Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Baig MR, Rajan G, Yunus N
    Gerodontology, 2012 Jun;29(2):e1140-5.
    PMID: 21615782 DOI: 10.1111/j.1741-2358.2010.00433.x
    Dental rehabilitation of a completely edentulous geriatric patient has always been a challenge to the clinician, especially in treating those with higher expectations and demands. Treatment duration and the amount of residual alveolar bone available are often important considerations when planning for dental implant-based fixed treatment for these patients. With the introduction of zygomatic implants, a graftless alternative solution has emerged for deficient maxillary bone with provision for immediate loading. This article describes the treatment of a completely edentulous elderly patient using zygomatic implants in conjunction with conventional implants. The implants were immediately loaded using a definitive acrylic resin fixed denture reinforced with a cast metal framework, to provide function and aesthetics.
    Matched MeSH terms: Chromium Alloys/chemistry
  2. Abu Bakar NH, Abu Bakar M, Bettahar MM, Ismail J, Monteverdi S
    J Nanosci Nanotechnol, 2013 Jul;13(7):5034-43.
    PMID: 23901527
    A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.
    Matched MeSH terms: Alloys/chemistry
  3. Kadirgama K, Noor MM, Abd Alla AN
    Sensors (Basel), 2010;10(3):2054-63.
    PMID: 22294914 DOI: 10.3390/s100302054
    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness.
    Matched MeSH terms: Alloys/chemistry
  4. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Alloys/chemistry
  5. Tuminoh H, Hermawan H, Ramlee MH
    J Mech Behav Biomed Mater, 2022 Nov;135:105457.
    PMID: 36116340 DOI: 10.1016/j.jmbbm.2022.105457
    In the last decade, magnesium alloys have been considered as absorbable metals for biomedical applications, while some have reached their clinical use as temporary bone implants. However, their widespread use is still limited by its strength and degradability. One way of improvement can be done by reinforcing magnesium alloys with carbon nanofibres to form composites. This work aims at developing carbon nanofibre-reinforced magnesium-zinc (Mg-Zn/CNF) composites with optimum strength and degradability while ensuring their biocompatibility. A response surface method was used to determine their optimum process parameters (composition, compaction pressure, and sintering temperature), and analyse the resulting properties (elastic modulus, hardness, weight loss, and cytocompatibility). Results showed that the optimal parameters were reached at 1.8% of CNF, 425 MPa of compaction pressure, and 500 °C of sintering temperature, whereby it gave an elastic modulus of 5 GPa, hardness of 60 Hv, and a weight loss of 51% after three days immersion in PBS. The composites exhibited a hydrophobic surface that controlled the liberation of Mg2+ and Zn2+ ions, leading to more than 70% osteoblast cells viability up to seven days of incubation. This study can also serve as a starting point for future researchers interested in finding methods to fabricate Mg-Zn/CNF composites with high mechanical characteristics, corrosion resistance, and biocompatibility.
    Matched MeSH terms: Alloys/chemistry
  6. Patil PG, Nimbalkar-Patil SP, Karandikar AB
    J Contemp Dent Pract, 2014 Jan 1;15(1):112-5.
    PMID: 24939276
    This case report demonstrates sequential periodontic, orthodontic and prosthodontic treatment modalities to save and restore deep horizontally fractured maxillary central incisor. The location of fracture was deep in the mucosa which reveals less than 2 mm of tooth structure to receive the crown. The procedures like surgical crown lengthening, endodontic post placement, orthodontic forced eruption, core build-up and metal-ceramic crown restoration were sequentially performed to conserve the fractured tooth. Forced eruption is preferred to surgical removal of supporting alveolar bone, since forced eruption preserves the biologic width, maintains esthetics, and at the same time exposes sound tooth structure for the placement of restorative margins.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry
  7. Baig MR, Gunaseelan R
    J Oral Implantol, 2012 Apr;38(2):149-53.
    PMID: 20932151 DOI: 10.1563/AAID-JOI-D-09-00089
    Passive fit of a long-span screw-retained implant prosthesis is an important criteria for the success of the restoration. This article describes a technique for fabricating a ceramometal implant fixed dental prosthesis (FDP) for a long-span partially edentulous situation by altering the conventional screw-retained design. The possibility of a passive fit is maximized by intraoral luting of the cast frame to milled abutments, and the potential framework distortion during fabrication is compensated to a major extent. Retrievability is ensured by screw retention of the prosthesis to the implants. Compared with conventional porcelain fused to metal screw-retained FDP, this prosthesis is relatively inexpensive to fabricate.
