenes are critical for early and point-of-care molecular diagnostics of virus-induced carcinoma. However, available diagnostic approaches are incapable of combining both cost-efficient medical diagnosis and high analytical performances. To circumvent this, we have developed an improved IDE-based nanobiosensor for biorecognition of HPV-16 infected cervical cancer cells through electrochemical impedance spectroscopy. The system is fabricated by coating gold (Au) doped zinc oxide (ZnO) nanorods interfaced with HPV-16 viral DNA bioreceptors on top of the Interdigitated Electrode (IDE) chips surface. Due to the concurrently improved sensitivity and biocompatibility of the designed nanohybrid film, Au decorated ZnO-Nanorod biosensors demonstrate exceptional detection of HPV-16 E6 oncogene, the cancer biomarker for HPV infected cervical cancers. This sensor displayed high levels of sensitivity by detecting as low as 1fM of viral E6 gene target. The sensor also exhibited a stable functional life span of more than 5 weeks, good reproducibility and high discriminatory properties against HPV-16. Sensor current responses are obtained from cultured cervical cancer cells which are close to clinical cancer samples. Hence, the developed sensor is an adaptable tool with high potential for clinical diagnosis especially useful for economically challenged countries/regions.
    Matched MeSH terms: Gold Alloys/chemistry
  12. Alp S, Baka ZM
    Am J Orthod Dentofacial Orthop, 2018 Oct;154(4):517-523.
    PMID: 30268262 DOI: 10.1016/j.ajodo.2018.01.010
    INTRODUCTION: In this study, we aimed to determine the effect of regular probiotic consumption on microbial colonization in saliva in orthodontic patients and to comparatively evaluate the difference between the systemic consumption of probiotic products and the local application.

    METHODS: This study included 3 groups with 15 orthodontic patients in each. The control group included patients who had no probiotic treatment, the subjects in the kefir group consumed 2 × 100 ml of kefir (Atatürk Orman Ciftligi, Ankara, Turkey) per day, and the subjects in the toothpaste group brushed their teeth with toothpaste with probiotic content (GD toothpaste; Dental Asia Manufacturing, Shah Alam, Selangor, Malaysia) twice a day. Samples were collected at 3 times: beginning of the study, 3 weeks later, and 6 weeks later. The salivary flow rate, buffer capacity, and Streptococcus mutans and Lactobacillus levels in the saliva were evaluated. Chair-side kits were used to determine the S mutans and Lactobacillus levels.

    RESULTS: A statistically significant decrease was observed in the salivary S mutans and Lactobacillus levels in the kefir and toothpaste groups compared with the control group (P <0.05). A statistically significant increase was observed in the toothpaste group compared with the control and kefir groups in buffer capacity. Changes in the salivary flow rate were not statistically significant.

    CONCLUSIONS: The regular use of probiotics during fixed orthodontic treatment reduces the S mutans and Lactobacillus levels in the saliva.

    Matched MeSH terms: Dental Alloys/chemistry
  13. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Alloys/chemistry*
  14. Mustafa AA, Matinlinna JP, Razak AA, Hussin AS
    J Investig Clin Dent, 2015 Aug;6(3):161-9.
    PMID: 24415731 DOI: 10.1111/jicd.12083
    AIM: To evaluate in vitro the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) in experimental silane-based primers on shear bond strength of orthodontic adhesives.

    METHODS: Different volume percentages of HEMA were tested in four experimental silane-based primer solutions (additions of HEMA: 0, 5.0 vol%, 25.0 vol% and 50.0 vol%). An experimental silane blend (primer) of 1.0 vol% 3-isocyanatopropyltrimethoxysilane (ICMS) + 0.5% bis-1,2-(triethoxysilyl) ethane (BTSE) was prepared and used. The experimental primers together with the control group were applied onto acid-etched premolars for attachment of orthodontic brackets. After artificial aging by thermocycling the shear-bond strength was measured. The fractured surfaces of all specimens were examined under scanning electron microscopy (SEM) to evaluate the failure mode on the enamel surface.

    RESULTS: The experimental primers showed the highest shear-bond strength of 21.15 MPa (SD ± 2.70 MPa) and with 25 vol% showed a highly significant increase (P < 0.05) in bond strength. The SEM images showed full penetration of adhesive agents when using silane-based primers. In addition, the SEM images suggested that the predominant failure type was not necessarily the same as for the failure propagation.

