Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Buzayan MM, Ariffin YT, Yunus N
    J Prosthodont, 2013 Oct;22(7):591-5.
    PMID: 23551843 DOI: 10.1111/jopr.12036
    A method is described for the fabrication of a closed hollow bulb obturator prosthesis using a hard thermoforming splint material and heat-cured acrylic resin. The technique allowed the thickness of the thermoformed bulb to be optimized for weight reduction, while the autopolymerized seal area was covered in heat-cured acrylic resin, thus eliminating potential leakage and discoloration. This technique permits the obturator prosthesis to be processed to completion from the wax trial denture without additional laboratory investing, flasking, and processing.
    Matched MeSH terms: Chromium Alloys/chemistry
  2. Baig MR, Rajan G, Yunus N
    Gerodontology, 2012 Jun;29(2):e1140-5.
    PMID: 21615782 DOI: 10.1111/j.1741-2358.2010.00433.x
    Dental rehabilitation of a completely edentulous geriatric patient has always been a challenge to the clinician, especially in treating those with higher expectations and demands. Treatment duration and the amount of residual alveolar bone available are often important considerations when planning for dental implant-based fixed treatment for these patients. With the introduction of zygomatic implants, a graftless alternative solution has emerged for deficient maxillary bone with provision for immediate loading. This article describes the treatment of a completely edentulous elderly patient using zygomatic implants in conjunction with conventional implants. The implants were immediately loaded using a definitive acrylic resin fixed denture reinforced with a cast metal framework, to provide function and aesthetics.
    Matched MeSH terms: Chromium Alloys/chemistry
  3. Ramesh T, Foo KL, R H, Sam AJ, Solayappan M
    Sci Rep, 2019 11 19;9(1):17039.
    PMID: 31745139 DOI: 10.1038/s41598-019-53476-9
    Detection of host integrated viral oncogenes are critical for early and point-of-care molecular diagnostics of virus-induced carcinoma. However, available diagnostic approaches are incapable of combining both cost-efficient medical diagnosis and high analytical performances. To circumvent this, we have developed an improved IDE-based nanobiosensor for biorecognition of HPV-16 infected cervical cancer cells through electrochemical impedance spectroscopy. The system is fabricated by coating gold (Au) doped zinc oxide (ZnO) nanorods interfaced with HPV-16 viral DNA bioreceptors on top of the Interdigitated Electrode (IDE) chips surface. Due to the concurrently improved sensitivity and biocompatibility of the designed nanohybrid film, Au decorated ZnO-Nanorod biosensors demonstrate exceptional detection of HPV-16 E6 oncogene, the cancer biomarker for HPV infected cervical cancers. This sensor displayed high levels of sensitivity by detecting as low as 1fM of viral E6 gene target. The sensor also exhibited a stable functional life span of more than 5 weeks, good reproducibility and high discriminatory properties against HPV-16. Sensor current responses are obtained from cultured cervical cancer cells which are close to clinical cancer samples. Hence, the developed sensor is an adaptable tool with high potential for clinical diagnosis especially useful for economically challenged countries/regions.
    Matched MeSH terms: Gold Alloys/chemistry
  4. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Alloys/chemistry
  5. Saini R, Osman NB, Ismail M, Sobri FM, Tang TH, Santhanam J
    J Investig Clin Dent, 2011 Nov;2(4):241-7.
    PMID: 25426895 DOI: 10.1111/j.2041-1626.2011.00068.x
      To determine the prevalence of human papillomavirus in the oral cavity of denture wearers.
    Matched MeSH terms: Chromium Alloys/chemistry
  6. Tuminoh H, Hermawan H, Ramlee MH
    J Mech Behav Biomed Mater, 2022 Nov;135:105457.