    Matched MeSH terms: Metal Ceramic Alloys/chemistry*
  8. Mahmoodian R, Hamdi M, Hassan MA, Akbari A
    PLoS One, 2015;10(6):e0130836.
    PMID: 26111217 DOI: 10.1371/journal.pone.0130836
    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials.
    Matched MeSH terms: Alloys/chemistry*
  9. Dambatta MS, Murni NS, Izman S, Kurniawan D, Froemming GR, Hermawan H
    Proc Inst Mech Eng H, 2015 May;229(5):335-42.
    PMID: 25991712 DOI: 10.1177/0954411915584962
    This article reports the in vitro degradation and cytotoxicity assessment of Zn-3Mg alloy developed for biodegradable bone implants. The alloy was prepared using casting, and its microstructure was composed of Mg2Zn11 intermetallic phase distributed within a Zn-rich matrix. The degradation assessment was done using potentiodynamic polarization and electrochemical impedance spectrometry. The cell viability and the function of normal human osteoblast cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and alkaline phosphatase extracellular enzyme activity assays. The results showed that the degradation rate of the alloy was slower than those of pure Zn and pure Mg due to the formation of a high polarization resistance oxide film. The alloy was cytocompatible with the normal human osteoblast cells at low concentrations (<0.5 mg/mL), and its alkaline phosphatase activity was superior to pure Mg. This assessment suggests that Zn-3Mg alloy has the potential to be developed as a material for biodegradable bone implants, but the toxicity limit must be carefully observed.
    Matched MeSH terms: Alloys/chemistry*
  10. Ramesh T, Foo KL, R H, Sam AJ, Solayappan M
    Sci Rep, 2019 11 19;9(1):17039.
    PMID: 31745139 DOI: 10.1038/s41598-019-53476-9
    Detection of host integrated viral oncogenes are critical for early and point-of-care molecular diagnostics of virus-induced carcinoma. However, available diagnostic approaches are incapable of combining both cost-efficient medical diagnosis and high analytical performances. To circumvent this, we have developed an improved IDE-based nanobiosensor for biorecognition of HPV-16 infected cervical cancer cells through electrochemical impedance spectroscopy. The system is fabricated by coating gold (Au) doped zinc oxide (ZnO) nanorods interfaced with HPV-16 viral DNA bioreceptors on top of the Interdigitated Electrode (IDE) chips surface. Due to the concurrently improved sensitivity and biocompatibility of the designed nanohybrid film, Au decorated ZnO-Nanorod biosensors demonstrate exceptional detection of HPV-16 E6 oncogene, the cancer biomarker for HPV infected cervical cancers. This sensor displayed high levels of sensitivity by detecting as low as 1fM of viral E6 gene target. The sensor also exhibited a stable functional life span of more than 5 weeks, good reproducibility and high discriminatory properties against HPV-16. Sensor current responses are obtained from cultured cervical cancer cells which are close to clinical cancer samples. Hence, the developed sensor is an adaptable tool with high potential for clinical diagnosis especially useful for economically challenged countries/regions.
    Matched MeSH terms: Gold Alloys/chemistry
  11. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Chromium Alloys/chemistry; Dental Alloys/chemistry
  12. Razali MF, Mahmud AS, Mokhtar N
    J Mech Behav Biomed Mater, 2018 Jan;77:234-241.
    PMID: 28954242 DOI: 10.1016/j.jmbbm.2017.09.021
    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C.
    Matched MeSH terms: Dental Alloys/chemistry*
  13. Benjakul P, Cheunarrom C, Ongthiemsak C
    J Oral Sci, 2001 Mar;43(1):15-9.
    PMID: 11383631
    Stainless steel wrought wires used as clasp arms for removable partial dentures in Thailand were compared with those used in some other countries (in the as-received condition) in terms of flexibility, Vickers microhardness and composition. The results showed that there were significant differences (P< or =0.05) among the wires. A Japanese stainless steel wire (SK) was obviously different from the others. It had the lowest proportional limit and microhardness, but its flexibility was almost the same. The chemical composition of each wire was not greatly different. The wires were about 18-20 wt% chromium and 8-9 wt% nickel, except for the SK wire, which had about 12 wt% nickel.
    Matched MeSH terms: Dental Alloys/chemistry*
  14. Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Apr 01;73:215-219.
    PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138
    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg
    Matched MeSH terms: Alloys/chemistry
  15. Al-Makramani BMA, Razak AAA, Abu-Hassan MI
    J Prosthodont, 2008 Feb;17(2):120-124.
    PMID: 18047490 DOI: 10.1111/j.1532-849X.2007.00270.x
    PURPOSE: The current study investigated the effect of different luting agents on the fracture resistance of Procera AllCeram copings.

    METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.

    CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.

    Matched MeSH terms: Chromium Alloys/chemistry
  16. Hussein HT, Kadhim A, Al-Amiery AA, Kadhum AA, Mohamad AB
    ScientificWorldJournal, 2014;2014:842062.
    PMID: 25136694 DOI: 10.1155/2014/842062
    Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4:1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.
    Matched MeSH terms: Alloys/chemistry*
  17. Alp S, Baka ZM
    Am J Orthod Dentofacial Orthop, 2018 Oct;154(4):517-523.
    PMID: 30268262 DOI: 10.1016/j.ajodo.2018.01.010
    INTRODUCTION: In this study, we aimed to determine the effect of regular probiotic consumption on microbial colonization in saliva in orthodontic patients and to comparatively evaluate the difference between the systemic consumption of probiotic products and the local application.

    METHODS: This study included 3 groups with 15 orthodontic patients in each. The control group included patients who had no probiotic treatment, the subjects in the kefir group consumed 2 × 100 ml of kefir (Atatürk Orman Ciftligi, Ankara, Turkey) per day, and the subjects in the toothpaste group brushed their teeth with toothpaste with probiotic content (GD toothpaste; Dental Asia Manufacturing, Shah Alam, Selangor, Malaysia) twice a day. Samples were collected at 3 times: beginning of the study, 3 weeks later, and 6 weeks later. The salivary flow rate, buffer capacity, and Streptococcus mutans and Lactobacillus levels in the saliva were evaluated. Chair-side kits were used to determine the S mutans and Lactobacillus levels.

    RESULTS: A statistically significant decrease was observed in the salivary S mutans and Lactobacillus levels in the kefir and toothpaste groups compared with the control group (P <0.05). A statistically significant increase was observed in the toothpaste group compared with the control and kefir groups in buffer capacity. Changes in the salivary flow rate were not statistically significant.

    CONCLUSIONS: The regular use of probiotics during fixed orthodontic treatment reduces the S mutans and Lactobacillus levels in the saliva.

    Matched MeSH terms: Dental Alloys/chemistry
  18. Hutagalung SD, Ying OL, Ahmad ZA
    PMID: 18276560 DOI: 10.1109/TUFFC.2007.582
    This paper presents the effects of calcination time and sintering temperature on the properties of CaCu(3)Ti(4)O(12). Electroceramic material of CaCu(3)Ti(4)O(12) was prepared using a modified mechanical alloying technique that covers several processes, which are preparation of raw material, mixing and ball milling for 5 hours, calcination, pellet forming and, sintering. The objective of this modified technique is to enable the calcination and sintering processes to be carried out at a shorter time and lower temperature. The x-ray diffraction (XRD) analysis result shows that a single-phase of CaCu(3)Ti(4)O(12) was completely formed by calcination at 750 degrees C for 12 hours. Meanwhile, the grain size of a sample sintered at 1050 degrees C for 24 hours is extremely large, in the range of 20-50 mum obtained from field emission scanning electron microscopy (FESEM) images. The dielectric constant value of 14,635 was obtained at 10 kHz by impedance (LCR) meter in the sintered sample at 1050 degrees C. However, the dielectric constant value of samples sintered at 900 and 950 degrees C is quite low, in the range of 52-119.
    Matched MeSH terms: Alloys/chemistry*
  19. Kadhim A, Salim ET, Fayadh SM, Al-Amiery AA, Kadhum AA, Mohamad AB
    ScientificWorldJournal, 2014;2014:490951.
    PMID: 24737973 DOI: 10.1155/2014/490951
    Laser shock processing (LSP) is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I > 1 GW/cm(2); t < 50 ns) at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water) forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water) on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.
    Matched MeSH terms: Alloys/chemistry*
  20. Mustafa AA, Matinlinna JP, Razak AA, Hussin AS
    J Investig Clin Dent, 2015 Aug;6(3):161-9.
    PMID: 24415731 DOI: 10.1111/jicd.12083
    AIM: To evaluate in vitro the effect of different concentrations of 2-hydroxyethyl methacrylate (HEMA) in experimental silane-based primers on shear bond strength of orthodontic adhesives.

    METHODS: Different volume percentages of HEMA were tested in four experimental silane-based primer solutions (additions of HEMA: 0, 5.0 vol%, 25.0 vol% and 50.0 vol%). An experimental silane blend (primer) of 1.0 vol% 3-isocyanatopropyltrimethoxysilane (ICMS) + 0.5% bis-1,2-(triethoxysilyl) ethane (BTSE) was prepared and used. The experimental primers together with the control group were applied onto acid-etched premolars for attachment of orthodontic brackets. After artificial aging by thermocycling the shear-bond strength was measured. The fractured surfaces of all specimens were examined under scanning electron microscopy (SEM) to evaluate the failure mode on the enamel surface.

    RESULTS: The experimental primers showed the highest shear-bond strength of 21.15 MPa (SD ± 2.70 MPa) and with 25 vol% showed a highly significant increase (P < 0.05) in bond strength. The SEM images showed full penetration of adhesive agents when using silane-based primers. In addition, the SEM images suggested that the predominant failure type was not necessarily the same as for the failure propagation.

    CONCLUSIONS: This preliminary study suggested that nonacidic silane-based primers with HEMA addition might be an alternative to for use as adhesion promoting primers.

    Matched MeSH terms: Dental Alloys/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links