    CONCLUSIONS: This preliminary study suggested that nonacidic silane-based primers with HEMA addition might be an alternative to for use as adhesion promoting primers.

    Matched MeSH terms: Dental Alloys/chemistry
  15. Benjakul P, Cheunarrom C, Ongthiemsak C
    J Oral Sci, 2001 Mar;43(1):15-9.
    PMID: 11383631
    Stainless steel wrought wires used as clasp arms for removable partial dentures in Thailand were compared with those used in some other countries (in the as-received condition) in terms of flexibility, Vickers microhardness and composition. The results showed that there were significant differences (P< or =0.05) among the wires. A Japanese stainless steel wire (SK) was obviously different from the others. It had the lowest proportional limit and microhardness, but its flexibility was almost the same. The chemical composition of each wire was not greatly different. The wires were about 18-20 wt% chromium and 8-9 wt% nickel, except for the SK wire, which had about 12 wt% nickel.
    Matched MeSH terms: Dental Alloys/chemistry*
  16. Mehboob H, Tarlochan F, Mehboob A, Chang SH, Ramesh S, Harun WSW, et al.
    J Mater Sci Mater Med, 2020 Aug 20;31(9):78.
    PMID: 32816091 DOI: 10.1007/s10856-020-06420-7
    The current study is proposing a design envelope for porous Ti-6Al-4V alloy femoral stems to survive under fatigue loads. Numerical computational analysis of these stems with a body-centered-cube (BCC) structure is conducted in ABAQUS. Femoral stems without shell and with various outer dense shell thicknesses (0.5, 1.0, 1.5, and 2 mm) and inner cores (porosities of 90, 77, 63, 47, 30, and 18%) are analyzed. A design space (envelope) is derived by using stem stiffnesses close to that of the femur bone, maximum fatigue stresses of 0.3σys in the porous part, and endurance limits of the dense part of the stems. The Soderberg approach is successfully employed to compute the factor of safety Nf > 1.1. Fully porous stems without dense shells are concluded to fail under fatigue load. It is thus safe to use the porous stems with a shell thickness of 1.5 and 2 mm for all porosities (18-90%), 1 mm shell with 18 and 30% porosities, and 0.5 mm shell with 18% porosity. The reduction in stress shielding was achieved by 28%. Porous stems incorporated BCC structures with dense shells and beads were successfully printed.
    Matched MeSH terms: Alloys/chemistry*
  17. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg
    Matched MeSH terms: Alloys/chemistry
  18. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Chromium Alloys/chemistry; Dental Alloys/chemistry
  19. Kadhim A, Salim ET, Fayadh SM, Al-Amiery AA, Kadhum AA, Mohamad AB
    ScientificWorldJournal, 2014;2014:490951.
    PMID: 24737973 DOI: 10.1155/2014/490951
    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
    Matched MeSH terms: Alloys/chemistry*
  20. Dambatta MS, Murni NS, Izman S, Kurniawan D, Froemming GR, Hermawan H
    Proc Inst Mech Eng H, 2015 May;229(5):335-42.
    PMID: 25991712 DOI: 10.1177/0954411915584962
    This article reports the in vitro degradation and cytotoxicity assessment of Zn-3Mg alloy developed for biodegradable bone implants. The alloy was prepared using casting, and its microstructure was composed of Mg2Zn11 intermetallic phase distributed within a Zn-rich matrix. The degradation assessment was done using potentiodynamic polarization and electrochemical impedance spectrometry. The cell viability and the function of normal human osteoblast cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and alkaline phosphatase extracellular enzyme activity assays. The results showed that the degradation rate of the alloy was slower than those of pure Zn and pure Mg due to the formation of a high polarization resistance oxide film. The alloy was cytocompatible with the normal human osteoblast cells at low concentrations (<0.5 mg/mL), and its alkaline phosphatase activity was superior to pure Mg. This assessment suggests that Zn-3Mg alloy has the potential to be developed as a material for biodegradable bone implants, but the toxicity limit must be carefully observed.
    Matched MeSH terms: Alloys/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links