    PMID: 36116340 DOI: 10.1016/j.jmbbm.2022.105457
    In the last decade, magnesium alloys have been considered as absorbable metals for biomedical applications, while some have reached their clinical use as temporary bone implants. However, their widespread use is still limited by its strength and degradability. One way of improvement can be done by reinforcing magnesium alloys with carbon nanofibres to form composites. This work aims at developing carbon nanofibre-reinforced magnesium-zinc (Mg-Zn/CNF) composites with optimum strength and degradability while ensuring their biocompatibility. A response surface method was used to determine their optimum process parameters (composition, compaction pressure, and sintering temperature), and analyse the resulting properties (elastic modulus, hardness, weight loss, and cytocompatibility). Results showed that the optimal parameters were reached at 1.8% of CNF, 425 MPa of compaction pressure, and 500 °C of sintering temperature, whereby it gave an elastic modulus of 5 GPa, hardness of 60 Hv, and a weight loss of 51% after three days immersion in PBS. The composites exhibited a hydrophobic surface that controlled the liberation of Mg2+ and Zn2+ ions, leading to more than 70% osteoblast cells viability up to seven days of incubation. This study can also serve as a starting point for future researchers interested in finding methods to fabricate Mg-Zn/CNF composites with high mechanical characteristics, corrosion resistance, and biocompatibility.
    Matched MeSH terms: Alloys/chemistry
  7. Baig MR, Rajan G, Rajan M
    J Oral Implantol, 2009;35(6):295-9.
    PMID: 20017646 DOI: 10.1563/AAID-JOI-D-09-00012R1.1
    This article describes the rehabilitation of a completely edentulous patient using a milled titanium implant framework and cemented crowns. This combined approach significantly offsets unsuitable implant position, alignment, or angulation, while ensuring the easy retrievability, repair, and maintenance of the prosthesis. Hence, the dual advantage of cemented-retained crowns reproducing appropriate esthetics and function, irrespective of where the screw access openings are located in the substructure, can be obtained, along with the splinting effect and management of soft and hard tissue deficits achievable with a screw-retained framework.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry
  8. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Chromium Alloys/chemistry; Dental Alloys/chemistry
  9. Saud SN, Hosseinian S R, Bakhsheshi-Rad HR, Yaghoubidoust F, Iqbal N, Hamzah E, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:687-694.
    PMID: 27524069 DOI: 10.1016/j.msec.2016.06.048
    In the present work, the microstructure, corrosion, and bioactivity of graphene oxide (GO) coating on the laser-modified and -unmodified surfaces of TiNb shape memory alloys (SMAs) were investigated. The surface morphology and chemical composition was examined using field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The surface modification was carried out via a femtosecond laser with the aim to increase the surface roughness, and thus increase the adhesion property. FE-SEM analysis of the laser-treated Ti-30at.% Nb revealed the increase in surface roughness and oxygen/nitrogen containing groups on the Ti-30at.% Nb surface after being surface modified via a femtosecond laser. Furthermore, the thickness of GO was increased from 35μm to 45μm after the surface was modified. Potentiodynamic polarisation and electrochemical impedance spectroscopy studies revealed that both the GO and laser/GO-coated samples exhibited higher corrosion resistance than that of the uncoated TiNb SMA sample. However, the laser/GO-coated sample presented the highest corrosion resistance in SBF at 37°C. In addition, during soaking in the simulated body fluid (SBF), both the GO and laser/GO coating improved the formation of apatite layer. Based on the bioactivity results, the GO coating exhibited a remarkable antibacterial activity against gram-negative bacteria compared with the uncoated. In conclusion, the present results indicate that Ti-30at.% Nb SMAs may be promising alternatives to NiTi for certain biomedical applications.
    Matched MeSH terms: Alloys/chemistry*
  10. Benjakul P, Cheunarrom C, Ongthiemsak C
    J Oral Sci, 2001 Mar;43(1):15-9.
    PMID: 11383631
    Stainless steel wrought wires used as clasp arms for removable partial dentures in Thailand were compared with those used in some other countries (in the as-received condition) in terms of flexibility, Vickers microhardness and composition. The results showed that there were significant differences (P< or =0.05) among the wires. A Japanese stainless steel wire (SK) was obviously different from the others. It had the lowest proportional limit and microhardness, but its flexibility was almost the same. The chemical composition of each wire was not greatly different. The wires were about 18-20 wt% chromium and 8-9 wt% nickel, except for the SK wire, which had about 12 wt% nickel.
    Matched MeSH terms: Dental Alloys/chemistry*
  11. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Alloys/chemistry*
  12. Abu Bakar NH, Abu Bakar M, Bettahar MM, Ismail J, Monteverdi S
    J Nanosci Nanotechnol, 2013 Jul;13(7):5034-43.
    PMID: 23901527
    A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.
    Matched MeSH terms: Alloys/chemistry
  13. Razali MF, Mahmud AS, Mokhtar N
    J Mech Behav Biomed Mater, 2018 Jan;77:234-241.
    PMID: 28954242 DOI: 10.1016/j.jmbbm.2017.09.021
    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C.
    Matched MeSH terms: Dental Alloys/chemistry*
  14. Hussein HT, Kadhim A, Al-Amiery AA, Kadhum AA, Mohamad AB
    ScientificWorldJournal, 2014;2014:842062.
    PMID: 25136694 DOI: 10.1155/2014/842062
    Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4:1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.
    Matched MeSH terms: Alloys/chemistry*
  15. Kadhim A, Salim ET, Fayadh SM, Al-Amiery AA, Kadhum AA, Mohamad AB
    ScientificWorldJournal, 2014;2014:490951.
    PMID: 24737973 DOI: 10.1155/2014/490951
    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
    Matched MeSH terms: Alloys/chemistry*
  16. Al-Maqtari AA, Lui JL
    J Prosthodont, 2010 Jul;19(5):347-56.
    PMID: 20456026 DOI: 10.1111/j.1532-849X.2010.00593.x
    The purpose of this in vitro study was to determine if packable resin composite with/without flowable resin composite has the ability to prevent coronal leakage in restored endodontic access openings following aging.
    Matched MeSH terms: Dental Alloys/chemistry; Metal Ceramic Alloys/chemistry*
  17. Lui JL
    Dent Traumatol, 2001 Oct;17(5):227-30.
    PMID: 11678543
    The composite reinforcement technique has been used clinically to salvage damaged root-filled teeth compromised by caries, trauma, developmental abnormalities, internal resorption and iatrogenic causes. This clinical case report describes the use of the technique to reattach a fractured fragment in a compromised endodontically treated root besides reinforcing it for continued function in the mouth. Factors of clinical importance related to this additional application; including reattachment of tooth fragments, post crown retention, coronal microleakage and fracture resistance and strength, are also briefly discussed.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry
  18. Ling BC, Nambiar P, Low KS, Lee CK
    J Forensic Odontostomatol, 2003 Jun;21(1):17-22.
    PMID: 12793127
    Denture marking is accepted as a means of identifying dentures and persons in geriatric institutions, or post-mortem during war, crimes, civil unrest, natural and mass disasters. Labelling on the acrylic resin component of the denture can easily be damaged or destroyed by fire but on cobalt-chromium components it would be more resistant. A copper vapour laser (CVL) can be used to label the cobalt-chromium components of dentures and metal restorations easily, and legibly, and miniaturised for the incorporation of more personal particulars necessary for the identification of the deceased person. The CVL beam is focussed by its optics and delivered to the material surface by the two-axis scanner mounted with mirrors. A personal computer controls the movement of the scanner and the firing of the CVL. The high peak power of the pulsed CVL is focussed to very high energy density producing plasma ablation of the alloy surface. Very fine markings of a few microns width can be produced enabling the storage of detailed information of the deceased person on a metal surface for the purpose of rapid identification.
    Matched MeSH terms: Chromium Alloys/chemistry
  19. Patil PG, Nimbalkar-Patil SP, Karandikar AB
    J Contemp Dent Pract, 2014 Jan 1;15(1):112-5.
    PMID: 24939276
    This case report demonstrates sequential periodontic, orthodontic and prosthodontic treatment modalities to save and restore deep horizontally fractured maxillary central incisor. The location of fracture was deep in the mucosa which reveals less than 2 mm of tooth structure to receive the crown. The procedures like surgical crown lengthening, endodontic post placement, orthodontic forced eruption, core build-up and metal-ceramic crown restoration were sequentially performed to conserve the fractured tooth. Forced eruption is preferred to surgical removal of supporting alveolar bone, since forced eruption preserves the biologic width, maintains esthetics, and at the same time exposes sound tooth structure for the placement of restorative margins.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry
  20. Reddy KB, Dash S, Kallepalli S, Vallikanthan S, Chakrapani N, Kalepu V
    J Contemp Dent Pract, 2013 Nov 1;14(6):1028-35.
    PMID: 24858745
    The present study was conducted to compare the cleaning efficacy (debris and smear layer removal) of hand and two NiTi rotary instrumentation systems (K3 and ProTaper).
    Matched MeSH terms: Dental Alloys/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links